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Sequential Beamforming for Multiuser MIMO with

Full-duplex Training
Xu Du, John Tadrous and Ashutosh Sabharwal

Abstract—Multiple transmitting antennas can considerably
increase the downlink spectral efficiency by beamforming to
multiple users at the same time. However, multiuser beamforming
requires channel state information (CSI) at the transmitter, which
leads to training overhead and reduces overall achievable spectral
efficiency. In this paper, we propose and analyze a sequential
beamforming strategy that utilizes full-duplex base station to
implement downlink data transmission concurrently with CSI
acquisition via in-band closed or open loop training. Our results
demonstrate that full-duplex capability can improve the spectral
efficiency of uni-directional traffic, by leveraging it to reduce the
control overhead of CSI estimation. In moderate SNR regimes,
we analytically derive tight approximations for the optimal train-
ing duration and characterize the associated respective spectral
efficiency. We further characterize the enhanced multiplexing
gain performance in the high SNR regime. In both regimes, the
performance of the proposed full-duplex strategy is compared
to the half-duplex counterpart to quantify spectral efficiency
improvement. With experimental data [1] and 3D channel model
[2] from 3GPP, in a 1.4 MHz 8 × 8 system LTE system with
the block length of 500 symbols, the proposed strategy attains
a spectral efficiency improvement of 130% and 8% with closed
and open loop training, respectively.

I. INTRODUCTION

Multiuser MIMO downlink systems have the potential to

increase the spectral efficiency by serving multiple users at

the same time with a multiple-antenna base station. A base

station with M antennas can simultaneously support up to

M half-duplex single-antenna users at full multiplexing gain,

if it has perfect channel information (CSI). Accurate channel

knowledge at the transmitter is vital for achieving maximum

spectral efficiency. For example, when no CSI is available at

the base station, TDMA strategy is optimal [3]. Therefore,

only one user can be supported with full multiplexing gain.

In transmitter beamforming based systems, CSI is obtained by

either closed or open loop training, which is defined as below.

• In closed loop training method, each user first estimates

CSI by using the training pilots sent out by the base

station. Then, the CSI is quantized and sent back to the
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base station1.

• In open loop training method, base station learns down-

link CSI by receiving training pilots from users through

the uplink channel; channel reciprocity is then leveraged

to estimate the downlink CSI from the uplink receptions.

For time-varying channels, overhead due to CSI acquisition

leads to significant spectral efficiency loss. Thus, CSI esti-

mation overhead reduction remains an important challenge.

In this paper, we investigate the use of full-duplex capability

to reduce overhead of CSI estimation to increase the spectral

efficiency of downlink traffic.

The recently developed full-duplex radios [1], [5]–[10]

allow concurrent uplink and downlink data transmission. How-

ever, the limited receiver dynamic range [11] and circuit-

design [12] in small form-factor handsets for full-duplex

transmission remain challenging problems. In this paper, we

assume that only the base station antenna array to be an

M -antenna full-duplex MIMO array [5] and all the mobile

nodes to be half-duplex. The potential rate gain region of a

full-duplex node is analyzed in [13]. In [14], a full-duplex

base station is used to increase spectral efficiency by serving

half-duplex downlink and uplink traffic simultaneously. In this

paper, we propose an alternative use of full-duplex, where full-

duplex capability is harnessed to increase downlink spectral

efficiency by saving on the training time and thus reducing

control channel overhead. In particular, our key contributions

in this paper are as follows:

• We propose a sequential beamforming strategy for mul-

tiuser downlink transmissions with either closed or open

loop training. Instead of waiting to receive all CSI before

starting data transmission, the base station now begins

transmitting to some users as it receives their CSI.

• The simultaneous transmission of feedback and data

creates additional inter-node interference at the down-

link receiving users. By optimizing the optimal training

duration, we then analyze the spectral efficiency of the

proposed sequential beamforming strategy and demon-

strate its relative spectral efficiency gain over the half-

duplex counterpart in closed-form. In general, due to the

relatively low user training power2, we show that inter-

node interference only leads to a limited downlink rate

reduction during training.

1Closed loop training with analog feedback is possible, but not considered
in this paper. In [4], it is shown that, compared to open loop training, with the
same amount of training symbols, closed loop training with analog feedback
results in a larger error in uplink CSI training and greater interference due to
precoding. In this paper, we only consider closed loop training with digital
training and open loop training.

2In current systems, the transmission power of users is usually limited due
to lower power budget compared to a base station.
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• The spectral efficiency predicted by the closed-form

results are further verified through simulations based on

channel data from experiment [1] and 3GPP 3D channel

model [2]. For example, in a typical 1.4 MHz LTE system

with a block length of around 500 symbols, the proposed

strategy demonstrates a spectral efficiency improvement

of 130% and 8% over its half-duplex counterpart, for an

8×8 multiuser MIMO system with closed and open loop

training, respectively.

The rate loss due to imperfect CSI with different types

of training has been studied in [4]. In [15], the authors

characterize the optimal training duration and its associated

spectral efficiency for half-duplex systems. User selection [16],

[17] has been proposed to reduce the number of training

symbols needed by selecting users with a larger distance in

channel space. Our analysis has two main differences from

prior research. First, we study how to utilize the full-duplex

operation to obtain gains in spectral efficiency. Second, the

influence of limited training power at the mobile user is

modeled and examined throughout this paper.

We first proposed to utilize the training time in systems

composed of both full-duplex base station and full-duplex

mobile in [18] and [19]. In this paper, we consider a system

comprising a full-duplex base station and only half-duplex

users.

The remainder of this paper is structured as follows.

Section II describes the system model. Then the sequential

beamforming strategy is proposed in Section III. The optimal

training duration is studied in Section IV for systems with

both closed and open loop training. The associated spectral

efficiency is then presented in Section V with both theoretical

analysis and experimental data validation. High SNR analysis

is provided in Section VI to evaluate the proposed strategy.

We conclude this paper by summarizing the main results in

Section VII.

II. SYSTEM MODEL

We consider a symmetric multiuser MIMO downlink system

consisting of an M -antenna full-duplex base station and M
single-antenna non-cooperative half-duplex users. The base

station aims at delivering downlink data to each user. Albeit

sub-optimal, base station adopts zero-forcing (ZF) beamform-

ing [20] for simultaneous transmission to multiple users. In ZF,

the base station projects the signal intended for one user to the

null space of the others. Thus, if perfect CSI is available, each

user only receives the expected signal without interference.

Since CSI is obtained from finite training, it is almost always

inaccurate and thus results in inter-beam interference for ZF

transmissions. During the full-duplex training, the downlink

data is communicated in the same band as the training signals

sent by users, thus receiving users also suffer from inter-node

interference. In this paper, we quantify the impact of inter-

node interference on spectral efficiency for training-based ZF

strategy. When User k sends training symbols and the base

station transmits downlink data to User 1, 2, ..., k − 1, the

received signal of User i is immediately captured as

yi = h∗
i Vs + hUik

xtrk + ni, i = 1, · · · , k − 1. (1)

Tx1

Rx2

Rx3
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Tx3

Base

Station

Rx1

Training

Fig. 1: A schematic of the interference in a 3 × 3 multiuser MIMO downlink system

when User 3 sends training and others receive downlink data. The receiving users suffer

inter-beam interference (side lobes) due to imperfect CSI. The receiving users also incur

inter-node interference (dashed lines) resulting from User 3’s training. Since users are

half-duplex nodes, User 3 does not receive while it is sending the training signal.

Here hi ∈ C1×M and hUik
stand for the channel realization

from User i to the base station and User k, respectively. In this

paper, the coherence time length is T coherence symbols where

the channel stays unchanged. Moreover, the block length T
is the number of symbols for uplink training and downlink

data transmission. We assume a Rayleigh block fading envi-

ronment, i.e., each element of hi and hUik
is independently

complex Gaussian distributed from block to block.

The term s ∈ Ck−1×1 is the actual signal intended to

User 1, 2, · · · , k − 1 and V = [v1, ..., vk−1] ∈ CM×k−1

represents the ZF precoding matrix generated based on the

quantized (estimated) CSI of users, which is presented as

ĥi, i = 1, 2, .., k − 1. The precoded symbol is then Vs,

which is constrained to an average power constraint of P .

We consider equal power allocation among symbols, i.e.,

E
[
|visi|2

]
= P/M, ∀i.

If only imperfect CSI is available, the inter-beam interfer-

ence is non-zero. The signal and the inter-beam interference

both are contained in term h∗
i Vs. Term xtrk is the uplink

training symbol sent by User k. To account for the limitations

of both battery and size of user devices, we consider a more

strict average power constraint for users, which is described

as E[|xtrk |2] 6 fP, f ∈ (0, 1]. Term hUik
xtrk captures the

inter-node interference. We assume inter-node interference

power to be proportional to the training power fP , i.e., it

grows as |hUik
xtrk |2 ∼ αfP , where α =

|hUik
xtrk

|2
|xtrk

|2 > 0 and

fP = |xtrk |2 > 0. The signal is degraded by an independent

unit variance additive white complex Gaussian noise ni.

We assume that each User i has perfect knowledge of

the downlink channel from the base station to itself hi by

estimating downlink pilots broadcast by base station antennas

before any uplink training or downlink data transmission.

However, the base station is required to obtain CSI by either

closed or open loop training. The base station is assumed to

be an M−antenna full-duplex MIMO array [5]. We assume

that self-interference due to the full-duplex operation at the

base station is reduced to near-noise floor by the state-of-art

circulators and filter-based self-interference cancellation [5].

Since the same antennas are used for both transmission and

reception, channel reciprocity also holds between uplink and

downlink channels. Unlike [18], [19], the proposed sequential

beamforming strategy needs only half-duplex users. Thus there

is no self-interference at mobile nodes.
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III. SEQUENTIAL BEAMFORMING

In this section, we propose a sequential beamforming s-

trategy that leverages the full-duplex capability at the base

station to send downlink data during CSI collection. First, we

describe the sequential beamforming strategy in Section III-A.

Then we characterize the influence of inter-node and inter-

beam interference on downlink rate.

A. Sequential Beamforming Strategy

The proposed strategy is referred to as sequential beamform-

ing. In sequential beamforming, pre-scheduled users send their

channel state information in orthogonal time slots. And as the

base station receives a particular user’s information, it starts

data transmission to that user. Thus, unlike the half-duplex

system, the base station does not wait for all the users to

send their channel feedback. As noted before, the proposed

strategy only requires the base station to be full-duplex and

all the mobiles can be half-duplex. A sequential beamforming

strategy with total T tr training symbols from all users is

described as follows:

1) At the beginning of each block, no downlink data trans-

mission is performed due to the lack of CSI knowledge.

From Symbol 1 to Symbol T tr

M , User 1 sends3 training

symbols to the base station. We define symbols from

Symbol (j − 1) T tr

M + 1 to Symbol j T tr

M to be Cycle j
where User j sends its training symbols.

2) In cycle j + 1, the base station transmits downlink

data based on the updated ZF precoding matrix and

beamforms to User 1, 2, .., j whose training symbols are

collected over the previous j cycles. Users who have

finished training, i.e., User 1, 2, · · · , j, begin receiving

downlink data. All receiving users decode the received

signal by treating interference (both inter-beam and

inter-node interference) as noise.

3) Repeat 2) till the end of T tr symbols. The above full-

duplex training part is referred to as training phase.

4) After all training is collected, only downlink data trans-

mission takes place. This part is referred to as half-

duplex phase. Fig. 2 provides an illustration of sequential

beamforming.

We will compute the overall spectral efficiency (SE) for

both phases as

SESqBf =
T tr

MT

M∑

j=2

1

M

j−1∑

i=1

R (i, j) +
T − T tr

T
Rdata. (2)

The first and second terms capture the spectral efficiency

achieved during and after training, respectively. Rate expres-

sion R (i, j) stands for the downlink rate achieved by User

i during cycle j. Moreover, Rdata is the rate achieved after

training, i.e., during half-duplex phase. By only considering

the second term in Eq. (2), the spectral efficiency of half-

duplex counterpart is immediate as

SEHf =
T − T tr

T
Rdata. (3)

3For a given set of users, the user index 1, 2, ...,M may be randomly
assigned in every coherence block to achieve fairness among users.

Our objective is to maximize the downlink spectral efficiency.

We first quantify the influence of both inter-node and inter-

beam interference on R (i, j) and Rdata in Section III-B for

further analysis. During training, i − 1 users are served on

downlink in Cycle i > 1. The base station uses power budget

P/M to serve each receiving user.

In this paper, the performance of the following four systems

is examined: sequential beamforming strategy with closed and

open loop training, half-duplex with closed and open loop

training. We differentiate between sequential beamforming

and half-duplex systems through the subscripts SqBf and Hf ,
respectively. The strategy is further detailed by the training

type used by the system through another subscript Cl for

closed loop and Op for open loop training. The superscript is

used to denote the system status. For example, SESqBfCl
stands

for the spectral efficiency of a system adopting sequential

beamforming strategy with closed loop training.

B. Rate Performance with Inter-beam and Inter-node Interfer-

ence

To optimize the spectral efficiency of the proposed sequen-

tial beamforming strategy, we now quantify the influence of

inter-node and inter-beam interference on downlink rate.

In ZF beamforming, vi is chosen to be orthogonal to other

users’ channel realization, i.e., |vihj | = 0, j 6= i. In a genie-

aided system where perfect CSI is available, the base station

beamforms to users without training and each user receives

downlink data at rate RZF as

RZF = E

[
log2

(
1 +

P

M
|h∗

i vi|2
)]

. (4)

Rate (4) can be viewed as an upper bound for all strategies

that employ ZF, since neither training overhead nor inter-

beam interference is included. When User k sends the training

symbols, the received SINR of User i (i < k) is decided

by both inter-beam and inter-node interference, which can be

mathematically expressed as

SINRi =
|h∗

i vi|2 P
M

1 +
∑

j 6=i
P
M |h∗

i vj |2 + |hUik
xtrk |2

, i = 1, · · · , k−1.

(5)

By adopting a Gaussian input, User i with SINRi can achieve

a longer term average rate (over both fading and training error)

of

Ri = E [log2 (1 + SINRi)] , i = 1, · · · , k − 1.

We now characterize the downlink rate R (i, j) with a unified

lower bound that is independent of cycle number. In Cycle

k of the training phase, the base station beamforms to Users

1, ..., k−1. Each receiving user suffers inter-beam interference

from the signals intended to the other k − 2 users. Our

lower bound assumes that users receive additional inter-beam

interference from signal intended to other M − k users. Thus,

in total, each receiving user suffers inter-beam interference

coming from signals to M − 1 users instead of k − 2 users.

The downlink rate of the receiving users in this scenario is

denoted as Rtr, which is detailed as

R (i, j) > Rtr
(
T tr
)
, j = 2, ...,M, i = 1, ..., j. (6)
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Fig. 2: A depiction of sequential beamforming: Users first obtain CSI by estimating downlink training pilots broadcast by base station antennas in the first TDT symbols. Training

cycles constitute T tr symbols and half-duplex phase occupies the rest of T − T tr symbols. At the end of training cycles, the base station updates its precoding vectors and serves

all users whose CSI has been collected. The whole coherence time length is T coherence symbols and parameter T is the total number of symbols for uplink training and downlink

data transmission.

This lower bound is the same for all the receiving users in all

cycles during the training phase. Therefore, the rate expression

of (2) reduces to

SESqBf >
M − 1

2M

T tr

T
Rtr

(
T tr
)
+

(
1− T tr

T

)
Rdata

(
T tr
)
,

(7)

here T tr is the training duration of sequential beamforming

strategy. Comparing to (3), we find in sequential beamforming

strategy, on average, the each user utilizes M−1
2M fraction of the

training time also to receive downlink data while other users

send training signal.

Since the base station is assumed to perform perfect self-

interference cancellation, the influence of inter-beam interfer-

ence is a function of the training method, power, and duration,

which is characterized in [4]. We now present an extended

lemma that quantifies the rate loss due to inter-beam and inter-

node interference. Following the notations in [4], ∆Rtr and

∆Rdata denote the upper bound of rate gap (compared to

perfect zero-forcing) during and after training, respectively.

Lemma 1: In all cycles of training phase, the downlink data

transmission rate of the receiving users, when another user is

sending the training symbols are lower bounded as

Rtr
(
T tr
)
>RZF − log


1 + PIBI (T

tr) + αfP

1 + αfP
1+ P

M




=RZF −∆Rtr
(
T tr
)
,

where PIBI = P (1+fP )−
T tr

M(M−1) and P
M

M−1

1+T tr

M fP
for closed

and open loop training, respectively.

Proof. See Appendix A for detail.

In the rate gap term ∆Rtr, inter-beam and inter-node

interference are reflected through terms PIBI and αfP , re-

ceptively. If more training symbols are sent, PIBI decreases.

This decrease is because that the base station has better CSI

estimates, which leads to less inter-beam interference. The

inter-node interference term αfP does not change during the

whole training phase. It is emphasized that the lower bound

present in Lemma 1 is independent of the user index and cycle

index, due to the use of Eq. (6).

Many recent works have helped raise the level of self-

interference cancellation [1], [5]–[10]. Hence in this work,

we assume that full-duplex MIMO array with perfect self-

interference cancellation is possible for the base station, which

has a larger footprint than a mobile node. This assumption

allows us to focus on characterizing the tradeoff between

inter-beam and inter-node interference. Lemma 1 and other

analysis in this paper can be extended to system models that

include the impact of limited self-interference cancellation by

substituting fP , which is the effective uplink training SNR
in PIBI, as fP

1+PSI
. Here PSI is the power of residual self-

interference interference. Simulation results for systems with

self-interference are provided in Section V.

As T tr → ∞, the rate loss due to inter-beam interference

vanishes and rate gap bound becomes log

(
1+αfP

1+ αfP
1+P/M

)
, which

stands for the influence of inter-node interference and is noted

as ∆RINI. Term ∆RINI is as a constant rate loss caused

by inter-node interference during the training phase. We will

study the impact of this term in the following analysis. Even

when α → ∞, the rate loss term is still upper bounded by

log (1 + P/M), which is obviously finite. This finite rate loss

suggests that positive downlink rate gain can still be achieved

asymptotically under the influence of inter-node interference,

which is later confirmed in Section VI.

After training, each user continues to receive data until the

end of the block. Thus, only the effect of inter-beam inter-

ference exists. We can conveniently obtain the rate expression

Rdata by setting α = 0 in Lemma 1, which characterizes

inter-beam interference with the help of [4].

Proposition 1: The downlink transmission rate of User i
after training is lower bounded by

Rdata > RZF −∆Rdata = RZF − log (1 + PIBI) , (8)

where PIBI = P (1+fP )−
T tr

M(M−1) and P
M

M−1

1+T tr

M fP
for closed

and open loop training, respectively.

Similar to the influence of inter-beam interference during

training, we find that the influence of inter-beam interference

also decreases as training symbols amount increases.

We assume perfect CSI at users by estimating pilots broad-

cast by each base station antenna. The rate loss due to

imperfect CSI at users [4] is upper bounded by

∆RCSIR 6 log

(
1 +

P/M

1 + TDL

M PDL

)
,

where TDL/M and PDL is the number and power of downlink

training symbols broadcast by base station antennas. For

example, a system with M = 8 and P = 15 dB, with

“pilots power boost of 3dB” from [21], when 1 training pilot

is used for each base station antenna, the rate loss is upper

bounded by 0.06 bps/Hz, which is smaller than 3% of the

associated RZF. This rate loss is the same for half-duplex and

the proposed system. Similar to [4], [15], the rate considered
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in this paper is the ergodic rate, which can be achieved by

spanning codewords across enough large number of blocks.

IV. TRAINING TIME OPTIMIZATION

In sequential beamforming strategy described in Sec-

tion III-A, the base station obtains CSI from uplink training

symbols. Obtaining the best spectral efficiency performance

requires a balance between inter-beam and inter-node inter-

ference by optimizing training duration. In this section, we

analyze the optimal training duration for sequential beamform-

ing and traditional half-duplex strategy with both closed and

open loop training. We use the metric of spectral efficiency

to characterize the optimal solution for the proposed strategy.

The optimization

T tr∗
s = argmax SEs

(
T tr
)
, (9)

is implemented for s = SqBfCl, SqBfOp, HfCl and HfOp. We

use the superscript ∗ to denote optimal solution. The optimality

in this paper is under the criterion of maximum spectral

efficiency. We also consider T tr to be continuous. The accent

˜ is used to represent approximation in Sections IV-A, IV-B,

where closed form analytical solutions are not feasible.

A. Optimal Training Duration of Sequential Beamforming

In this subsection, we solve the optimization problem posed

in (9) by applying a Marginal Analysis [22] technique. As

shown below, the marginal analysis allows accurate closed

form approximation for systems with both closed and open

loop training.

Proposition 2: The optimal training duration of sequential

beamforming strategy happens at the point where the spectral

benefit of adding training symbols equals to loss, i.e.,

∂SESqBf (T
tr∗)

∂T tr
= 0. (10)

Proof. Since the mobile nodes are half-duplex, more training

implies less time for downlink data reception. The influence of

inter-beam interference on the rate in Proposition 1 suggests

that the increase in rate with respect to training increase is

monotonically decreasing. Combining with the facts above,

we conclude that the benefit in spectral efficiency from M
additional training symbols is monotonically decreasing as

training grows. From Lemma 1, the influence of longer inter-

node interference duration is monotonically increasing. Thus,

the spectral efficiency SESqBf is concave in T tr. Therefore, a

unique T tr∗
SqBf exists to optimize the spectral efficiency.

Applying Taylor’s expansion to (10) and ignoring all the

expansion terms yield

SESqBf

(
T̃ tr∗
SqBf

)
≈ SESqBf

(
T̃ ∗
SqBf +M

)
. (11)

With the help of spectral efficiency characterization provided

in Lemma 1, expanding both sides of (11) leads to

M − 1

2M

T̃ tr
SqBf

T

[
Rtr

(
T̃ tr
SqBf +M

)
−Rtr

(
T̃ tr
SqBf

)]

+
T − T̃ tr

SqBf

T

[
Rdata

(
T̃ tr
SqBf +M

)
−Rdata

(
T̃ tr
SqBf

)]

=
M − 1

2T

[
Rdata

(
T̃ tr
SqBf +M

)
−Rtr

(
T̃ tr
SqBf +M

)]

+
M + 1

2T
Rdata

(
T̃ tr
SqBf +M

)
. (12)

The left side in (12) is the benefit obtained in spectral

efficiency by adding M training symbols. We note this benefit

as Marginal Utility (MU). The MU comes from the fact: more

training can reduce inter-beam interference both during and

after training, which corresponds to the first and second term

on left side of (12), respectively.

More training symbols results in lower inter-beam inter-

ference in half-duplex phase. By using Proposition 1, it is

expressed as a rate increase of

Rdata
(
T̃ tr
SqBf +M

)
−Rdata

(
T̃ tr
SqBf

)

= log


1 +

PIBI

(
T̃ tr
SqBf

)
− PIBI

(
T̃ tr
SqBf +M

)

1 + PIBI

(
T̃ tr
SqBf +M

)


 .

(13)

We refer the rate improvement due to less inter-beam interfer-

ence as δRdata
(
T̃ tr
SqBf

)
. In the same spirit, the rate increase

of Rtr by lower inter-beam interference during training phase

is

Rtr
(
T̃ tr
SqBf +M

)
−Rtr

(
T̃ tr
SqBf

)
≈ δRdata

(
T̃ tr
SqBf

)
.

We find that, the rate improvement due to less inter-beam inter-

ference is almost constant during and after training. Applying

the two results above, the marginal utility is then

MU =

(
1− M + 1

2M

T̃ tr
SqBf

T

)
δRdata

(
T̃ tr
SqBf

)

≈
(
1− 1

2

T̃ tr
SqBf

T

)
δRdata

(
T̃ tr
SqBf

)
, (14)

which suggests a rate increase of δRdata
(
T̃ tr
SqBf

)
in 1 −

1
2

T̃ tr
SqBf

T fraction of the whole block is achieved by adding M
training symbols. Later we further obtain the marginal utility

of half-duplex counterparts by the same process with SESqBf

substituted as SEHf .

On the right side of (12) is the loss of spectral efficiency,

referred to as Marginal Cost (MC), due to longer training and

comprises two parts. The first term corresponds to the fact that

additional inter-node interference is suffered in M−1
2 of the M

symbols. The second term reflects that the rest M+1
2 training

symbols are still not able to be utilized for downlink. With

the help of Lemma 1 and Proposition 1, the rate loss due to
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additional inter-node interference is

Rdata
(
T̃ tr
SqBf +M

)
−Rtr

(
T̃ tr
SqBf +M

)

= log



1 + αfP

1+PIBI(T̃ tr
SqBf+M)

1 + αfP
1+ P

M


 ≈ ∆RINI.

The downlink rate loss due to inter-node interference in the

training phase is almost independent of the training duration.

The downlink rate is immediate as RZF. The marginal cost is

then

MC =
M − 1

2T
∆RINI +

M + 1

2T
RZF ≈ M

2T

[
∆RINI +RZF

]
,

(15)

which is independent of training symbol amount. The approx-

imation made in Eq. (15) holds for large T . In the training

phase, Eq. (15) suggests that, on average, each user receives

downlink data during half of the training time.

The unique optimal point T tr∗
SqBf happens at the point

where the spectral efficiency benefit (marginal utility) and cost

(marginal cost) break even, i.e., MU = MC . Using (14)

and (15), it is mathematically captured as
(
1− M + 1

2M

T̃ tr
SqBf

T

)
δRdata

(
T̃ tr
SqBf

)

=
M − 1

2T
∆RINI +

M + 1

2T
RZF. (16)

The optimal training duration of sequential beamforming

strategy with closed and open loop training is then obtained

by the inter-beam interference characterization provided in

Proposition 1.

Theorem 1: The approximation of optimal training duration

T tr∗
SqBfCl

of sequential beamforming strategy with closed loop

training is

T̃ tr∗
SqBfCl

= M (M − 1)
log
(
TP
c

)
+ log

(
(1 + fP )

1
M−1 − 1

)

log (1 + fP )
,

(17)

where c = M−1
2 ∆RINI + M+1

2 RZF.

Proof. See Appendix B.

Several interesting observations are made here. First, as T
grows, for closed loop training based sequential beamforming

strategy, the optimal training duration scales as log T . We

later observe similar scaling law for its half-duplex counter-

part. This scaling law, to our best knowledge, has not been

reported before. Second, as inter-node interference becomes

stronger, less training is sent to account for the higher training

cost. Third, the optimal training symbols amount scales as
logP

log(1+fP ) with respect to P , which is less than logP . From

Theorem 4 in [23], we conclude that full multiplexing is not

obtained as P grows. Fourth, the number of training symbols

increases almost quadratically with respect to the number

of users M , which lies well with the intuition that training

symbols number scales with the number of total channel

coefficients.

Fig. 3a provides both optimal training duration and its

approximation of sequential beamforming strategy with closed

loop training. Since optimal training duration scales as log T ,

the fraction of training duration scales as log T
T and is further

confirmed numerically. In the same spirit, the optimal training

duration of sequential beamforming strategy with open loop

training is obtained as below.

Theorem 2: The approximation of optimal training duration

T tr∗
SqBfOp

of sequential beamforming strategy with open loop

training is

T̃ tr∗
SqBfOp

=

√
(M − 1)T

f (M−1)∆RINI+(M+1)RZF

2M

≈
√

(M − 1)T

f ∆RINI+RZF

2

.

Proof. See Appendix C.

In Theorem 2, we observe that for large T , the optimal

training duration scales as
√
T . The optimal fraction of time

resource devoted to training then decreases as 1√
T

, which is

slower than that of closed loop training systems. The scaling

rate of
√
T has been observed in various open loop training

based systems. For example, similar scaling has been observed

for both half-duplex MIMO broadcast channels with analog

training [15] and point-to-point MIMO [24]. Such scaling

rate has also been observed in MIMO downlink with the

full-duplex base station and full-duplex node [19]. We find

the same scaling law is shared by open loop training based

systems. In Section IV-B, we conclude that the half-duplex

counterparts also follow the respective scaling laws. Numerical

results presented in Fig. 3b confirm our observation.

For sequential beamforming strategy with open loop train-

ing, as the number of transmitting antennas M increases, the

optimal training duration scales as
√
M , unlike M2 scaling

in closed loop training based systems. The slower scaling rate

in open loop training systems suggests a lower overhead cost

in systems with a large number of users. Further analytical

results in Section VI confirm this observation.

Similar to closed loop systems, as inter-node interference

increases, larger rate loss during training is expected in open

loop training systems. Thus, one should use fewer symbols

for training to account for this effect. Another interesting

finding is that even when no inter-node interference exists,

the optimal training duration is not T . The reason is that

sequential beamforming strategy is only able to recover the

training overhead partially.

B. Optimal Training Duration of Half-duplex Strategy

In this subsection, we apply the marginal analysis method

developed in Section IV-A to obtain approximations of optimal

training duration of half-duplex systems. As a by-product of

analysis in section IV-A, we find the marginal utility, which

stands for the gain in spectral efficiency of adding M more

training symbols, for half-duplex systems is

MU =
T − T̃ tr∗

Hf

T

[
Rdata

(
T̃ tr∗
Hf +M

)
−Rdata

(
T̃ tr∗
Hf

)]

=
T − T̃ tr∗

Hf

T
δRdata

(
T̃ tr∗
SqBf

)
. (18)

The marginal cost of half-duplex strategy is conveniently

obtained by ignoring inter-beam interference after training as

MC =
M

T
RZF. (19)
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Fig. 3: Optimal training duration fraction of 8× 8 sequential beamforming and half-duplex strategy with closed and open loop training at P = 15 dB with f = 0.1 and α = 0.3.

The approximation is obtained by letting marginal cost and

utility be equal in half-duplex systems. We further proceed by

applying the rate characterization provided in Proposition 1.

The result regarding closed loop training based systems is first

presented with open loop result follows.

Theorem 3: The approximation of optimal training duration

T tr∗
HfCl

of half-duplex strategy with closed loop training is

T̃ tr∗
SqBfCl

= M (M − 1)
log
(
TP
c

)
+ log

(
(1 + fP )

1
M−1 − 1

)

log (1 + fP )
,

where c = MRZF.

Proof. See Appendix D.

We observe the optimal training duration T̃ tr∗
SqBfCl

and frac-

tion
T̃ tr∗
SqBfCl

T of half-duplex counterpart to share the same

scaling law as sequential beamforming strategy in Theorem 1.

It should also be noted that as the number of antenna

M increases, the optimal number of training symbols also

increases quadratically. Comparing to Theorem 1, the only

difference lies in the log(c) term in the numerator, which can

be viewed as the normalized marginal cost of the strategy.

This finding also suggests that the optimal training duration

difference between sequential beamforming strategy and half-

duplex is a constant gap which is independent of the block

length. Therefore, the difference in the fraction of training

time decreases as T increases.

Theorem 4: The approximation of training duration T tr∗
HfOp

that optimizes spectral efficiency of open loop training half-

duplex systems is

T̃ tr∗
HfOp

=

√
(M − 1)T

fRZF
. (20)

Proof. See Appendix E.

Similar to sequential beamforming system with open loop

training, the optimal training duration scales with T and M
at the rate of

√
T and

√
M − 1, respectively, as block length

and antennas number grows. It should also be noted that by

substituting the normalized marginal cost term ∆RINI+RZF

2 as

the half-duplex system’s normalized marginal cost term RZF,

we can also obtain Theorem 4. Instead of assuming each user

has the same power constraint P of the base station [15], our

approximation results further consider the limitation of user

power. The closed-form approximations are further applied in

Section V to characterize the spectral efficiency of sequential

beamforming and half-duplex strategy with optimal training

duration.

V. SPECTRAL EFFICIENCY EVALUATION

In training based multiuser MIMO downlink systems, spec-

tral efficiency is reduced due to imperfect CSI and training

overhead resulting from its acquisition. To quantify the spectral

efficiency loss of different systems, we compare the spectral

efficiency of different systems with optimal training duration

to a system where perfect CSI is available for the base station

at no cost. It can be visualized as a genie provides perfect CSI

to base station at the beginning of each block. Thus it serves as

an upper bound for systems’ performance with ZF; we label

the perfect CSI system as genie-aided system. The spectral

efficiency achieved is SEZF = RZF, which is presented in (4).

The rate loss due to training overhead is then

∆SEs = SEZF − SEs, s ∈ {SqBfCl, SqBfOp,HfCl,HfOp}.
(21)

The spectral efficiency of the half-duplex counterparts are also

analyzed for comparison.

Theorem 5: The spectral efficiency loss of closed loop

training based sequential beamforming system with respect to

genie-aided system is upper-bounded as

∆SESqBfCl

(
T tr∗
SqBfCl

)

6

(
M − 1

2M
∆RINI +

M + 1

2M
RZF

)
M (M − 1)

log (1 + fP )

log T

T

+ o

(
log T

T

)
. (22)

Proof. See Appendix F.

Here o
(

log T
T

)
is a term that vanishes as T increases, i.e.,

limT→∞
o(log T/T )
log T/T = 0. By employing higher training power

f , or by using longer block length T , the spectral efficiency

overhead decreases. However, in a more realistic scenario

where user power and block length are inherently limited,

the spectral efficiency loss cannot be neglected. Based on

expression (22), some observations are made for sequential

beamforming strategy with closed loop training. i) The spectral

efficiency loss scales quadratically as M increases, which
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indicates sequential beamforming strategy with closed loop

training is not a good choice for systems with a large number

of antennas. ii) The spectral efficiency loss decreases rapidly

as log T
T as T increases. Fig. 4 presents the spectral efficiency

policy for different strategy versus T . We observe that as T
grows, spectral efficiency loss drops rapidly for systems with

closed loop training, which agrees with our analysis. iii) As

inter-node interference level decreases, smaller term ∆RINI

suggests less spectral efficiency loss which is confirmed in

Fig. 4.

Theorem 6: The spectral efficiency loss of open loop

training based sequential beamforming system with respect to

genie-aided system is upper-bounded as

∆SESqBfOp

(
T tr∗
SqBfOp

)

6 2

√
(M − 1)

[
M−1
2M ∆RINI + M+1

2M RZF
]

fT
+ o

(
1√
T

)
.

(23)

Proof. See Appendix G.

In (6), the term o( 1√
T
) shows that the additional spectral

efficiency loss term vanishes in systems with a large T .

Interestingly, we observe a different scaling law with respect

to both block length and antenna number. For sequential

beamforming with open loop training, the spectral efficiency

loss grows only at the rate of
√
M − 1, which is slower

than M(M − 1) in Theorem 5. Thus, for systems with a

large number of users, sequential beamforming with open loop

training is advisable.

On the other hand, the spectral efficiency loss decreases as
1√
T

, which is confirmed from Fig. 4. It should be further noted

that the decreasing rate (w.r.t. T ) is slower than that of systems

with closed loop training (log T/T ). From Fig. 4, an increase

spectral efficiency is achieved by sequential beamforming

strategy at low inter-node interference level.

Fig. 4 plots closed and open loop training based systems

with power controlled sequential beamforming, sequential

beamforming, and half-duplex strategy. We observe a further

spectral efficiency increase by allowing power adaptation

during training. Having established performance bounds for

the spectral efficiency loss of the sequential beamforming

policy, we now investigate the performance of the half-duplex

counterpart to compute the gains of the proposed sequential

beamforming strategy.

Theorem 7: The spectral efficiency loss of closed loop

training based half-duplex systems with respect to genie-aided

system is upper bounded as

∆SEHfCl

(
T ∗
HfCl

)
6 RZF M (M − 1)

log (1 + fP )

log T

T
+ o

(
log T

T

)
.

(24)

Proof. See Appendix H.

Here we observe the same scaling of spectral efficiency

loss with respect to the number of antennas M and block

length T as in sequential beamforming strategy with closed

loop training. Actually, we can obtain Theorem 7 by replacing

the normalized marginal cost term M−1
2M ∆RINI + M+1

2M RZF

in Theorem 5 with RZF. The main reason is the similarity

between the marginal utility term in sequential beamforming

and half-duplex system.

Theorem 8: The spectral efficiency loss of open loop

training based half-duplex systems with respect to genie-aided

system is upper bounded as

∆SEHfOp

(
T ∗
HfOp

)
6 2

√
(M − 1)RZF

fT
. (25)

Proof. See Appendix I.

The spectral efficiency loss scaling with both block length

T and the number of antennas M are identical to that

of sequential beamforming system with open loop training.

Theorem 8 can be viewed as changing the normalized marginal

cost of sequential beamforming strategy into its half-duplex

counterpart. Comparing Theorem 7 and Theorem 8 to their

sequential beamforming counterparts, spectral efficiency loss

is substantially reduced by adopting sequential beamforming

strategy. Sequential beamforming strategy improves spectral

efficiency performance significantly.

We now further validate the sequential beamforming strat-

egy for an 8 × 8 system with experimental data from [1]

and 3GPP 3D channel model [2]. The number of base s-

tation antennas is chosen to be 8, which is the maximum

number currently supported by LTE. In the experiment, the

authors of [1] measure the channel realization between an

8×9 two-dimensional antenna array and 12 randomly located

users. The measurement is conducted in both indoor and

outdoor environment. In 3GPP channel generation, the users

are randomly uniformly placed in Urban Macrocell with equal

probability to be indoor and outdoor. The simulations for

systems containing self-interference is modeled as follows.

The base station has a transmit power budget of 0 dBm and a

noise floor of −90 dB. Self-interference is managed through a

combination of transmitter-receiver isolation of 40 dB, analog

domain cancellation of 30 dB, and digital domain cancellation

of 30 dB.

The spectral efficiency of both sequential beamforming and

half-duplex counterparts are evaluated through Monte Carlo

simulations with 10, 000 iterations for both the proposed strat-

egy and half-duplex counterpart. In each iteration, 8 random

users and 8 antennas in a random horizontal antenna array are

simulated. For closed loop training, feedback bits are equally

divided into real and imaginary parts with 3 bits for integer

part and rest for the fractional part. In the simulation, we

assume that the downlink transmit power in the training phase

is adapted, which is not allowed in the previous theoretical

analysis due to the analytical intractability in optimal power

allocation when imperfect CSI exists. Thus, in cycle i > 1,

when Users 1, .., i−1 receive data on downlink, each receiving

user signal will be precoded with power constraint P
i−1 .

Fig. 5 confirms the spectral efficiency improvemen-

t achieved by sequential beamforming. The spectral efficiency

improvement achieved in Fig. 4 is also shown for reference.

Similar to results in Fig. 4, sequential beamforming demon-

strates a significant spectral efficiency improvement.

For example, in a typical LTE system, there are around

500 to 2100 symbols in each slot depending on the available
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Fig. 4: Spectral efficiency of an 8× 8 system with optimal training duration with and without inter-node interference and half-duplex counterparts with P = 15 dB for f = 0.1.
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Fig. 5: Percent spectral efficiency improvement of an 8 × 8 system with sequential beamforming strategy for systems with and without self-interference at P = 15 dB with

f = 0.1 and α = 0.3. Here experiment and 3GPP refer to the simulation results obtained with experimental data [1] and 3GPP 3D channel model [2], respectively. Theory refers

to results in Theorem 5-8.

bandwidth (1.4 MHz to 5 MHz). When the block length e-

quals 500 symbols, proposed sequential beamforming strategy

attains an over 130% and 12% spectral improvement under the

influence of inter-node interference for closed and open loop

training systems, respectively. As T grows, the performance

of half-duplex counterparts grows. Thus the improvement in

sequential efficiency decreases. From Fig. 4, we conclude that

a notable spectral efficiency improvement is still observed even

for systems with long block length (T = 3000). Lower inter-

node level does show a better spectral efficiency improvement

in Fig. 5.

Remark 1: For closed loop systems, sequential beamforming

demonstrates a higher spectral efficiency compared to the

results in Fig. 4a, where the base station serves each downlink

users at a fixed power P/M in the training phase. This im-

provement suggests that proper power adaptation can increase

the performance of sequential beamforming dramatically. On

the other hand, we find power adaptation does not influence

the spectral efficiency improvement of open loop system.

In this section, significant spectral efficiency improvement

by adopting sequential beamforming is observed. In Sec-

tion VI, we compare the spectral efficiency asymptotically

where equal power allocation and ZF can achieve the full

multiplexing gain.

VI. HIGH SNR ANALYSIS

In Section IV and SectionV, with optimized training du-

ration, sequential beamforming strategy exhibits significant

spectral efficiency improvement in the finite SNR regime. We

continue our investigation of sequential beamforming strategy

in the high SNR regime where equal power allocation and ZF

can achieve the full multiplexing gain. Notation
.
= is used to

denote exponential equality, i.e.,

g (P )
.
= P ζ ⇔ lim

P→∞

log g (P )

logP
= ζ.

Since fP
.
= P , we now assume the power constraint for train-

ing is P ζ to account for the limitation of training power. We

use a multiplexing gain metric r, which can be mathematically

captured as

lim
P→∞

SES (ζ, T tr)

logP

.
= rs, s ∈ {SqBfCl, SqBfOp,HfCl,HfOp}.

(26)

Our objective is to maximize the spectral efficiency asymp-

totically under certain training power constraint, which is

mathematically captured as, for s = SqBfCl, SqBfOp, HfCl

and HfOp,

max
T tr

rs
(
ζ, T tr

)
. (27)

We first present the results regarding sequential beamform-

ing system with closed loop training. The results for sequential

beamforming strategy with open loop training then follows.
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In the asymptotic characterization of sequential beamforming

strategy, for mathematical concision, we consider the fraction

of full-duplex transmission term M−1
2M in (7) to be 1

2 . This

approximation is valid for systems with large numbers of

antennas.

A. Sequential Beamforming with Closed Loop Training

In this subsection, we consider the relationship between

multiplexing gain r and training power constraint ζ. Similar

to the approach in the finite SNR regime; we first present

a lemma capturing the influence of inter-beam and inter-

node interference in the high SNR regime, then the spectral

efficiency is characterized. We define θ = (M (M − 1)) /T ,

which is useful in analysis.

Lemma 2: In closed loop systems, the downlink data trans-

mission rate during training phase, under the influence of inter-

beam and inter-node interference, is

lim
P→∞

Rtr (T tr)

logP
= max

(
min

(
ζ

θ

T tr

T
, 1− ζ

)
, 0

)
. (28)

Proof. The proof is obtained by substituting the training power

in Appendix A fP with P ζ .

Interestingly, we observe the impact of inter-node interfer-

ence in the high SNR regime to be divided into two scenarios.

If only coarse CSI is available, the influence of inter-beam in-

terference dominates the rate performance during training, i.e.,

there is no impact of inter-node interference on performance.

Otherwise, the influence of inter-node interference dominates

the rate performance during training. Now we present the

maximal multiplexing gain as a function of training power

constraint ζ for different closed loop training systems.

Applying Lemma 2 to characterize (7), we have

lim
P→∞

SESqBfCl

logP
=
1

2

T tr

T
max

(
min

(
T tr

T

ζ

θ
, 1− ζ

)
, 0

)

+

(
1− T tr

T

)
min

(
T tr

T

ζ

θ
, 1

)
. (29)

The results regarding sequential beamforming system with-

out inter-node interference are first presented as an upper

bound for the performance of proposed strategy. Then the

results regarding the half-duplex systems are presented for

comparison. Finally, the performance of sequential beamform-

ing system with inter-node interference is presented.

Theorem 9 (Inter-node interference free sequential beam-

forming strategy): The maximal multiplexing gain of sequen-

tial beamforming strategy with closed loop training, without

inter-node interference, under training power constraint ζ is

r∗SqBfCl✟✟INI(ζ) =

{
1
2
ζ
θ , ζ < θ

1− 1
2
θ
ζ , ζ > θ

.

Proof. The multiplexing gain of sequential beamforming

without inter-node interference is

rSqBfCl✟✟INI(ζ, T
tr) =

(
1− 1

2

T tr

T

)
min(

ζ

θ

T tr

T
, 1).

By maximizing the multiplexing gain in the cases of ζ
θ
T tr

T > 1

and ζ
θ
T tr

T < 1 by choosing the optimal training duration, the

theorem is directly obtained.

The multiplexing gain is composed of two regimes. When ζ
is small, spectral efficiency increases linearly as training power

increases. In this regime, the growth of rate performance dur-

ing and after training is the primary reason. As more training

power is allowed, users send training symbols until no spectral

efficiency loss is observed due to inter-beam interference. The

spectral efficiency improvement attributes to using less time to

send the same amount of training information. Thus, spectral

efficiency performance increases less as training power grows.

Now the asymptotic performance of half-duplex counterpart is

presented for comparison.

Theorem 10 (Half-duplex system): The maximal multiplex-

ing gain of closed loop training half-duplex system under

training power constraint ζ is

r∗HfCl
(ζ) =

{
1
4
ζ
θ , ζ < 2θ

1− θ
ζ , ζ > 2θ

.

Proof. Similar to inter-node interference free sequential

beamforming strategy, omitting the extra spectral obtained

during full-duplex training (VI-A), we first express the multi-

plexing gain of half-duplex system as

rHfCl
(ζ, T tr) =

(
1− T tr

T

)
min(

ζ

θ

T tr

T
, 1).

Directly optimizing training duration in cases of ζ
θ
T tr

T > 1

and ζ
θ
T tr

T < 1 leads to the proof.

It should be noted that similar to sequential beamforming

strategy with closed loop training, its half-duplex counterpart’s

spectral efficiency consists of two regimes. Compared to

Theorem 9, a significant multiplexing gain improvement is

observed. Thus, the proposed sequential beamforming strategy

doubles the spectral efficiency of a unidirectional downlink

communication asymptotically when ζ < θ. Finally, we look

at the influence of inter-node interference on the asymptotic

spectral efficiency of sequential beamforming strategy.

Theorem 11 (Sequential beamforming strategy with inter-

node interference): The maximal multiplexing gain of closed

loop training sequential beamforming strategy under training

power constraint ζ is

r∗SqBfCl
(ζ) =





r∗
SqBfCl✟✟INI

(ζ) , ζ 6 3θ
2+3θ

r∗SqBfClINI (ζ) ,
3θ

2+3θ < ζ < min
(
1,max

(
3θ

2+3θ ,
3θ
2−θ

))

r∗HfCl
(ζ) ,min

(
1,max

(
3θ

2+3θ ,
3θ
2−θ

))
6 ζ

,

where

r∗SqBfClINI (ζ) =

{
((2−θ)ζ+θ)2

16ζθ , ζ < 3θ
2−θ

1− θ
2 − θ

2ζ ,
3θ
2−θ 6 ζ

.

Proof. Detailed proof can be found in Appendix J.

The influence of inter-node interference on the spectral

efficiency, interestingly, can be divided into three regimes.

For systems targeting small multiplexing gain, only small

amount of training power is needed. In this regime, inter-

beam interference dominates the downlink performance during
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full-duplex training and no inter-node interference penalty

is observed. However, if the higher multiplexing gain is

targeted, the inter-node interference dominates the downlink

performance during full-duplex training. In this case, inter-

node interference will reduce the potential benefit obtained

from sequential beamforming strategy. Finally, if a relatively

high training power (ζ > 1) is used to achieve high spectral

efficiency, the high inter-node interference level leads to no

benefit from the downlink transmission during the training

phase. This observation is confirmed by simulations shown

in Fig. 6.

Remark 2: As the number of antennas increases (with

respect to block length), θ increases. Interestingly, we observe

that higher θ actually increases the regime where sequential

beamforming strategy does not suffer from inter-node interfer-

ence. As θ → ∞, sequential beamforming strategy suffers no

inter-node interference as long as training power constraint is

smaller than 1.

B. Sequential Beamforming with Open Loop Training

Following the same approach in Section VI-A, we now in-

vestigate the spectral efficiency for different open loop training

based systems. The influence of inter-beam interference in

high SNR regime is first characterized, which is followed by

the multiplexing gain analysis.

Lemma 3: For open loop training based systems, the rate

performance under inter-beam interference after training is

lim
P→∞

Rdata

logP
= lim

P→∞

RZF − log

[
1 + P

M
M−1

1+T tr

M P ζ

]

logP

= max (1− ζ, 0) .

Proof. Substituting the training power to P ζ in Proposition 1

leads to the theorem.

The rate performance achieved after training, surprisingly, is

only decided by the training power constraint ζ. More training

symbols do not help to reduce inter-beam interference after

training. Thus, the optimal training duration goes to zero in

high SNR regime. Therefore, the maximal multiplexing gain

performance is obtained as follows.

Theorem 12: For open loop training based systems, the

multiplexing gain of both sequential beamforming and half-

duplex strategy is only decided by training power constraint

as

r∗SqBfOp
= r∗HfOp

= ζ. (30)

This theorem is valid for both half-duplex and sequential

beamforming strategy with open loop training. Sequential

beamforming strategy does not provide extra spectral benefit

at high SNR. It should be emphasized that in low-to-moderate

SNR regime, from the analysis in Section V, sequential beam-

forming does obtain significant spectral efficiency gain. This

difference is not observed for closed loop training systems,

where significant spectral efficiency improvement is observed

in all SNR regime.

Before comparing the spectral efficiency performance of

closed and open loop system asymptotically, we first validate

the influence of the assumption that each user has a perfect

knowledge of its channel on both closed and open loop train-

ing. This information is crucial for the decoding at the user

side. It has been shown [4] that, asymptotically, one training

pilot from each base station antenna is both necessary and

good enough for the influence of imperfect CSI on downlink

rate to vanish for both closed and open loop training.

Based on multiplexing gain characterization above, we

compare the spectral efficiency of systems with different types

of training. For systems with longer block length and few

users, in general, closed loop training outperforms open loop

training. The major reason is that the closed loop training

significantly reduces inter-beam interference by learning from

more training symbols. Despite the longer training duration,

closed loop training is still more advantageous. However, if

there are many antennas and block length is short, then it is

better to use open loop training, whose training duration is

asymptotically short.

VII. CONCLUSION

With accurate CSI, Multiuser MIMO downlink has the

potential to increase the spectral efficiency tremendously. In

systems with many users, CSI acquisition leads to unavoidable

training overhead. This paper aims at reducing the overhead

of multiuser MIMO downlink systems by utilizing full-duplex

radios.

With characterization of inter-node interference due to full-

duplex training, we optimize the training duration of sequential

beamforming strategy with both closed and open loop training.

The proposed sequential beamforming strategy demonstrates

significant spectral efficiency improvement compared to its

half-duplex counterpart. Sequential beamforming strategy can

also be applied in frequency-division duplex systems where

uplink and downlink are orthogonal by nature. The orthogonal-

ity will also prevent the generation of inter-node interference.

The closed and open loop training methods exhibit distinct

spectral efficiency performance. Asymptotically, the number

of users, block length and training power jointly decide which

type of training should be adopted. It has been observed

in [25] that closed loop training is more favorable than open

loop training to reduce estimation error, while common sense

suggests that open loop training is preferable for large systems.

Our results quantify the decision region of training method and

bridge these two observations.

We close this paper by noting some relevant issues. The

training symbols are symmetrically allocated among users.

Since the downlink receiving time decreases from User 1
to User M , extra spectral efficiency can be obtained by

assigning training symbols decreasingly from User 1 to User

M . Moreover, we focus on providing the spectral efficiency

characterization of a particular users subset to the scheduler.

Thus, the MAC layer designs, such as deafness effect, are

not considered. Past studies have revealed that picking users

whose channel are more orthogonal reduces the inter-beam

interference [16], [17]. Finally, the considered base station

is a full-duplex MIMO array where each antenna is used

for both transmission and reception [5]. Another line of
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Fig. 6: Multiplexing gain r as a function of training power constraint ζ.

recent development of full-duplex designs [1], [6]–[9] adopt

separating transmission and reception antennas. For such array,

the joint design and optimization of data service, CSI training,

and full-duplex operation is an important future direction.

APPENDIX A

PROOF OF LEMMA 1

Since perfect CSI is assumed available at each user, the rate

loss can be upper bounded by

∆Rtr 6E

[
log

(
1 + |hivi|2

P

M

)]

− E

[
log

(
1 + |hivi|2

P

M
+ |hikxtrk |2

)]

+ E


log


1 +

∑

j 6=i

P

M
|hivj |2 + |hikxtrk |2




 .

(31)

The first step is to follow the same recipe in Appendix II step

(a) of [4], and then ignoring the positive term
∑

j 6=i
P
M |hivj |2

leads to the result above. The sum
∑

j 6=i
P
M |hivj |2 and the

term |hikxtrk |2 quantify the interference due to imperfect pre-

coding and full-duplex training, i.e., inter-beam and inter-node

interference, respectively. We refer them as PIBI and PINI.

The inter-node interference is assumed to scale proportional

to the training power of users, i.e., PINI = αfP . Noting the

concavity of logarithm function, similar to step (33) in Remark

4.2 in [4], we apply Jensen’s inequality to obtain Lemma 1.

APPENDIX B

PROOF OF THEOREM 1

The rate increase term δRdata (T tr) of (IV-A) is character-

ized by applying Proposition 1 as

δRdata
(
T tr
)
≈ P (1 + fP )

− T tr

M(M−1) [log (1 + fP )
1

M−1 − 1].

Here the last step is directly obtained by using Taylor expan-

sion. Substituting into (IV-A), we have
(
1− M + 1

2M

T tr

T

)
P (1 + fP )

− T tr

M(M−1) [(1 + fP )
1

M−1 − 1]

=
M − 1

2T
∆RINI +

M + 1

2T
RZF.

Noticing that it is an transcendental equation which is chal-

lenging to solve. Then omitting the M+1
2M

T tr

T term leads us to

the theorem. This approximation is valid for large T .

APPENDIX C

PROOF OF THEOREM 2

For open loop training based systems, the rate improvement

due to more training symbols can be obtained by using

Proposition 1 as

δRdata
(
T tr
)
≈ (M − 1)M

f
(
T̃ tr
SqBf

)2 ,

where the last step is the direct result of Maclaurin series.

Combining with (IV-A) leads to
(
1− M + 1

2M

T̃ tr
SqBf

T

)
(M − 1)M

f
(
T̃ tr
SqBf

)2 =
M − 1

2T
∆RINI+

M + 1

2T
RZF,

whose solution leads to the theorem.

APPENDIX D

PROOF OF THEOREM 3

The rate increase term δRdata (T tr) is immediately approx-

imated by using results from Appendix B. Applying this rate

characterization term to evaluate (IV-B) gives
(
1− T tr

T

)
(1 + fP )

1
M−1 − 1

P (1 + fP )
− T tr

M(M−1)

=
M

T
RZF,

which is a transcendental equation. Following the same step

in Appendix B, we omit the T tr

T to obtain the theorem.

APPENDIX E

PROOF OF THEOREM 4

Using the rate increase characterization term δRdata (T tr)
in Appendix C and further applying (IV-B), (19) gives

(
1− T tr

T

)
(M − 1)M

f
(
T̃ tr
SqBf

)2 =
M

T
RZF,

whose solution is the theorem.

APPENDIX F

PROOF OF THEOREM 5

Evaluating the achieved spectral efficiency of sequential

beamforming strategy with approximated optimal training du-

ration T̃ tr∗
SqBfCl

obtained in Theorem 1 gives upper bound

∆SESqBfCl

(
T tr∗
SqBfCl

)
6 RZF +

M − 1

2M

T̃ tr∗
SqBfCl

T
∆RINI

−
(
1− M + 1

2M

T̃ tr∗
SqBfCl

T

)[
RZF − log

(
1 + P (1 + fP )

−
T̃ tr∗
SqBfCl

M(M−1)

)]
.
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Omitting the negative term

−M + 1

2M

T̃ tr∗
SqBfCl

T
log

(
1 + P (1 + fP )

−
T̃ tr∗
SqBfCl

M(M−1)

)

and sorting the small term with respect to 1√
T

lead to the

theorem.

APPENDIX G

PROOF OF THEOREM 6

Following similar analysis as that of Appendix F, we

substitute approximation of optimal training duration from

Theorem 2 into (7) to characterize the spectral efficiency loss

as

∆SESqBfOp

(
T tr∗
SqBfOp

)
6 RZF +

M − 1

2M

T̃ tr∗
SqBfOp

T
∆RINI

−
(
1− M + 1

2M

T̃ tr∗
SqBfOp

T

)[
RZF − log

(
1 +

(M − 1) P
M

1 + fT̃ ∗
SqBfOp

P/M

)]
.

Then dropping the negative term

−M+1
2M

T̃ tr∗
SqBfOp

T log

(
1 +

(M−1) P
M

1+fT̃∗

SqBfOp
P/M

)
and sorting

small term with respect to log T
T lead to the theorem.

APPENDIX H

PROOF OF THEOREM 7

Similar to systems adopting sequential beamforming strate-

gy, the spectral efficiency gap of the half-duplex counterparts

with respect to the genie-aided scenario can be immedi-

ately upper bounded by evaluating the sub-optimal scheme

SEHfCl

(
T̃ ∗
HfCl

)
:

∆SEHfCl

(
T tr∗
HfCl

) (a)

6
T tr∗
HfCl

T
RZF + log

(
1 + P (1 + fP )

−
T̃ tr∗
HfCl

M(M−1)

)

=RZF M (M − 1)

log (1 + fP )

log T

T
+ o

(
log T

T

)
.

Inequality (a) is the result of dropping negative ter-

m − T̃∗

HfCl

T log

(
1 + P (1 + fP )

−
T̃ tr∗
HfCl

M(M−1)

)
. Applying training

time approximation in Theorem 3 gives the final step.

APPENDIX I

PROOF OF THEOREM 8

Inspired by [15], spectral efficiency gap with respect to

genie-aided situation can be immediately upper bounded by

evaluating SEHfOp

(
T̃ ∗
HfOp

)

∆SEHfOp

(
T ∗
HfOp

)
6SEZF − SEHf

(
T̃ ∗
HfOp

)

(a)

6
T̃ ∗
Hf

T
RZF + log

(
1 +

(M − 1) P
M

1 + fT̃ ∗
HfOp

P/M

)

6

√
(M − 1)RZF

fT
+

√
RZF(M − 1)

fT

=2

√
(M − 1)RZF

fT
.

Inequality (a) is obtained by dropping negative term

−
T̃∗

HfOp

T log
(
1 +

(M−1) P
M

1+fT̃∗

HfP/M

)
. The next step is the result of

Maclaurin expansion of the logarithm term, which is tight for

large T .

APPENDIX J

PROOF OF THEOREM 11

Studying (VI-A) in different regimes of operation gives the

following.

1) When ζ > 1, the multiplexing gain is the same

as the multiplex gain of half-duplex systems. Thus,

r∗SqBfCl
(ζ) = r∗ (ζ)HfCl

.
2) When ζ < 1

• T tr

T 6 θ 1−ζ
ζ :

rSqBfCl

(
ζ, T tr

)
=

T tr

T

ζ

θ
− 1

2

(
T tr

T

)2
ζ

θ

= rSqBfCl✟✟INI

(
ζ, T tr

)

• θ 1−ζ
ζ < T tr

T < θ
ζ :

rSqBfCl

(
ζ, T tr

)
=

1

2

T tr

T
(1− ζ)+

(
1− T tr

T

)
T tr

T

ζ

θ

• θ
ζ 6 T tr

T :

rSqBfCl

(
ζ, T tr

)
=

1

2

T tr

T
(1− ζ) +

(
1− T tr

T

)

By carefully evaluating the derivative in differen-

t regimes and applying the optimized training duration

into equation (VI-A) lead to the theorem.
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