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Abstract—We present a novel and flexible method to optimize
the phase response of reflective metasurfaces towards a desired
scattering profile. The scattering power is expressed as a spin-
chain Hamiltonian using the radar cross section formalism.
For metasurfaces reflecting an oblique plane wave, an Ising
Hamiltonian is obtained. Thereby, the problem of achieving
the scattering profile is recast into finding the ground-state
solution of the associated Ising Hamiltonian. To rapidly explore
the configuration states, we encode the Ising coefficients with
quantum annealing algorithms, taking advantage of the fact that
the adiabatic evolution efficiently performs energy minimization
in the Ising model. Finally, the optimization problem is solved
on the D-Wave 2048-qubit quantum adiabatic optimizer machine
for binary phase as well as quadriphase reflective metasurfaces.
Even though the work is focused on the phase modulation of
metasurfaces, we believe this approach paves the way to fast
optimization of reconfigurable intelligent surfaces that are mod-
ulated in both amplitude and phase for multi-beam generation
in and beyond 5G/6G mobile networks.

Index Terms—Electromagnetic metamaterials, Ising model,
reflective metasurfaces, quantum annealing, wireless communi-
cation, 6G.

I. INTRODUCTION

THE study of wave propagation mediated by metamaterials

and metasurfaces (MSs) has been a longstanding topic

in applied physics and modern engineering [1]–[8]. They

offer a range of advantageous responses in beam steering [9],

wavefront shaping [10], anomalous reflection/refraction [11],

spatial processing [12] and computation [13], with practical

applications in sensing, imaging, and wireless communica-

tion [14]. It has been shown that it is possible to control

the reflection phase of metasurface groups of subwavelength

elements accurately and flexibly to realize digital coding MSs.

More recently, reconfigurable intelligent surfaces (RISs) have

been widely studied in the wireless communication com-

munity [14]–[17]. While MSs are typically passive surfaces
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whose patterns are engineered to achieve a specific reflec-

tive/transmissive behavior, RISs are reconfigured via software

to control the electromagnetic (EM) propagation dynamically,

where the desired far-field wavefront can be achieved by

tuning the local reflection phase of the elements.

Researchers have devoted substantial efforts in understand-

ing how to devise pattern optimization methods to achieve a

specific scattering profile, including genetic algorithms [18]–

[20], impedance-based synthesis [9], electromagnetic inversion

[21], statistical learning [22], as well as dynamical optimiza-

tion via switching across profile states [23], [24]. Wavefront

shaping has been demonstrated in the minimal case of binary

reflection phase control, where a phase delay of either 0 or

π can be impressed in the locally reflected field re-radiated

by the metasurface element. For a square metasurface with

N elements per dimension, a total number of N2 degrees of

freedom (DOFs) produce 2N
2

possible phase configurations.

A key question arises on how to efficiently select the phase

configuration that matches the desired scattering profile. In

other words, the enormous parameter space in metamaterial

optimization needs to be explored quickly. Combinatorial

exploration has been proposed in [25], [26], which flips a few

elements at a time and test the improvement in the scattering

profile to decide whether to keep or bring the phase back to

the original state.

In this work, we propose to find the optimal phase config-

uration by a physics-based approach inspired by the quantum

mechanical physics of spins. The Ising model is widely used

in statistical mechanics to describe the spin state of arrays

of quantum particles [27]. The formal analogy with the Ising

Hamiltonian has been exploited fruitfully in protein folding

[28], electromechanics [29] and photonics [30]. The latter case

in particular associates the particle spin to the reflection phase

of pixels in spatial light modulators (SLMs). Here, we dwell on

this analogy and develop an Ising model for the metasurface

array with prescribed scattering profile. The scattered wave

energy is used to calculate the EM free-field Hamiltonian,

which is found to configure as an Ising Hamiltonian. Thereby,

the global solution of the problem, i.e., the values of the

local reflection phases across the MSs/RISs, is obtained by

computing the ground state of the equivalent Hamiltonian.

Another interesting aspect of this work is to leverage

quantum computing (QC) to speed up the optimization of

derived Ising Hamiltonian. In recent years, the remarkable

progress made in QC hardware has defined a new, Noisy

Intermediate-Scale Quantum (NISQ), QC era [31]–[33]. Here,

we focus on quantum combinatorial optimization algorithms,
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which run on NISQ devices to search for an optimal solution

over all the combinatorial states of MS/RIS elements. One

well-known example is the Grover Adaptive Search algorithm

[34] with provable quantum speedup, which has been re-

cently applied to Constrained Polynomial Binary Optimization

(CPBO) problems [35]. Another representative example is

the quantum approximate optimization algorithm (QAOA)

[36] using unitary operators and quantum superposition. It is

noted that both above-mentioned algorithms run on universal

gate-model quantum computers. There is another specialized

analog computer, so-called quantum annealer (QA) [37], [38],

which belongs to the adiabatic quantum computing (AQC)

regime [39]. These quantum hardware received considerably

interests lately due to the number of available qubits and

programmability [40]–[44]. In this study, we explore the QA to

efficiently search the ground state of Ising Hamiltonian model.

The Ising coefficients are embedded into the physical grid of

qubits on an advanced QA hardware, the D-Wave 2000-qubit

(DW2Q) quantum adiabatic optimizer machine [45].

It is worth mentioning that there are classical algorithms

that have been developed for Ising problems. In the literature,

there are two types of classical algorithms used for the energy

minimization of Ising models. One may recast the Ising

model into mixed integer programming (MIP) model that can

be solved by relaxation-based classical exact solvers. These

include the branch-and-bound search [46] via semidefinite

programming (SDP) or branch-and-cut search by incorporating

cutting plane algorithm in the branch-and-bound scheme [47].

However, it is shown in [48] that such methods is less

efficient than or at best comparable to quantum annealing.

This is likely because of the need to solve the relaxation

of the MIP model [49]. In recent years, many have shifted

their interests to classical heuristic methods such as simulated

annealing [50], [51]. Simulated annealing performs the energy

minimization of Ising Hamiltonian via the implementation of

Metropolis-Hasting algorithm on classical machines. There are

several attempts to compare performance of these classical

heuristic solvers to quantum annealing algorithms [52]–[54].

Yet, there is still no definitive advantage of choosing either

categories as their performance depends on the problem size

and complexity. In this paper, we shall limit our analysis

to the QA. Rigorous numerical analysis and performance

comparison between QA and classical heuristic algorithms will

be considered for future work.

The rest of paper is organized as follows: In section II,

we present relevant notations for the analysis of plane-wave

scattering from a rectangular surface array. Secondly, we

propose suitable Ising Hamiltonians that are used to represent

the problem of achieving the desired scattering profile from

the surface array. Based on the mathematical representation of

Ising models, we introduce the quantum annealing algorithm

to find the ground-state solution of Ising Hamiltonian, and

discuss a generalization to larger-scale problem and higher-

order modulated reflecting surfaces. In section III, we apply

the proposed work on various problem sizes and prescribed

scattering angles to evaluate the optimised solution and com-

putational performance. Numerical results verify that the pro-

posed framework promises a computationally efficient, general

Fig. 1: A TE-polarized plane wave incident on the metasurface.

tool for the design and configuration of EM reflective surfaces.

Finally, we draw some conclusions and future perspectives.

II. METHODOLOGY

A. Problem Statement

Metasurfaces are artificial structures engineered with desired

properties to control and manipulate EM waves. The specific

structure considered in this work is a large planar metasurface

array with configurable phase response in the element reflec-

tion coefficient. For the purpose of illustration, we start with

the binary phase shift metasurface, in which the array elements

exhibit 0 or π phase responses [3], [4], [19], [55], [56]. The

extension to optimize higher order phase quantization will be

discussed in Section II.E .

A generic problem statement of reflective metasurface in

wireless application is illustrated in Fig. 1, including a trans-

mitter (Tx), a receiver (Rx) and a passive reflecting meta-

surface array. Consider the case that the direct-link between

Tx and Rx is blocked by an obstacle, the metasurface can

be used to create a virtual line-of-sight link with enhanced

signal reflection [57]. Assume a far-away Tx radiates a TE
polarized uniform plane wave on the metasurface array with

incident angle θi. The size of the surface element is d × d
and the total number of elements is M ×N . Assuming a unit

magnitude for brevity, the incident electric and magnetic fields

can be expressed as:

Ei =
(

ŷ cos θi + ẑ sin θi
)

e−jk(y sin θ
i
−z cos θi) (1)

Hi = x̂
1

η
e−jk(y sin θ

i
−z cos θi) (2)

By using the physical optics (PO) approximation [58], we

obtain the induced electric current on the element (m,n):

Js (m,n) = ŷ
2

η
e−jky sin θ

i

ejψ(m,n) (3)

where ψ (m,n) ∈ [0, π] is the phase of the reflection coeffi-

cient, and the reflection amplitude is assumed to be 1. There

is a considerable literature on the design of such 1-bit binary

elements. Interested readers are referred to [19], [59]–[61].
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The total scattered fields are calculated using the Stratton-

Chu representation formulas, and they can be expressed as:

Esθ =C (r) Esθ
(

θs, φs, θi
)

As (θs, φs) (4)

Esφ =C (r) Esφ
(

θs, φs, θi
)

As (θs, φs) (5)

and

C (r) =− j
kd2

2π

e−jkr

r
(6)

Esθ
(

θs, φs, θi
)

=cos θs sinφs sincX sincY (7)

Esφ
(

θs, φs, θi
)

=cosφs sincX sincY (8)

As
(

θs, φs, θi
)

=

M
∑

m=1

N
∑

n=1

ejψ(m,n)ejkxmdejkynd (9)

where

kx =k sin θs cosφs

ky =k
(

sin θs sinφs − sin θi
)

X =kd sin θs cosφs/2

Y =kd
(

sin θs sinφs − sin θi
)

/2

It is thereby clear that the C (r) depends on the radial distance

to the observation point, Esθ/Esφ and As refer to the attributes

of metasurface element factor and array factor, respectively.

Based on the scattered fields of Eqs. (4) and (5), the radar

cross section (RCS) can be written as:

σ
(

θs, φs, θi
)

= lim
r→∞

[

4πr2
|Es|2
|Ei|2

]

=
4πd4

λ2
(

|Esθ |2 + |Esφ|2
)

|As|2 =
4πd4

λ2
|Es|2|As|2 (10)

From Equation (10), we observe that the RCS is a product

of single element scattering pattern |Es|2 = |Esθ |2 + |Esφ|2,

and the power pattern due to the array factor |As|2. Note

that a rudimentary PO approximation of patch scattering is

used for the sake of completeness in the RCS derivation. The

goal of the study is to optimize the element-wise phase profile

distribution, ψ (m,n), across the metasurface, such that the

maximum scattered wave is directed towards the receiver.

B. Ising Hamiltonian Model

At this stage, we focus on the optimization of binary

metasurfaces with 0 or π phase response. The array factor

in Eq. (9) can be rewritten as:

As
(

θs, φs, θi
)

=

M
∑

m=1

N
∑

n=1

smne
jkxmdejkynd (11)

where the discrete variable smn = ±1 corresponding to the

0/π element phase modulation, and the subscript indicates the

element index (m,n). The scattering intensity of the array

factor is obtained as:

|As|2 = As
(

θs, φs, θi
)

·
(

As
(

θs, φs, θi
))∗

=

M
∑

m=1

N
∑

n=1

M
∑

i=1

N
∑

v=1

smnsive
j[kx(m−i)d+ky(n−v)d] (12)

The expression in Eq. (12) naturally reminds us of the

classical Ising spin lattice model, which has been originally

introduced as a mathematical model for understanding ferro-

magnetism in statistical mechanics. The Ising model consists

of discrete variables that describe the magnetic moments of

atomic spins. Each spin can take one of two possible states:

+1 for spin up and -1 for spin down. In the Ising model, the

energy of the system is conveniently expressed as an effective

Hamiltonian function. In what follows, we will discuss how

to construct the target EM energy Hamiltonian for achieving

the desired scattering profile from the metasurface array.

1) Desired Signal Maximization: One typical application

of reflecting metasurfaces in wireless communication is the

directional signal enhancement at the Rx. Namely, a judicious

selection of element coefficients s∗∗ leads to a constructive

beamforming in the desired direction towards the Rx, thus im-

proving the data transmission performance. The corresponding

mathematical representation is:

ŝ11, · · · , ŝMN = argmax
s11,··· ,sMN

∫∫

Sr

dΩ|Es|2|As|2 (13)

where the power patterns of element factor |Es|2 and array

factor |As|2 are functions of (θs, φs, θi). The solid angle

integration in Eq. (13) is defined as:
∫∫

Sr

dΩ =

∫ φr+∆φ

φr
−∆φ

dφs
∫ θr+∆θ

θr−∆θ

dθs sin θs (14)

in which the desired direction is denoted by φr and θr, and ∆φ

and ∆θ are introduced to account for the finite beamwidth. We

will utilize the 3-dB beamwidth derived in [62]. The maximum

optimization in Eq. (13) is equivalent to finding the ground-

state solution of the effective Hamiltonian:

Hr =

M
∑

m=1

N
∑

n=1

M
∑

i=1

N
∑

v=1
i×N+v>m×N+n

smnsivJ r
mniv (15)

In the analogy with Eq. (12), the variable s∗∗ takes values

of +1 or −1, which can be interpreted as the spin value in

the Ising model. The spin-spin interaction strength, J r
mniv , is

defined as:

J r
mniv=−C

∫∫

Sr

dΩ|Es|2 cos [kx(i−m)d+ky(v−n)d] (16)

with C > 0 a positive constant. Here we choose C = 1/Sr to

normalize the energy Hamiltonian. Note that we have included

a minus sign in Eq. (16) such that the lowest energy state

of Ising Hamiltonian corresponds to the maximum scattered

power. The extension to the case of multiple Rx destinations

is rather straightforward by incorporating multiple solid angle

integrations in Eq. (14).

2) Interference Suppression: Often in practice, wireless

communication scenarios require the scattered wave to avoid

certain areas or angular domains, in order to suppress the co-

channel interference from nearby base stations, or to protect

safety critical electronic devices. These attributes can be recast

into an argmin optimization problem:

ŝ11, · · · , ŝMN = argmin
s11,··· ,sMN

∫∫

Sc

dΩ|Es|2|As|2 (17)



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021 4

The solid angle integration in Eq. (17) is defined as:

∫∫

Sc

dΩ =

∫ φc
h

φc
l

dφs
∫ θch

θc
l

dθs sin θs (18)

where [φcl , φ
c
h] and [θcl , θ

c
h] specifies the angular domain where

the destructive beamforming is desired.

The optimization in Eq. (17) can be recast into finding the

ground-state solution of the effective Hamiltonian:

Hc =

M
∑

m=1

N
∑

n=1

M
∑

i=1

N
∑

v=1
i×N+v>m×N+n

smnsivJ c
mniv (19)

The spin-spin interaction strength, J c
mniv , is defined as:

J c
mniv=C

∫∫

Sc

dΩ|Es|2 cos [kx(i−m)d+ky(v−n)d] (20)

In the most general case, we may combine both effects of

desired signal maximization and interference suppression, thus

leading to a preferred signal hotspot as well as interference-

free zone [57]. This can be solved with an energy functional

consisting of two components:

H = Hr +Hc (21)

where Hr and Hc are defined in Eqs. (15) and (19), re-

spectively. The ground-state solution (lowest energy) of the

Hamiltonian (21) will satisfy both requirements.

It is noted that the computational complexity for calculating

Eqs. (16) and (20) scales linearly with respect to the array

size, i.e. O(N) for 1D linear array and O(MN) for 2D

rectangular array. The reason being that the interaction strength

only depends on the relative location between elements.

C. Quantum Annealing Optimization

1) Introduction to Quantum Annealing: So far, we have

recast the problem of achieving the desired scattering profile

into finding the ground-state solution of Ising Hamiltonian

for a M × N spin system. The spin-like degrees of freedom

are offered by the discrete phase values achievable by the

tunable metasurface element. Clearly, due to the enormous

design space, 2MN for M ×N Ising spins, finding the optimal

solution with classical computational algorithms can be very

challenging. This is where the quantum annealing becomes an

appealing way forward.

The essential concept of quantum annealing (QA) is to

harness the natural evolution of quantum states to solve the

energy minimization problem represented by the Ising spin

glass model [63], or equivalently, the quadratic unconstrained

binary optimization (QUBO) problem [64]. The QA starts

from the quantum-mechanical superposition of all possible

states (candidate states). Then the system evolves according

to the time-dependent Schrodinger equation. Physically, this is

realized by introducing a controllable quantum transverse-field

term into the Hamiltonian that decreases adiabatically. Thus,

the range of sampled solutions shrinks as the field strength

decreases over time until the low energy state Hamiltonian re-

mains. Interestingly, the QA can escape local minima solution

via cooperative quantum tunneling effect. This is comparable

to similar features of classical simulated (thermal) annealing

(SA) [65] to escape local minima by thermal activation. Hence,

the quantum annealing is a global heuristic optimizer, like

simulated annealing, to find the global minima solution.

2) D-Wave Quantum Annealing Process: To achieve the

ground state efficiently, we have compiled the Ising models

in Eqs. (15) and (19) into a physical QA hardware, the D-

Wave 2000Q (DW2Q) quantum annealer device. The DW2Q

has 2048 functional quantum bits (qubits) represented by

circulating currents in superconducting loops.

To demonstrate the QA algorithm, we consider an M -

element linear metasurface array with the application of de-

sired signal maximization. The corresponding quantum Hamil-

tonian with Ising spins in a transverse field is given by [66]:

H(t)=−A(t)

(

M
∑

m=1

σ̂x
m

)

+B(t)
(

M
∑

m=1

M
∑

i=m+1

σ̂z
mσ̂

z
iJ r

mi

)

(22)

where σ̂x,z
m are the Pauli spin matrices. The σ̂z

m represent

the spin projections along either the +z or −z direction

(taking values +1 for spin up and -1 for spin down). The

A(t) represents the transverse Hamiltonian due to an applied

transverse field in the x-direction.

The quantum annealing process starts at time t = 0 with

A(0) ≫ B(0). The ground state of the initial Hamiltonian

is given by the product state of the spins in the x-direction,

which is an easy state to set up and initialize. The system

is then evolved by decreasing A(t) and increasing B(t) until

the annealing time tf is reached. If the increasing in B is

slowly enough, by the adiabatic theorem the final state of the

system is the ground state of the target Hamiltonian. Namely,

the qubits have dephased to classical systems, and the σ̂z
m

can be replaced by classical spin variables, ŝ1, · · · , ŝM , which

represent the ground state (optimal) solution.

3) Embedding Ising into DW2Q Hardware: It is worth not-

ing that the qubits of DW2Q quantum processing unit (QPU)

are not fully connected. Instead, the interconnection of qubits

is represented by a topology known as the Chimera graph. The

Chimera graph comprises of a 16×16 two-dimensional lattice

of unit cells. Each unit cell consists of four horizontal qubits

and four vertical qubits. The couplings among qubits within a

unit cell are denoted as internal couplers, while the couplings

between different unit cells are referred to as external couplers.

A cropped view of 2× 2 grid of unit cells in Chimera graph

is illustrated in Fig. 2, from which we can see that any given

qubit is connected with at most six other qubits.

Recognizing that the Ising variables in Eqs. (15) and (19)

are almost all-to-all connected, thus, a process of mapping the

fully connected graph of our Ising problem into the Chimera

graph is required. This is achieved by embedding each Ising

variable (hereafter denoted as logic node) onto a connected

chain of physical qubits presented in the Chimera graph [67].

In other words, the chain is a collection of physical qubits

bound together to represent a single logical node. The physical

qubits within a chain are constrained to have the same value,

thus acting like a single logical node.

Consider a metasurface with 8 Ising variables as an ex-

ample. It gives rise to a fully connected (complete) graph
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Fig. 2: A 2 × 2 grid of unit cells in Chimera graph. Internal

couplers are colored in green, and external couplers are colored

in purple and blue, respectively.

(a) Complete graph (b) Chimera graph

Fig. 3: Embedding of a fully connected graph with 8 Ising

variables into the Chimera graph used in D-Wave architecture.

with 8 logic nodes, as shown in Fig. 3(a). A uniform triangle

embedding [68] of this complete graph to the Chimera graph

is depicted in Fig. 3(b). The color is introduced to reflect the

mapping from logical node to physical qubits. Clearly, each

logic node in the complete graph is represented by a chain

of 3 physical qubits in the Chimera graph. The details of the

triangle embedding are discussed in [68] for interested readers.

Note that due to the constrained connection in Chimera

graph, the chain length will increase accordingly with the size

of the fully connected graph. For the case of N Ising variables,

the length of the chain needs to be (N/4 + 1), thereby a total

number of
(

N2/4 +N
)

physical qubits are required in the

embedding process. Since the maximum available physical

qubits in DW2Q is 2048, a straightforward calculation shows

that the largest size of fully connected graph can be solved by

the Chimera architecture is 65 using the triangle embedding.

D. Further Technical Discussion

1) Converting into Non-zero Bias Ising Model: As we

compare Eqs. (15) and (19) to typical Ising problems in statis-

tical mechanics, they appear to have only quadratic coupling

coefficients, denoted by the spin-spin interaction strength J .

The linear coefficients (so-called biases) for Ising spins are all

zero. Such zero-bias problems are known to be harder to solve

since there are many degenerate states [69]. As an example, for

any ground-state solution, we would obtain the same energy

state by reversing the spin value of all Ising variables.

We present an easy way to convert Eqs. (15) and (19) into

non-zero bias Ising models. For the purpose of elucidation, we

Subarray size: �(")
" �

(")

�!

�"

Fig. 4: Illustration of subarray grouping concept.

use an M -element linear metasurface array along the x̂-axis

as an example. The Hamiltonian in Eq. (15) will reduce to:

Hr =

M
∑

m=1

M
∑

i=m+1

smsiJ r
mi (23)

The first step is to fix the spin value of a random Ising variable.

Without loss of generality, we set the 1st Ising variable to be

1. Then the Hamiltonian in Eq. (23) can be rearranged as:

Hr =

M−1
∑

m=1

smJ r
1(m+1) +

M−1
∑

m=1

M−1
∑

i=m+1

smsiJ r
(m+1)(i+1) (24)

where J r
1(m+1) are the biases and J r

(m+1)(i+1) are the cou-

plings between spins. Equation (24) thereby becomes a stan-

dard non-zero-bias Ising problem, whose ground state solution

is same as Eq. (23).

2) Two-Level Optimization for Large Array: Due to the

mismatch of the fully connected graph generated from our

Ising models and the very sparse Chimera graph in D-Wave

QPU hardware, the size of Ising problems can be solved is

relatively small (around 65 Ising variables). On the other hand,

a realistic 2D metasurface may have hundreds or thousands of

Ising variables. To overcome this QPU hardware limitation,

we will discuss a two-level QA optimization for larger-scale

metasurface problems.

The idea is inspired from the subarray concept in modern

phased array systems, in which antenna elements are grouped

into subarrays and then subarrays form the entire array. Con-

sider the M by N metasurface shown in Fig. 1, with associated

Ising Hamiltonian in Eq. (15) used as the objective function

to achieve the desired signal power maximization. Instead of

optimizing the total number of M ·N Ising variables in a single

step, we first divide the metasurface array into smaller subsets,

or so-called subarrays. Each subarray consists of M (1) by N (1)

elements, and the number of subarrays is [M/M (1)]·[N/N (1)].
This corresponds to group array elements shown in Fig. 4.

We first write the Hamiltonian of a M (1) by N (1) subarray

configuration:

H(1) =

M(1)
∑

m=1

N(1)
∑

n=1

M(1)
∑

i=1

N(1)
∑

v=1
i×N(1)+v>m×N(1)+n

pmnpivJ (1)
mniv (25)
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where pmn and piv are element spin variables, and the spin-

spin interaction is a weighted integral by the angle-dependent,

element scattering intensity, same as the one given in Eq.

(16). By utilizing the QA algorithm described in the previous

subsection, an optimized sequence of Ising spin variables,

p̂11, · · · , p̂M(1)N(1) , can be obtained.

Subsequently, we can write the optimized subarray scatter-

ing intensity |Ẽs|2 as:

|Ẽs|2= |Es|2
M(1)
∑

m=1

N(1)
∑

n=1

M(1)
∑

i=1

N(1)
∑

v=1

p̂mnp̂ive
j[kx(m−i)d+ky(n−v)d] (26)

The next task is to superimpose the M (2) by N (2) sub-

arrays to achieve a desired signal maximization. Note that

M (2) = M/M (1) and N (2) = N/N (1). Each subarray can

take one of two possible states: spin up (+1) or spin down (-1).

Accordingly, we can write the Hamiltonian for those subarray

contributions as:

H(2) =

M(2)
∑

m=1

N(2)
∑

n=1

M(2)
∑

i=1

N(2)
∑

v=1
i×N(2)+v>m×N(2)+n

qmnqivJ (2)
mniv (27)

where the subarray spin-spin interaction is calculated as:

J (2)
mniv=−C

∫∫

Sr

dΩ|Ẽs|2cos[kx(i−m)Dx+ky(v−n)Dy] (28)

where the Dx and Dy are subarray center-to-center spacing

along the x̂-axis and ŷ-axis as shown in Fig. 4. The computa-

tional complexity for calculating the interaction in (28) scales

with the number of subarrays.

After the optimized sequence of subarray spin variables,

q̂11, · · · , q̂M(2)N(2) , is obtained, the final Ising variable for in-

dividual array element can be determined by ŝmn = p̂mn · q̂mn
in a post-processing step. The computational complexity in this

post-processing step scales with the number of array elements.

It is noted that the concept can be compared to the renor-

malisation group approach in computational quantum physics

[70], [71]. The subarray can be viewed as block spin in the

scale transformation.
3) Extension to Quadriphase Modulation: So far, the dis-

cussion of this paper is focused on the binary modulated

metasurface array, where individual elements have 0 or π
phase responses in the reflection. Such binary elements have

been widely studied in the literature due to the low hardware

complexity and cost. Nevertheless, the low resolution in the

phase response also restricts the maximum achievable direc-

tivity of RCS pattern [72]. In this subsection, we will extend

the proposed work to the quadriphase modulation.

Recall that the construction of Ising Hamiltonian starts

by representing the reflection coefficients with Ising spin

variables. Consider the metasurface element with four phase

responses, ψ (m,n) ∈ {0, π/2, π, 3π/2}. The complex reflec-

tion coefficients Γ(m,n) = ejψ(m,n) are given in Table 1.

It is clear that both real and imaginary parts of Γ(m,n) have

three states {−1, 0, 1}. The direct implementation requires a

linear combination of four Ising spin variables. Nevertheless,

we can rewrite the reflection coefficient as:

Γ(m,n) = ejψ̃(m,n)e−j
π
4 =

(

sRe
mn + jsImmn

)

e−j
π
4

√
2

2
(29)

ψ (m,n) 0 π/2 π 3π/2

ejψ(m,n) 1 + 0j 0 + j −1 + 0j 0− j

TABLE I: Reflection coefficient for quadriphase elements.

ψ̃ (m,n) π/4 3π/4 5π/4 7π/4

ejψ̃(m,n)
√

2
2

+
√

2
2
j −

√

2
2

+
√

2
2
j −

√

2
2

−
√

2
2
j

√

2
2

−
√

2
2
j

sRe
mn 1 −1 −1 1

sImmn 1 1 −1 −1

TABLE II: Reflection coefficient for quadriphase elements.

where only two Ising spin variables sRe
mn ∈ ±1 and sImmn ± 1

are used to represent the four phase states in the reflection

coefficient. The detailed mapping is given in Table II.

By substituting Equation (29) into Eq. (9), we obtain the

scattering intensity of the array factor as:

|As|2 = As
(

θs, φs, θi
)

·
(

As
(

θs, φs, θi
))∗

=
1

2

M
∑

m=1

N
∑

n=1

M
∑

i=1

N
∑

v=1

sRe
mns

Re
iv e

j[kx(m−i)d+ky(n−v)d]

− j

2

M
∑

m=1

N
∑

n=1

M
∑

i=1

N
∑

v=1

sRe
mns

Im
iv e

j[kx(m−i)d+ky(n−v)d]

+
j

2

M
∑

m=1

N
∑

n=1

M
∑

i=1

N
∑

v=1

sImmns
Re
iv e

j[kx(m−i)d+ky(n−v)d]

+
1

2

M
∑

m=1

N
∑

n=1

M
∑

i=1

N
∑

v=1

sImmns
Im
iv e

j[kx(m−i)d+ky(n−v)d]

(30)

As indicated by Eq. (30), the power pattern of array factor

is now expressed as a quadratic polynomial of Ising spin

variables. In the case of desired signal maximization in Eq.

(13), we can transform the argmax into the equivalent Ising

form with the Hamiltonian defined by:

Hr =

M
∑

m=1

N
∑

n=1

M
∑

i=1

N
∑

v=1
i×N+v>m×N+n

(sRe
mns

Re
iv J RR

mniv + sRe
mns

Im
iv J RI

mniv

+sImmns
Re
iv J IR

mniv + sImmns
Im
iv J II

mniv)

(31)

The spin-spin interaction strengths are determined by:

J RR
mniv=−C

∫∫

Sr

dΩ|Es|2 cos [kx(i−m)d+ky(v−n)d] (32)

J RI
mniv=C

∫∫

Sr

dΩ|Es|2 sin [kx(i−m)d+ky(v−n)d] (33)

J IR
mniv=−C

∫∫

Sr

dΩ|Es|2 sin [kx(i−m)d+ky(v−n)d] (34)

J II
mniv=−C

∫∫

Sr

dΩ|Es|2 cos [kx(i−m)d+ky(v−n)d] (35)

Compared to the binary phase configuration, the total number

of Ising variables is increased by a factor of 2, namely, 2M ·N
for a M by N metasurface array. After the optimized value of

Ising spin variables ŝRe
mn and ŝImmn are obtained, the metasurface

element phase response can be retrieved by:

ψ (m,n) = arg
(

ŝRe
mn + jŝImmn

)

− π/4 (36)
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θr QA result Brute-force search

10o 11000111 11000111
11100011 11100011

20o 10110110 10110110
10010010 10010010

30o 10101010 10101010

TABLE III: Optimized Ising spin values for various preferred

angles. 0 refers to Ising spin value −1.

N QA result Brute-force search

6 101101 101101
8 10110110 10110110

10010010 10010010
10 1001001001 1001001001

TABLE IV: Optimized Ising spin values for various array size

where the desired direction θr = 20o.

III. NUMERICAL EXPERIMENTS

The main goal of this section is twofold: to validate

the effectiveness of Ising Hamiltonian for achieving desired

scattering profiles, and to study the performance of quantum

annealing to find global optimization in a large search space.

The section starts with the optimization of binary phase shift

metasurfaces for linear and rectangular arrays. Subsequently,

we present results for quadriphase metasurfaces, after which,

the performance of quantum annealing is evaluated with regard

to generic success metrics and problem scaling. The validation

with the full-wave simulation of a square patch metasurface

is presented to conclude the section.

A. Binary Linear Array Configuration

The first experiment is performed for a N -element linear

metasurface array. The size of the array element is d = 1λ.

The N elements are placed along the ŷ-axis. The TE polarized

plane wave is normally incident upon the array.

We would like to optimize the phase profile of the meta-

surface array, such that the scattering power towards a desired

direction θr is maximized. Concerning a linear array of size

N = 8, the QA optimized Ising spin values for various

preferred angles, θr = 10o, 20o, 30o are presented in Table III.

The results using the brute force search are also supplied for

comparison. As is evident, the QA optimization successfully

found all optimal solutions corresponding to the ground-state

solution of the Hamiltonian. Next, we plot the RCS pattern as

a function of the scattered angle θs in Fig. 5. We can see that,

by using the optimized Ising spin values as the metasurface

phase profile, the main beam of the RCS pattern indeed is

directed towards the preferred direction. The results validate

the effectiveness of the proposed Ising Hamiltonian for desired

signal maximization.

Next, we keep the same metasurface element setting, and

vary the array size by N = 6, 8, 10. The optimized Ising

spin values in comparison with the brute-force search results

are shown in Table IV. Again, the same optimal solutions are

found. The resulting RCS patterns are depicted in Fig. 6. We

observe that the increased array size leads to a narrower, more

directional main beam towards the desired direction θr = 20o.

Fig. 5: RCS pattern as a function of the scattered angle θs
where the size of the linear array N = 8.

Fig. 6: RCS pattern for the desired direction θr = 20o where

the array size N = 6, 8, 10.

θr, φr QA result Brute-force search

20o, 40o 1100100100110110 1100100100110110
1001001101101100 1001001101101100

30o, 150o 1001011000111100 1001011000111100
1100001110010110 1100001110010110

TABLE V: Optimized Ising spin values for rectangular meta-

surface array. The Ising values are numbered row-wise.

B. Binary Rectangular Array Configuration

The second example considered here is a 4 by 4 rectangular

array with binary phase response in the element reflection

coefficient. We choose a relatively small array in the study

such that a bruce-force search approach is afforded for com-

parison. Same as the linear array case, we set the size of the

array element as d = 1λ, and the TE polarized plane wave is

normally incident upon the array.

Figures 7 and 8 show the RCS pattern and optimized Ising

spin value for the desired direction θr = 20o, φr = 40o,

and θr = 30o, φr = 150o, respectively. In both cases, the

scattered power is maximized at the desired direction. The

optimal sequence of Ising spin values are provided in Table

V, in comparison to the bruce-force search results. The results

verify the effectiveness of our Ising Hamiltonian model and

QA optimization algorithm in 2D planar array configurations.
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(a) RCS pattern

(b) Optimized Ising spin value

Fig. 7: The RCS pattern and optimized Ising spin value for

θr = 20o, φr = 40o.

So far, we have validated the Ising model for desired signal

maximization. As discussed in Section II. B(2), we may also

incorporate the argmin Hamiltonian accounting for the need

of interference suppression. Taking Fig. 8 as an example, we

see that there are noticeable side-lobes in addition to the main

beam. Assuming the destructive beamforming is desired at the

angular domain [θcl , θ
c
h] = [10o, 20o], [φcl , φ

c
h] = [40o, 60o], we

can include the argmin Hamiltonian using Eqs. (19) and (21).

In Fig. 9(a), we plot the RCS heatmap using Ising Hamiltonian

for desired signal maximization at θr = 30o, φr = 150o.

The result after incorporating the interference suppression in

the energy Hamiltonian is shown in Figure 9(b). We clearly

observe that the scattered power is significantly smaller in the

prescribed interference-free angular domain.

C. Quadriphase Array Configuration

We now consider reflective metasurface arrays with quad-

riphase element response. The element reflection coefficient

has four quantized phase states with a π/2 phase increment,

therefore it is often referred to as 2-bit reflecting element. The

construction of the quadriphase Ising Hamiltonian has been

discussed in details in Section II. D(3). Note that 2 Ising spin

variables per element are required in this case, and the element

phase response can be retrieved using Eq. (36).

Figure 10 shows the RCS pattern of a 1D 2-bit metasurface

array for desired signal maximization at θr = 20o, where the

results of the binary (1 bit) metasurface array are also included

(a) RCS pattern

(b) Optimized Ising spin value

Fig. 8: The RCS pattern and optimized Ising spin value for

θr = 30o, φr = 150o.

for a quantitative comparison. We notice that the quadriphase

configuration significantly increases the maximum achievable

scattering power at the desired direction.

Next, we perform the experiment on a 4 by 4 quadriphase

metasurface array for the desired direction θr = 20o, φr =
40o. The RCS pattern and optimized phase profile are shown

in Fig. 11(a). Comparing to the result of binary array in Fig.

7, more than two times more scattered power is observed with

the quadriphase array. Finally, we keep the same array setting,

but change the incident angle from normal incidence θi = 0
to oblique incidence θi = 30o. In a wireless communication

setting, this corresponds to the case that the Tx has moved to a

new location while the Rx is stationary. The results are shown

in Fig. 11(b), as it is clear the main beam of the scattered

power is directed towards the desired direction.

D. Performance Study of Quantum Annealing

As compared to universal gate-model quantum computers,

the D-Wave quantum annealer hardware belongs to the adia-

batic quantum computing (AQC) regime, which is specialized

in solving NP-hard combinatorial optimization problems. Due

to the undesired noise on the quantum processors, it is dif-

ficult to fulfill the precise adiabaticity condition in practice.

Therefore, there is no theoretical guarantee to find the ground

state (i.e. an optimal solution) for every single run. But the

global optimality may be reached with high probability.
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(a) RCS heatmap for Hr

(b) RCS heatmap for Hr +Hc

(c) Optimized Ising spin value

Fig. 9: Study of the energy Hamiltonian for a 4 by 4 metasur-

face array. (a) Using Hamiltonian for desired signal maximiza-

tion θr = 30o, φr = 150o; (b) Using Hamiltonian for desired

signal maximization θr = 30o, φr = 150o and interference

suppression [θcl , θ
c
h] = [10o, 20o], [φcl , φ

c
h] = [40o, 60o]; (c)

optimized Ising spin values for the configuration (b).

Given the probabilistic nature of quantum annealing, we

will evaluate the performance with respect to two metric: 1)

the probability of producing an optimal solution in a single-

instance run, and 2) the time-to-solution (TTS) required to find

the ground state at least once with some desired probability.

1) Metric in terms of Success Probability: To evaluate

the single-run success probability of the QA algorithm, we

repeatedly run the annealing procedure many times, collect

the return energy sample from each independent run, and then

plot the discrete probability distribution of the energy samples.

Fig. 10: RCS pattern of a linear metasurface array for the

desired direction θr = 20o.

(a) Normal incidence: θi = 0o

(b) Oblique incidence: θi = 30o

Fig. 11: The RCS pattern and optimized phase profile of the 4
by 4 quadriphase array for θr = 20o, φr = 40o. The colormap

from black, dark gray, light gray to white corresponds to the

element phase state ψ (m,n) = 0, π/2, π, and 3π/2.
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Optimal solution

Fig. 12: Probability distribution for the ensemble of energy

samples in 400 runs (problem instance: N=8 linear metasur-

face array with θr = 20o).

The default parameters in the D-Wave quantum annealer [73]

(annealing time = 20µs, chain strength=1.0, heuristic minor-

embedding, etc.) are used in the study. Figure 12 shows the

probability distribution for the energy samples collected from

400 runs of a N=8 linear metasurface array problem. The

ground state energy is referred to as Eg and the energy sample

is denoted by E. The probability of reaching the ground

state (global optimal solution) is around 95%, which is often

referred to as the success probability of a single-instance run,

Ps [53], [54].

We then perform the experiment for the 4 by 4 binary

metasurface array with energy Hamiltonian for desired signal

maximization as in Fig. 7. The result of this problem instance,

denoted as problem A, is presented in Fig. 13. We note that the

probability of success of reaching the ground state is almost 1.

Next, we run the experiment for the same binary metasurface

but with energy Hamiltonian Hr + Hc as in Fig. 9(b). The

probability distribution of this problem instance, denoted as

problem B, is depicted in Fig. 14. The success probability of

finding the global optimal solution is now around 75%.

To investigate the problem-dependent success probability,

we repeat the two problem instances with the brute-force

search approach. After all samples are collected, we sort

the solutions with respect to the normalized energy E/Eg .

The first 50 solutions for problems A and B are plotted

in Fig. 15(a) and (b). Generally speaking, the QA success

probability is related to the energy landscape of the Ising

Hamiltonian. If the energy gap between near-ground states

and ground state is small, e.g. Problem B in Fig. 15(b), there

is a moderate possibility that the QA algorithm returns a near-

optimal solution, as shown in Fig. 14. Whereas for the case of

distinguishable low energy states, the QA can find the ground

state solution with very high probability in Fig. 13.

In addition, we notice that for RIS applications an approxi-

mate global optimum is sometimes desired instead of a precise

global optimality. In this case the near-ground states from QA

runs can also be of some value.

2) Metric in terms of Time-to-Solution: In this subsection,

we are interested in studying the performance of QA algorithm

over a range of problem sizes (# Ising variables). As is

Optimal solution

Fig. 13: Probability distribution for the ensemble of energy

samples in 400 runs (problem A: a 4 by 4 binary metasurface

array with Hamiltonian for desired signal maximization in Fig.

7).

Optimal 

solution

Fig. 14: Probability distribution for the ensemble of energy

samples in 400 runs (problem B: a 4 by 4 binary metasurface

array with Hamiltonian Hr +Hc in Fig. 9(b)).

well known, the combinatorial optimization task becomes

increasingly complex as the number of Ising variables grows,

since each additional Ising variable doubles the number of

states over which the energy landscape is defined.

The linear binary metasurface array is used as the test

problem. To account for the problem-dependent energy land-

scape, we create three problem instances corresponding to

θr=10o, 20o, 30o, collect energy samples from 400 runs of

each problem instance, and then calculate the average success

probability. The results for varied array sizes from N = 10
to N = 60 are depicted in Fig. 16. The success probability

of finding the ground-state solution in a single run, Ps(N),
decreases sub-linearly as the problem size increase. Note

that if we are interested in finding the ground state at least

once with some desired probability Pd, we can calculated the

required number of runs by:

R(N) =
ln(1− Pd)

ln(1− Ps(N))
(37)

Taking the problem N=60 as an example, with 17 independent

runs we can achieve 99.99% probability of finding the ground

state solution. The other results are shown in Fig. 16.
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(a) Problem A

(b) Problem B

Fig. 15: The first 50 solutions sorted by the normalized energy

using the brute-force search approach.

We can then define the time-to-solution metric to achieve a

given target probability Pd, which requires R(N) number of

QA runs as introduced in Eq. (37). During our access to the

D-Wave quantum processor, we record the QPU access time

including QPU initialization, programming, and QA sampling

time (anneal/readout/delay time). As is seen in Fig. 17, the

QPU access time grows linearly with increasing problem size,

which is an encouraging result using the QA optimization for

metasurfaces. In addition, we also plot the CPU execution time

that is needed to compute the spin-spin interaction terms in

Eq. (16), which also scales linearly with respect to the array

size, i.e. O(N).

E. Full-wave Simulation as Validation

We conclude the section of numerical experiments with the

full wave simulation of a square patch metasurface. As shown

in Fig. 18, each metasurface element consists of 7 by 7 metallic

patches printed on a dielectric substrate above a metallic

ground plane. The thickness of the substrate is h = 2mm with

relativity permittivity of 4.0. The size of the sub-wavelength

unit cell a = 5mm. Thereby the metasurface element has the

size of d = 35mm, which is equal to one wavelength at the

operating frequency 8.57GHz. By controlling the size of the

metallic patch, p, we can achieve the desired quadriphase shift

in the element reflection coefficient, as illustrated in Table VI.

The experiment is performed on a 16 by 16 quadriphase

metasurface array with the normal incident plane wave and

Fig. 16: The success probability as a function of problem size.

Fig. 17: The QPU portion (for the QA optimization) and CPU

portion (for computing Ising coefficients) of time-to-solution

for increasing problem size.

(1,1) (1,2) ⋯ (1,�)

(2,1) (2,2) ⋯ (2,�)

⋯

⋯

(�, 1) (�, 2) (�,�)

�

�1

2

�

1 2 �

�

�

Fig. 18: Configuration of the square patch metasurface.

p 4.9mm 4.525mm 4.12mm 3.35mm

ψ (m,n) 0o 90o 180o 270o

TABLE VI: Shift of phase responses for square patch meta-

surface elements at 8.57GHz. p: upper metallic patch size.
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the desired direction θr = 20o, φr = 40o. Since the number

of Ising variables, 512, exceeds largest fully connected graph

solvable in the Chimera hardware, we have used the two-level

optimization approach detailed in Sec. II.D. The problem is

decomposed into 4 by 4 subarrays and each subarray includes

4 by 4 array elements. The QA optimized phase profile and

RCS pattern are shown in Fig. 19(a) and 19(b). It is clearly

seen that the scattered power is maximized at the desired

direction. The power values of the main lobe peak and highest

side lobe peak are 56.19 dBsw (at θs = 19.9o φs = 40o) and

47.47 dBsw (at θs = 16.1o φs = 52.3o), respectively.

We proceed with the full-wave simulation of the same meta-

surface array using the geometry-aware domain decomposition

method [74], [75]. The computed RCS is depicted in Fig.

19(c), where a similar pattern is observed comparing to Fig.

19(b). The power values of the main lobe peak and highest side

lobe peak are 55.42 dBsw (at θs = 20o φs = 40o) and 46.85

dBsw (at θs = 16o φs = 52o), respectively. Note that the

absolute scattering power of the main beam is a bit smaller due

to the non-ideal element-scattering amplitude. Still, the results

validate the applicability and potential of proposed work for

practical reflective metasurfaces.

IV. CONCLUSION

Over the last few years, we have witnessed an extensive

and growing interest in leveraging reconfigurable intelligent

surfaces towards smart wireless environments. One key ques-

tion arises on how efficiently to select the phase configuration

that produces a scattered field matching the desired scattering

profile. This is of paramount importance when a solution to

the optimization problem is not available in closed-form, and

thus constitutes a substantial computational task.

Whereas recent researches focus on artificial intelligence

and deep learning, this paper takes another direction aiming

to leverage the power of quantum computers to overcome the

computational optimization complexity. The scattered wave

power is expressed as an Ising Hamiltonian: a common

mathematical abstraction employed in statistical mechanics to

describe the spin state of arrays of quantum particles. An

analogy can be made between the discrete meta-atom state and

the spin degree of freedom in order to design the reflection

phase mask of metasurfaces and RISs.

The results show a viable way forward for analyzing and

controlling the interaction of large reconfigurable surfaces

and complex radio environments. This work constitutes the

first step towards including quantum computation within EM

optimization tools for the next generation of wireless mobile

networks. Future work includes multi-level spin optimization

for multi-phase RISs, joint optimization of reflection amplitude

and phase modulation as well as the incorporation of mutual

coupling effects between array elements.
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