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Abstract—This paper addresses two challenges facing
sampling-based kinodynamic motion planning: a way to identify
good candidate states for local transitions and the subsequent
computationally intractable steering between these candidate
states. Through the combination of sampling-based planning, a
Rapidly Exploring Randomized Tree (RRT) and an efficient
kinodynamic motion planner through machine learning, we
propose an efficient solution to long-range planning for kin-
odynamic motion planning. First, we use deep reinforcement
learning to learn an obstacle-avoiding policy that maps a robot’s
sensor observations to actions, which is used as a local planner
during planning and as a controller during execution. Second,
we train a reachability estimator in a supervised manner, which
predicts the RL policy’s time to reach a state in the presence
of obstacles. Lastly, we introduce RL-RRT that uses the RL
policy as a local planner, and the reachability estimator as
the distance function to bias tree-growth towards promising
regions. We evaluate our method on three kinodynamic systems,
including physical robot experiments. Results across all three
robots tested indicate that RL-RRT outperforms state of the
art kinodynamic planners in efficiency, and also provides a
shorter path finish time than a steering function free method.
The learned local planner policy and accompanying reachability
estimator demonstrate transferability to the previously unseen
experimental environments, making RL-RRT fast because the
expensive computations are replaced with simple neural net-
work inference.

Index Terms—Motion and Path Planning, Learning and
Adaptive Systems, Deep Learning in Robotics and Automation

I. INTRODUCTION

CONSIDER motion planning for robots such as UAVs

[17], autonomous ships [3], and spacecrafts [23]. The

planning solution needs to satisfy two criteria. First, the

solution path must be feasible, meaning that the path must

be collision-free and satisfy kinodynamic constraints, e.g.

velocity and acceleration bounds even in the presence of

sensor noise. Second, the path needs to be efficient, i.e. near

optimal with respect to objectives such as time to reach

the goal. For example, a motion plan for a car-like robot

should avoid obstacles, reach the goal promptly, not make
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(a) RL-RRT and SST in Map 1 (46.1 x 49.5 m)

(b) The Fetch robot (c) Trjectory execution of Fetch in
Map 2 (46.1 x 49.5 m)

Fig. 1. (a) Example trees constructed with RL-RRT (yellow) and SST [15]
(blue) for a kinodynamic car navigating from start (S) to goal (G). (b) The
Fetch robot. (c) RL-RRT (green) and the real-world trajectory executed
(cyan) from the start (green dot) towards the goal (blue dot) in Map 2.
Map 2 is a SLAM map of an actual office building.

impossibly sharp turns, and maintain enough clearance to

compensate for sensor noise.

Current state of the art kinodynamic motion planners

search the robot’s feasible state space by building a tree

data structure of possible robot motions rooted at the robot’s

current state. The methods iteratively use a local planner to

attempt to grow the tree until the goal is reached. While some

tree-based methods grow the tree by randomly propagating

actions, others guide the tree growth to focus state space

expansion thus requiring the local planner to be a steering

function, a control policy that guides a robot to a specific

goal in obstacle-free space, while satisfying the kinodynamic

constraints. For example, consider a car-like robot needing

to translate a small distance to the left, a motion resembling

parallel parking. This motion plan is difficult, even in the

absence of obstacles, and requires a steering function to steer

the car to the goal. Computing the steering function requires

solving an optimal control problem, and is generally NP-Hard

[28]. To date, only very limited robot dynamics such as linear
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[27] and differential drive [20] systems have optimal steering

functions.

Besides the existence of steering functions, there are two

additional difficulties facing efficient tree-based kinodynamic

motion planning. First, tree-based methods that use steering

functions require identifying the state in the tree from which

to grow. This requires a function that compare the distance

between states and return those that are expected to be

easily solved by the steering function. An effective distance

function for kinodynamic planning is the Time To Reach

(TTR) between states using an optimal steering function

[20]. TTR, however, is often expensive to compute as it

involves numerically integrating the steering function [20].

Second, neither the steering functions nor the related TTR

are informed by sensors, and, as a result, do not account for

potential obstacles. For example, if a goal is occluded by a

wall, the steering function is not able to see the wall due to

the lack of sensory input, and TTR would return a value as

if an agent could go through the wall.

Recently, deep Reinforcement Learning (RL) emerged as

a promising near optimal steering function for kinodynamic

systems [13]. In addition, deep RL algorithms can learn

policies that map noisy lidar or camera observations directly

to robot actions, thus enabling obstacle avoidance while

navigating between states for differential drive robots [4],

[5]. With the recent development of AutoRL [4], which uses

evolutionary algorithms to largely eliminate the need to hand-

tune hyper-parameters, network structure and reward func-

tions. This combination offers the promise of deep RL being

employed for local planning, i.e., providing both steering

function and obstacle avoidance. However, RL policies often

lack long-term planning capabilities [18] and get trapped in

environments with complex obstacles [6].

To address the lack of available steering functions, good

distance functions for aiding tree growth, and obstacle-

awareness facing kinodynamic motion planning, we propose

RL-RRT, which combines RL and sampling-based planning.

It works in three steps. First, we learn an obstacle-avoiding

point-to-point (P2P) policy with AutoRL. This is a mapless,

goal-conditioned policy that maps sensor readings to control.

These P2P policies generalize to new environments without

re-training [4]. Second, we train a supervised obstacle-aware

reachability estimator that predicts the time it takes the P2P

policy to guide the robot from a start to goal state in presence

of obstacles, using local observations such as lidar. The key

insight is that the AutoRL policy and the estimator implicitly

learn the topology of the obstacles. This allows reasonably

accurate estimates of time to reach in new environments.

Lastly, presented with a motion planning problem in a new

envrionment, in a RRT setting, we use the RL policy as a

local planner and the reachability estimator as the distance

function. The combination of these two learning solutions

offers two primary advantages. First, by using RL policies as

an obstacle avoiding local planner, RL-RRT can be applied

to a variety of kinodynamic systems without optimal steering

functions. Second, by using the obstacle-aware reachability

estimator, RL-RRT can prune out randomly sampled states

that are un-reachable from the tree, e.g., the policy is ex-

pected to be unsuccessful, and identify nodes with small TTR

to the sampled state. In the example of a car in front of a

wall, the RL policy will go around the wall, and the estimator

will predict that the time to reach will be longer because of

the wall.

We evaluate RL-RRT in two environments with three

kinodynamic robots. Results indicate that AutoRL policies

are effective obstacle-avoiding local planners. The obstacle-

aware reachability estimators, one for each robot, are 74-80%

accurate in identifying if a goal state is reachable. Compared

to a state of the art steering function free method, SST [15],

RL-RRT is up to 2.3 times more likely to identify a path

within a fixed time budget and the identified path is up to

4.5 times shorter. RL-RRT typically identifies dynamically-

feasible paths in very few iterations – 11 in this case – thanks

to intelligent node selection and the obstacle-avoiding local

planner (Figure 1a). The enclosed video demonstrates RL-

RRT tree construction and trajectory execution on a physical

differential drive robot.

II. RELATED WORK

Steering function-based kinodynamic planners, such as

kinodynamic RRT* [27] and D-FMT [24] rely on a steering

function to “pull” the tree to achieve rapid exploration [22]

and a proper distance function [27], [20], [28]. RL-RRT uses

AutoRL [4] to learn steering functions, thus bypassing the

challenging two-point boundary value problem.

Steering function free-based approaches, such as EST [22]

and SST [15], propagate random actions from a selected

node. These methods can be applied to a variety of robot

dynamics, although they tend to “wander” [1], thus they can

take a long time to identify a solution.

Recent research has offered several solutions for P2P

obstacle-avoidance policies on a differential drive robot from

raw sensory input, including learning from demonstration

[21], curriculum learning [29], and reinforcement learning

[26], [4]. Other research offers hierarchical solutions to

navigation, where the RL agent executes a path identified

by another planner, e.g., from a grid [5], PRMs [6], [8], or

manually selected waypoints [12]. However, none of those

methods are designed for kinodynamic robots, leading to

failures at milestones due to dynamic constraints [8].

Designing an effective distance function for sampling-

based kinodynamnic motion planning is challenging [20].

The commonly used Euclidean and weighted Euclidean

distance for configuration space planning is inefficient as

kinodynamic robot states have limited reachability [14]. The

minimum TTR between states is a highly effective distance

function [20], [28] but is often too computationally-expensive

to be used as a distance function [20]. While learned TTR

of a near-optimal differential drive steering function [20] can

overcome the computational complexity, this approach still

requires a near-optimal steering function. Indirect optimal

control has also been used to generate training samples

composed of minimum TTR and optimal control actions

along trajectories [28]. However, this approach currently only
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works for low dimensional systems such as inverted pendu-

lum and does not handle limited action bounds. Our approach

addresses these challenges by bypassing the necessity of

a near-optimal steering function via RL. Unlike previous

methods, we also take into account obstacle avoidance, which

can significantly change the minimum TTR.

III. METHODS

RL-RRT is a kinodynamic motion planner that learns

local planner and distance function w.r.t the individual

robot dynamics. It has three main steps. First, we learn an

obstacle-avoiding point to point policy with AutoRL [4].

Next, since the RL policy avoids obstacles, we can use

the policy to generate obstacle-aware reachability training

samples by repeatedly rolling out the learned policy. An

obstacle-aware reachability estimator is trained to predict the

time to reach between two robot states in the presence of

obstacles. Policy and estimator training is done once per

robot in training environments. Third, during planning, RL-

RRT creates dynamically-feasible motion plans using the RL

policy as the local planner and the reachablity estimator as

the distance function. Note, that the training and planning

simulators require simulated depth measurements (e.g. lidar)

around the robot, which can be thought of as analogous to

motion planning with information about clearance.

A. AutoRL Local Planner

We train a RL agent to perform a P2P task that avoids

obstacles. The output of the training is a policy that is

used as a local planner, an execution policy, and a data

generation source for the obstacle-aware reachability esti-

mator. Using one RL policy for both local planning and

path execution is inspired by [9]. This allows the planner

to account for potential noise during path execution. To train

a policy robust against noise, we model the RL policy is a

solution for a continuous state, continuous action, partially

observable Markov decision process (POMDP) given as a

tuple (Ω, S, A,D,R, γ,O) of observations, state, actions, dy-

namics, reward, scalar discount, γ ∈ (0, 1), and observation

probability. The observations are the last three measurements

of the noisy robot lidar and potentially noisy relative goal

position and robot velocity. We define states as the true robot

configuration and its derivative. A black-box robot dynamics

simulator, which maps states-action pairs to states, is an

input to the RL training environment. Another black-box

simulator maps the robot state to noisy lidar observations

w.r.t. obstacles. The goal is to train the agent to reach a goal

state, G, within radius, dG. Note that AutoRL identifies a

policy that maps noisy sensor and state observations to action.

We explore simulated lidar measurement noise in this work

and left state estimation and process noise to future work.

AutoRL training is required only once for a given robot.

AutoRL [4] over DDPG [16], used for learning the RL

agent policy, takes as input: observations, actions, dynamics,

goal definition, (G, r), and a parametrized reward, R : O ×
θr → R,. The agent is trained to maximize the probability of

reaching the goal without collision. This is achieved by using

evolutionary algorithms over populations of agents to find a

dense reward that maximizes successful goal reaching. Each

generation of agents is trained with a new reward, selected

based on the previous experience. At the end, the fittest agent

that performs P2P tasks best, is selected as the P2P policy.

In this work, all three agents use the same observations, goal

definitions, and neural network architectures, but differ in the

robot dynamics and reward features used.

As an example, we explain the training of the Asteroid

robot here (details of the robot are in the Appendix). Details

for the Differential Drive and Car robot can be found in

[4] and [8]. The observation is a vector of 3Nbeams noisy

lidar returns concatenated with the relative planar position

of the goal, the robot velocity and orientation (3Nbeams + 5
dimensional vector). The state is the planar position, velocity

and orientation of the robot. The action is the amount

of forward thrust and turn rate. The parameterized reward

includes

RθrDD
= θT [rgoalrgoalDist rcollision rclearance rspeed rstep rdisp ],

where rgoal is 1 when the agent reaches the goal and 0

otherwise, rgoalDist is the negative Euclidean distance to the

goal, rcollision is -1 when the agent collides with obstacles and

0 otherwise, rclearance is the distance to the closest obstacle,

rspeed is the agent speed when the clearane is below 0.25m,

rstep is a constant penalty step with value 1, and rdisp is sum

of displacement between the current and positions 3, 6 and

9 steps before. θ is the weight vector tuned by AutoRL.

B. Obstacle-Aware Reachablity Estimator

We further improve upon work in [20] by learning the TTR

of an obstacle-avoiding P2P RL policy learned in Section

III-A. Our obstacle-aware reachability estimator provides

the following benefits: 1) It does not need an engineered

near-optimal steering function for each robot dynamics. This

allows TTR learning for robot systems without near-optimal

steering functions. 2) Due to the presence of obstacles, the

minimum TTR between states is a function of both robot

dynamics and obstacles. Since RL policies can also learn to

avoid obstacles, the obstacle-aware reachability estimator can

provide additional benefit over TTR estimators that consider

only obstacle dynamics such as [20].

1) Training data collection: Algorithm 1 summarizes the

training data collection. First, for each episode, we initialize

the robot with randomly chosen start and goal states (Alg.

1 line 2). Next, we execute the policy until the episode

terminates (lines 4-11) due to reaching the goal, collision, or

reaching a time horizon Thorizon. During execution, we record

the robot observation at each time step (line 8) and compute

and record the TTR cost (lines 9-10). The TTR cost is set to

Δt at every time step. To classify whether the robot can reach

the goal, we use a simple heuristic that penalizes trajectories

that do not reach the goal. If the robot is in collision or the

time horizon is reached (elapsedTime equals to Thorizon), the

TTR cost of that time step is set to Δt + Thorizon, and the
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Algorithm 1 Training data collection

Input: π(o): Obstacle avoiding P2P RL policy, Nepisode: Number of
episodes, Δt: Time step size, Thorizon: Reachability horizon

Output: trainingData = (o1, y1), (o2, y2), · · · , (oN , yN ).
1: for i = 1, · · ·Nepisode do
2: s, g = sampleStartAndGoal()
3: elapsedTime = 0
4: while isDone is False do
5: elapsedTime += Δt
6: o = makeObservation()
7: executePolicy(π(o), Δt)
8: obsHistory.append(o)
9: c, isDone = getTTRCost(elapsedTime, Thorizon)

10: costHistory.append(c)
11: end while
12: cfc = computeCumulativeFutureCost(costHistory)
13: for j=0, len(obsHistory) do
14: trainingData.append((o = obsHistory[j], y = cfc[j]))
15: end for
16: obsHistory.clear(); costHistory.clear()
17: end for
18: return trainingData

episode is terminated immediately by setting isDone to true.

After an episode terminates, we compute the cumulative

future TTR cost for all states along the trajectory, i.e.,

remaining cost-to-go to the end of the trajectory (line 12).

The observation and cumulative future cost of each time

step form a training sample and is recorded (line 14). The

process repeats for Nepisode = 1000 episodes. We designed

the TTR cost heuristic such that if the robot reaches the goal,

the cumulative future cost of each state along the trajectory

is the TTR between that state and the goal. Conversely, if

the robot failed to reached the goal due to collision or the

episode reaches time horizon, all cumulative future cost along

the trajectory will be larger than Thorizon. By employing a

common machine learning technique that uses a regressor

and a threshold value as a classifier [11], we can quickly

classify whether a goal state can be reached during planning.

2) Reachability Estimator Network: We train the obstacle-

aware reachability estimator network with the training data

collected above. The network input is the robot observation o
and the output is the estimated TTR. We use a simple three-

layer fully-connected network with [500, 200, 100] hidden

neurons with each a dropout probability of 0.5. We use the

L2 loss between estimated TTR and the V-value label from

the training data.

C. RL-RRT

Alg. 2 describes RL-RRT. While the standard RRT algo-

rithm was utilized, modifications were made to efficiently

utilize the obstacle-aware reachability estimator and the

obstacle-avoiding RL local planner.

Within RL-RRT, the obstacle-aware reachability estimator

can provide insight into the best samples to enhance tree

growth. However, as we began to use the estimator, it

became clear that the obstacle-aware reachability estimator

can take longer than the standard Euclidean distance metric

to compute (about 0.5 ms vs. 7 μs for Euclidean). Therefore,

to enhance computation time in large trees, the estimator

Algorithm 2 RL-RRT

Input: π(o): Obstacle avoiding P2P RL policy, Δttree: Tree extension time
step size, Δt: policy time step size, Thorizon: Reachability horizon,
PgoalBias: Goal bias, xroot: Current robot state, kc: Number of candidate
nodes

Output: P: Motion plan.
1: iteration = 0
2: T .add(makeNode(xroot, None))
3: while termination condition not met do
4: iteration += 1
5: goodXrndFound = False
6: while not goodXrndFound do
7: xrnd = sampleCollisionFreeStateSpace(PgoalBias)
8: candidateNodes = findNearestNodesEu(T , xrnd, kc)
9: nnearest = findNearestNode(candidateNodes, xrnd)

10: TTR = getAvgTTR(nnearest, xrnd)
11: if TTR < TTRthreshold or rnd > Pprune then
12: goodXrndFound = True
13: end if
14: end while
15: xnew = nnearest.state; textend = 0
16: while not (textend > tmaxExtend or reach(xnew, xrnd) or xnew is in

collision) do
17: textend += Δt
18: o = makeObservation(xnew, xrnd)
19: xnew = propagateDynamics(π(o), xnew)
20: if xnew is not in collision and textend % Δttree = 0 then
21: T .add(makeNode(xnew, xrnd))
22: end if
23: end while
24: end while
25: return P = extractMotionPlan(T )

was integrated into a hierarchical nearest neighbor selector.

Similar to [2], the method first identifies kc candidate nodes

closest to xrnd using Euclidean distance (Alg. 2, line 8), and

subsequently these choices are filtered by the obstacle-aware

TTR between each candidate node and xrnd. To alleviate

noise in the TTR estimator, we take the average of the TTR

between the selected node and NTTR sample=10 target states

around xrnd, i.e., within a hypercube of dTTRsample=0.3

units (line 10). The node with the lowest average TTR

is selected for RRT extension (line 9). In addition, the

obstacle-aware reachability estimator can also be used to

check whether the randomly sampled state xrnd is reachable

from the nearest node nnearest. Recall that the TTR reward in

Section III-B is setup such that any xrnd unreachable from

nnearest.state has an associated V-value larger than Thorizon. As

the result, the estimated TTR can be used to prune out xrnd

that are un-reachable from the tree within Thorizon. However,

since the estimated TTR is not exact, we made the pruning

probabilistic, i.e., if xrnd is deemed unreachable, it will be

pruned with probability Pprune (line 10). If xrnd is pruned, it

is rejected and a new xrnd is sampled (line 6).

After the nearest node is selected, RL-RRT uses the RL

policy π as the local planner (lines 15-24). Specifically, an

observation o which includes simulated lidar, robot state, and

goal information is made at every policy time step Δt (line

17). This observation is fed to the RL policy, which produces

an action that can be used to forward propagate the dynamics

to a new state xnew (line 18). This process repeats and a new

node storing xnew is created, and added to the tree every

Δtree seconds (line 21), until xnew is in collision, a maximum
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extension time is reached (line 20), or xrnd is reached (line

20).

RL-RRT terminates when either the tree reaches the goal

or after a fixed amount of computation time is exhausted

(line 3). If the tree reaches the goal, a dynamically-feasible

motion plan can be returned (line 25).

IV. EVALUATION

To demonstrate RL-RRT, we evaluate our method on

three kinodynamic robots in two environments unseen during

training, and we experimentally verify the method on a

physical differential drive Fetch robot from Fetch Robotics.

A. Setup

The three robots we evaluate are: Car, Asteroid, and Fetch.

Car is a kinematic car with inertia [19] with a maximum

steering angle 30◦, and a 1.0 m/s2 maximum acceleration

and speed of 1.0 m/s. Asteroid has similar dynamics to those

found in the popular video game Asteroid, and we chose it

since it is highly kinodynamic, unintuitive for a human to

control, and has no known optimal steering function. The

details are available in the supplemental materials. The Fetch

robot has a radius of 0.3m, 1.0 m/s maximum speed and

2.0 rad/s turn rate. The sensor noise is simulated by a zero

mean Gaussian with a standard deviation of 0.1 m. We use

the Fetch robot as a differential drive platform for on-robot

experiments.

All point-to-point policies are trained in the environment

depicted in Figure 4a. We evaluate RL policies and plan in

two office building environments, Map 1 (Figure 1a) and

Map 2 (Figure 1c), which are roughly 15 and 81 times

larger than the training environment, respectively. Map 1 is is

generated from a floor plan, while Map 2 is generated using

a noisy SLAM of the Fetch physical testbed where we ran

the experiments. These environments include parts that are

cluttered, as seen in Map 1, and very narrow corridors, such

seen in Map 2.

We compare RL-RRT to SST [15], a state of the art

steering function free kinodynamic motion planner. For Fetch

robot, we also compare to RRT with Dynamic Window

Approach (DWA) [7] as local planner (denoted RRT-DW).

Additionally, we test disabling the clearance term of DWA,

essentially turning it into a MPC-based steering function (de-

noted RRT-S). All experiment are repeated 50 times. Besides

AutoRL training, all computation was done on an Intel Xeon

E5-1650 @ 3.6GHz using TensorFlow 1.x (Google release)

and Python 2.7. AutoRL policies were implemented with

Google Vizier [10] and TFAgents [25].

B. AutoRL Policy Performance

We use pre-trained P2P policies for Fetch [4] and Car [8]

robots. Their short description is available in the Appendix.

The Asteroid P2P policy is original to this paper. All agents

are trained with AutoRL over DDPG [4]. The goals are

randomly placed within 10m. We train 100 agents in parallel

Robot
Confusion Matrix Prec. Recall Accur.

True (%) (%) (%) (%)

Fetch
Predicted 42.7 21.6

66.4 92.2 74.8
(%) 3.6 32.1

Car
Predicted 44.5 14.2

75.8 90.2 81.0
(%) 4.8 36.5

Asteroid
Predicted 26.5 16.3

61.9 73.4 74.1
(%) 9.6 47.6

TABLE I
REACHABILITY ESTIMATOR CONFUSION MATRIX, PRECISION, RECALL,

AND ACCURACY IN THE TRAINING ENVIRONMENT.

over 10 generations as in [4]. The training took roughly 7

days.

Figure 2 shows the success rate of the P2P agents com-

pared to goal distance. Notice that when the goal distance

is 10m or farther than the trained policy, the performance

degrades. We also notice that the Car policy is best perform-

ing, while the Asteroid policy is the most challenging. These

results show that AutoRL produces, without hand-tuning,

effective local planners, i.e., both a steering function and an

obstacle avoidance policy for a variety of robot dynamics.

C. Reachability Estimator Performance

The obstacle-aware reachability estimator is trained in the

training environment with goals sampled within 20m from

the initial states, twice the distance used for P2P training. The

estimator network was trained on 1000 episodes with about

100,000 samples. Data generation takes about 10 minutes.

The reachability thresholds are 20 seconds for differential

drive and Asteroid, and 40 seconds for Car. Each estimator

was trained over 500 epochs and took about 30 minutes.

Accuracy of the models is between 70% and 80% (Table

I). Notice that a high recall means that the estimator misses

fewer nodes, and suggests that the paths RL-RRT produces

should be near-optimal. On the other hand, relatively low

precision implies that RL-RRT will explore samples that end

up not being useful. This means that we can speed-up RL-

RRT further by learning a more precise predictor.

The reachability estimator overestimates the TTR of reach-

able states across all robots (Fig. 3). However, overestimation

disappears when trained and evaluated only on reachable

states (see Fig. 1 in Appendix for more detail). This suggests

that the overestimation of TTR is likely due to the TTR cost

heuristic uses a penalty for states unreachable within Thorizon.

We leave identifying better TTR cost heuristics and estimator

network architectures for future work.

In general, the estimator captures the regions of start states

that cannot reach the goal (blue dot) (Fig. 4). This is most

visible at the bottom right region of the environment, which

has a TTR larger than the 40s horizon which indicates that

the policy failed to escape that region. We also see that the

estimated TTR captures the dynamics of Car robot, i.e., since

the goal orientation is facing right, it takes less time to reach

the goal from the left, top or bottom than from the right.

Note that the network is never trained on trajectories that

start inside of obstacles and thus cannot accurately predict
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(a) Differential Drive (b) Car (c) Asteroid

Fig. 2. AutoRL P2P navigation success rate as a function of start and goal distance for (a) Fetch, (b) Car and (c) Asteroid robot. The success rates are
evaluated in Map 1 with randomly sampled start and goal states.

(a) Differential Drive (b) Car (c) Asteroid

Fig. 3. Predicted cumulative future time to reach cost v.s. true value for various robots.

(a) Training environment (22.7 x
18.0 m)

(b) Predicted (c) Ground truth

Fig. 4. (a) The training environment. Contour plot of (b) Predicted future cumulative time to reach cost v.s. (c) the true value for Car to reach the goal
near the center marked by the blue dot. The white regions have time to reach value over the 40s horizon, i.e., un-reachable. All start states and the goal
have 0 as linear speed and orientation.

TTR starting from those states, an event which should not

occur in sampling-based planning.

D. Planning Results

RL-RRT finds a solution faster than SST for all three

robots in both environments (Fig. 5a, 5b, 5c). Note that Car

shows the best improvement over the baseline (up to 2.3

times faster), which matches the high success rate of the

P2P Car policy. Conversely, the least improvement is for

Asteroid, which is the most challenging for the RL agent.

Figure 5a also shows that RL-RRT finds a solution faster than

steering function-based methods, where DWA was used as

the steering function (yellow, RRT-S) and obstacle-avoiding

steering function (red, RRT-DW). These results are expected

as RL-RRT learns a obstacle-avoiding local planner that can

often go through very narrow corridors and move around

corners (Figure 1a). In comparison, DWA often gets stuck

around corners. To separate the impact of the RL local

planner as compared to the reachability estimator, we tested

RL-RRT without the estimator and use Euclidean distance to

identify the nearest state in the tree instead. Figures 5a, 5b

and 5c show that RL-RRT without the reachability estimator

(magenta curves) performs worse than RL-RRT for all robots.

This is expected as the reachability estimator prunes poten-

tially infeasible tree-growth, thereby biasing growth towards

reachable regions. Also, the reachabilty estimator encodes

the TTR and is thus more informative than the Euclidean

distance for kinodynamic robots such as Asteroid.
The finish time of trajectories identified by RL-RRT are

significantly shorter (up to 6 times shorter) than SST for all

robots (Fig. 5d, 5e, 5f) and comparable to RRT-DWA and

RRT-S on differential drive. This is expected as SST does

not use steering functions. Instead, it randomly propagates

actions, resulting in a “jittery” behavior (visible in Figure

1a) and long finish time. The comparable finish time with

steering function-based methods show that RL-RRT learns a

near-optimal steering function.

E. Physical Robot Experiments
In order to verify that the RL-RRT produces motion plans

that can be used on real robots, we executed the motion
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(a) Differential Drive. (b) Car (c) Asteroid

(d) Differential Drive. (e) Car (f) Asteroid

Fig. 5. Success rate (top) and Finish time (bottom) of RL-RRT (black) compared to, SST (blue), RRT-DW (red, RRT with DWA obstacle-avoiding steering
function), RRT-S (yellow, RRT with DWA as the steering function) and RL-RRT-E (magenta, RL-RRT using Euclidean distance instead of the reachability
estimator) in Map 1 (M1) and Map 2 (M2).

plans on the Fetch robot (Figure. 1b) in Map 2 environment.

We ran 10 different motion plans, repeated 3 times. Figure

1c presents one such trajectory. The straight line distance

between the start and goal is 20.8 m. In green are tree

nodes for a path, and the blue line is the executed robot

path with the P2P AutoRL policy. We notice two things.

First, the path is similar to the one humans would take. The

shortest path leads through cubicle space, which is cluttered.

Because the P2P policy does not consistently navigate the

cubicle space, the TTR estimates are high in that region and

the tree progress slowly in that area. At the same time, in

the uncluttered space near the start position (left and right)

the tree grows quickly. The executed trajectory (in blue)

stays close to the planned path. Enclosed video contains the

footage of the robot traversing the path.

V. DISCUSSION

(a) Two Astroid trajectories. (b) V-value and TTR.

Fig. 6. (a) Two trajectories (green and red) of the Asteroid robot from the
yellow dots to blue dots. (b) The corresponding predicted TTR (solid lines)
and the negative of V-value from DDPG’s critic net (dashed lines).

Deep actor-critic RL methods approximate the cumulative

future reward, i.e., state-value function with the critic net.

Intuitively, the state-value function captures the progress

towards the goal and may be used as a distance function

during planning. Here we show that this is not the case when

proxy rewards are used. AutoRL uses proxy rewards (shown

in Section III-A) since they significantly improve learning

performance, especially for tasks with sparse learning sigals

such as navigation [4]. Fig 6a shows examples of two

Asteroid trajectories and Fig. 6b shows the corresponding

the estimated TTR (solid lines) and negative of DDPG state-

value function extracted form the critic net (dashed lines).

The obstacle-aware reachability estimator correctly predicted

the TTR while the DDPG’s critic net has a significant local

maximum, thus unsuitable as a distance function. This finding

motivated the supervised reachability estimator.

(a) Predicted (b) Ground truth

Fig. 7. Contour plot of (a) Predicted future cumulative time to reach cost v.s.
(b) the true value for Car to reach the goal near the center marked by the
blue dot. The white regions have time to reach value over the 40s horizon,
i.e., un-reachable. All start states and the goal have 0 as linear speed and
orientation. The environment size is 50 m by 40 m.

One limitation of RL-RRT is that the obstacle-aware reach-

ability estimator approximates reachability using only local

information such as simulated lidar measurements around

the robot. However, the true reachability is often impacted

significantly by large-scale obstacle structures. Figure 7

demonstrates this limitation. The ground truth shows that



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

the Car policy generally fails to reach the goal outside

of the center box due to the complex maze-like obstacles

(Figure 7b). The reachability estimator failed to predict this

as some regions outside of the center box are incorrectly

predicted as reachable (Figure 7a). On the other hand, we

also demonstrated that the estimator performs well when the

training and planning environments are similar (Figure 4).

This suggests that the reachability estimator should to be

trained in environments similar to the planning environment

or perform online adaptation/learning during planning. We

leave the latter to future work.

VI. CONCLUSIONS

This paper contributes RL-RRT, a kinodynamic planner

which works in three steps: 1) learning obstacle-avoiding

local planner; 2) training an obstacle-aware reachability

estimator for the learned local planner; and 3) using the

estimator as the distance function and to bias sampling in

RRT. Unlike traditional kinodynamic motion planners, RL-

RRT learns a suitable steering and distance function. The

robot is trained once, and the policy and estimator transfer

to the new envrionments. We evaluated the method on three

kinodynmic robots in two simulated environments. Compared

to the baselines, RRT plans faster and produces shorter

paths. We also verified RL-RRT on a physical differential

drive robot. For future work, following PRM-RL, we plan to

improve the noise robustness of RL-RRT by Monte Carlo

roll-outs during tree extensions. We also plan to identify

better TTR cost heuristics, network architectures and online

adaptation of the reachability estimator.
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