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Abstract—Given the unprecedented availability of data and
computing resources, there is widespread renewed interest in
applying data-driven machine learning methods to problems for
which the development of conventional engineering solutions is
challenged by modelling or algorithmic deficiencies. This tutorial-
style paper starts by addressing the questions of why and
when such techniques can be useful. It then provides a high-
level introduction to the basics of supervised and unsupervised
learning. For both supervised and unsupervised learning, exem-
plifying applications to communication networks are discussed
by distinguishing tasks carried out at the edge and at the cloud
segments of the network at different layers of the protocol stack,

with an emphasis on the physical layer.

I. INTRODUCTION

After the “AI winter” of the 80s and the 90s, interest

in the application of data-driven Artificial Intelligence (AI)

techniques has been steadily increasing in a number of engi-

neering fields, including speech and image analysis [1] and

communications [2]. Unlike the logic-based expert systems

that were dominant in the earlier work on AI (see, e.g., [3]),

the renewed confidence in data-driven methods is motivated

by the successes of pattern recognition tools based on ma-

chine learning. These tools rely on decades-old algorithms,

such as backpropagation [4], the Expectation Maximization

(EM) algorithm [5], and Q-learning [6], with a number of

modern algorithmic advances, including novel regularization

techniques and adaptive learning rate schedules (see review in

[7]). Their success is built on the unprecedented availability of

data and computing resources in many engineering domains.

While the new wave of promises and breakthroughs around

machine learning arguably falls short, at least for now, of the

requirements that drove early AI research [3], [8], learning

algorithms have proven to be useful in a number of important

applications – and more is certainly on the way.

This paper provides a very brief introduction to key concepts

in machine learning and to the literature on machine learning

for communication systems. Unlike other review papers such

as [9]–[11], the presentation aims at highlighting conditions

under which the use of machine learning is justified in

engineering problems, as well as specific classes of learning

algorithms that are suitable for their solution. The presentation

is organized around the description of general technical con-

cepts, for which an overview of applications to communication

networks is subsequently provided. These applications are
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Fig. 1. (a) Conventional engineering design flow; and (b) baseline machine
learning methodology.

chosen to exemplify general design criteria and tools and not

to offer a comprehensive review of the state of the art and of

the historical progression of advances on the topic.

We proceed in this section by addressing the question “What

is machine learning?”, by providing a taxonomy of machine

learning methods, and by finally considering the question

“When to use machine learning?”.

A. What is Machine Learning?

In order to fix the ideas, it is useful to introduce the machine

learning methodology as an alternative to the conventional

engineering approach for the design of an algorithmic solution.

As illustrated in Fig. 1(a), the conventional engineering design

flow starts with the acquisition of domain knowledge: The

problem of interest is studied in detail, producing a mathemat-

ical model that capture the physics of the set-up under study.

Based on the model, an optimized algorithm is produced that

offers performance guarantees under the assumption that the

given physics-based model is an accurate representation of

reality.
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As an example, designing a decoding algorithm for a

wireless fading channel under the conventional engineering

approach would require the development, or the selection,

of a physical model for the channel connecting transmitter

and receiver. The solution would be obtained by tackling an

optimization problem, and it would yield optimality guarantees

under the given channel model. Typical example of channel

models include Gaussian and fading channels (see, e.g., [12]).

In contrast, in its most basic form, the machine learning

approach substitutes the step of acquiring domain knowledge

with the potentially easier task of collecting a sufficiently large

number of examples of desired behaviour for the algorithm of

interest. These examples constitute the training set. As seen in

Fig. 1(b), the examples in the training set are fed to a learning

algorithm to produce a trained “machine” that carries out the

desired task. Learning is made possible by the choice of a set

of possible “machines”, also known as the hypothesis class,

from which the learning algorithm makes a selection during

training. An example of an hypothesis class is given by a

neural network architecture with learnable synaptic weights.

Learning algorithms are generally based on the optimization

of a performance criterion that measures how well the selected

“machine” matches the available data.

For the problem of designing a channel decoder, a machine

learning approach can hence operate even in the absence of a

well-established channel model. It is in fact enough to have a

sufficiently large number of examples of received signals – the

inputs to the decoding machine – and transmitted messages –

the desired outputs of the decoding machine – to be used for

the training of a given class of decoding functions [13].

Moving beyond the basic formulation described above, ma-

chine learning tools can integrate available domain knowledge

in the learning process. This is indeed the key to the success

of machine learning tools in a number of applications. A

notable example is image processing, whereby knowledge of

the translational invariance of visual features is reflected in the

adoption of convolutional neural networks as the hypothesis

class to be trained. More generally, as illustrated in Fig.

2, domain knowledge can dictate the choice of a specific

hypothesis class for use in the training process. Examples of

applications of this idea to communication systems, including

to the problem of decoding, will be discussed later in the paper.

B. Taxonomy of Machine Learning Methods

There are three main classes of machine learning techniques,

as discussed next.

• Supervised learning: In supervised learning, the training

set consists of pairs of input and desired output, and the

goal is that of learning a mapping between input and

output spaces. As an illustration, in Fig. 3(a), the inputs

are points in the two-dimensional plane, the outputs are

the labels assigned to each input (circles or crosses),

and the goal is to learn a binary classifier. Applications

include the channel decoder discussed above, as well as

email spam classification on the basis of examples of

spam/ non-spam emails.

• Unsupervised learning: In unsupervised learning, the

training set consists of unlabelled inputs, that is, of inputs
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Fig. 2. Machine learning methodology that integrates domain knowledge
during model selection.

without any assigned desired output. For instance, in Fig.

3(b), the inputs are again points in the two-dimensional

plane, but no indication is provided by the data about

the corresponding desired output. Unsupervised learning

generally aims at discovering properties of the mechanism

generating the data. In the example of Fig. 3(b), the goal

of unsupervised learning is to cluster together input points

that are close to each other, hence assigning a label –

the cluster index – to each input point (clusters are de-

limited by dashed lines). Applications include clustering

of documents with similar topics. It is emphasized that

clustering is only one of the learning tasks that fall under

the category of unsupervised learning (see Sec. V).

• Reinforcement learning: Reinforcement learning lies, in

a sense, between supervised and unsupervised learning.

Unlike unsupervised learning, some form of supervi-

sion exists, but this does not come in the form of the

specification of a desired output for every input in the

data. Instead, a reinforcement learning algorithm receives

feedback from the environment only after selecting an

output for a given input or observation. The feedback

indicates the degree to which the output, known as action

in reinforcement learning, fulfils the goals of the learner.

Reinforcement learning applies to sequential decision

making problems in which the learner interacts with an

environment by sequentially taking actions – the outputs

– on the basis of its observations – its inputs – while

receiving feedback regarding each selected action.

Most current machine learning applications fall in the super-
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vised learning category, and hence aim at learning an existing

pattern between inputs and outputs. Supervised learning is rel-

atively well-understood at a theoretical level [14], [15], and it

benefits from well-established algorithmic tools. Unsupervised

learning has so far defied a unified theoretical treatment [16].

Nevertheless, it arguably poses a more fundamental practical

problem in that it directly tackles the challenge of learning

by direct observation without any form of explicit feedback.

Reinforcement learning has found extensive applications in

problems that are characterized by clear feedback signals, such

as win/lose outcomes in games, and that entail searches over

large trees of possible action-observation histories [17], [18].

This paper only covers supervised and unsupervised learn-

ing. Reinforcement learning requires a different analytical

framework grounded in Markov Decision Processes and will

not be discussed here (see [17]). For a broader discussion on

the technical aspects of supervised and unsupervised learning,

we point to [19] and references therein.

C. When to Use Machine Learning?

Based on the discussion in Sec. I-A, the use of a machine

learning approach in lieu of a more conventional engineering

design should be justified on a case-by-case basis on the

basis of its suitability and potential advantages. The following

criteria, inspired by [20], offer useful guidelines on the type

of engineering tasks that can benefit from the use of machine

learning tools.

1. The traditional engineering flow is not applicable or is

undesirable due to a model deficit or to an algorithm deficit

[21].

• With a model deficit, no physics-based mathematical

models exist for the problem due to insufficient domain

knowledge. As a result, a conventional model-based de-

sign is inapplicable.

• With an algorithm deficit, a well-established mathemati-

cal model is available, but existing algorithms optimized

on the basis of such model are too complex to be

implemented for the given application. In this case, the

use of hypothesis classes including efficient “machines”,

such as neural network of limited size or with tailored

hardware implementations (see, e.g., [22], [23] and ref-

erences therein), can yield lower-complexity solutions.

2. A sufficiently large training data sets exist or can be created.

3. The task does not require the application of logic, common

sense, or explicit reasoning based on background knowledge.

4. The task does not require detailed explanations for how

the decision was made. The trained machine is by and large

a black box that maps inputs to outputs. As such, it does

not provide direct means to ascertain why a given output

has been produced in response to an input, although recent

research has made some progress on this front [24]. This

contrasts with engineered optimal solutions, which can be

typically interpreted on the basis of physical performance

criteria. For instance, a maximum likelihood decoder chooses

a given output because it minimizes the probability of error

under the assumed model.

5. The phenomenon or function being learned is stationary for
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Fig. 3. Illustration of (a) supervised learning and (b) unsupervised learning.

a sufficiently long period of time. This is in order to enable

data collection and learning.

6. The task has either loose requirement constraints, or, in the

case of an algorithm deficit, the required performance guar-

antees can be provided via numerical simulations. With the

conventional engineering approach, theoretical performance

guarantees can be obtained that are backed by a physics-based

mathematical model. These guarantees can be relied upon

insofar as the model is trusted to be an accurate representation

of reality. If a machine learning approach is used to address an

algorithm deficit and a physics-based model is available, then

numerical results may be sufficient in order to compute satis-

factory performance measures. In contrast, weaker guarantees

can be offered by machine learning in the absence of a physics-

based model. In this case, one can provide performance

bounds only under the assumptions that the hypothesis class

is sufficiently general to include “machines” that can perform

well on the problem and that the data is representative of the

actual data distribution to be encountered at runtime (see, e.g.,

[19][Ch. 5]). The selection of a biased hypothesis class or the

use of an unrepresentative data set may hence yield strongly

suboptimal performance.

We will return to these criteria when discussing applications

to communication systems.

II. MACHINE LEARNING FOR COMMUNICATION

NETWORKS

In order to exemplify applications of supervised and un-

supervised learning, we will offer annotated pointers to the

literature on machine learning for communication systems.

Rather than striving for a comprehensive, and historically

minded, review, the applications and references have been
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Fig. 4. A generic cellular wireless network architecture that distinguishes
between edge segment, with base stations, access points, and associated
computing resources, and cloud segment, consisting of core network and
associated cloud computing platforms.

selected with the goal of illustrating key aspects regarding the

use of machine learning in engineering problems.

Throughout, we focus on tasks carried out at the network

side, rather than at the users, and organize the applications

along two axes. On one, with reference to Fig. 4, we distin-

guish tasks that are carried out at the edge of the network, that

is, at the base stations or access points and at the associated

computing platforms, from tasks that are instead responsibility

of a centralized cloud processor connected to the core network

(see, e.g., [25]). The edge operates on the basis of timely

local information collected at different layers of the protocol

stack, which may include all layers from the physical up to the

application layer. In contrast, the centralized cloud processes

longer-term and global information collected from multiple

nodes in the edge network, which typically encompasses only

the higher layers of the protocol stack, namely networking and

application layers. Examples of data that may be available at

the cloud and at the edge can be found in Table I and Table

II, respectively.

As a preliminary discussion, it is useful to ask which tasks

of a communication network, if any, may benefit from machine

learning through the lens of the criteria reviewed in Sec. I-C.

First, as seen, there should be either a model deficit or an

algorithm deficit that prevents the use of a conventional model-

based engineering design. As an example of model deficit,

proactive resource allocation that is based on predictions of

human behaviour, e.g., for caching popular contents, may not

benefit from well-established and reliable models, making a

data-driven approach desirable (see, e.g., [26], [27]). For an

instance of algorithm deficit, consider the problem of channel

decoding for channels with known and accurate models based

on which the maximum likelihood decoder entails an excessive

complexity.

Assuming that the problem at hand is characterized by

model or algorithm deficits, one should then consider the

rest of the criteria discussed in Sec. I-C. Most are typically

satisfied by communication problems. Indeed, for most tasks

in communication networks, it is possible to collect or generate

training data sets and there is no need to apply common sense

or to provide detailed explanations for how a decision was

made.

The remaining two criteria need to be checked on a case-

by-case basis. First, the phenomenon or function being learned

should not change too rapidly over time. For example, de-

signing a channel decoder based on samples obtained from a

limited number of realizations of a given propagation channel

requires the channel is stationary over a sufficiently long

period of time (see [28]).

Second, in the case of a model deficit, the task should have

some tolerance for error in the sense of not requiring provable

performance guarantees. For instance, the performance of

a decoder trained on a channel lacking a well-established

channel model, such as a biological communication link, can

only be relied upon insofar as one trusts the available data to

be representative of the complete set of possible realizations

of the problem under study. Alternatively, under an algorithm

deficit, a physics-based model, if available, can be possibly

used to carry out computer simulations and obtain numerical

performance guarantees.

In Sec. IV and Sec. VI, we will provide some pointers to

specific applications to supervised and unsupervised learning,

respectively.

III. SUPERVISED LEARNING

As introduced in Sec. I, supervised learning aims at discov-

ering patterns that relate inputs to outputs on the basis of a

training set of input-output examples. We can distinguish two

classes of supervised learning problems depending on whether

the outputs are continuous or discrete variables. In the former

case, we have a regression problem, while in the latter we have

a classification problem. We discuss the respective goals of the

two problems next. This is followed by a formal definition

of classification and regression, and by a discussion of the

methodology and of the main steps involved in tackling the

two classes of problems.

A. Goals

As illustrated in Fig. 5, in a regression problem, we are

given a training set D of N training points (xn, tn), with

n = 1, ..., N , where the variables xn are the inputs, also

known as covariates, domain points, or explanatory variables;

while the variables tn are the outputs, also known as dependent

variables, labels, or responses. In regression, the outputs are

continuous variables. The problem is to predict the output t
for a new, that is, as of yet unobserved, input x.

As illustrated in Fig. 6, classification is similarly defined

with the only caveat that the outputs t are discrete variables

that take a finite number of possible values. The value of the

output t for a given input x indicates the class to which x
belongs. For instance, the label t is a binary variable as in Fig.

6 for a binary classification problem. Based on the training set

D, the goal is to predict the label, or the class, t for a new, as

of yet unobserved, input x.

To sum up, the goal of both regression and classification

is to derive from the training data set D a predictor t̂(x) that

generalizes the input-output mapping in D to inputs x that

are not present in D. As such, learning is markedly distinct

from memorizing: while memorizing would require producing
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TABLE I
EXAMPLES OF DATA AVAILABLE AT THE EDGE SEGMENT OF A COMMUNICATION NETWORK

Layer Data

Physical Baseband signals, channel state information

Medium Access Control/ Link Throughput, FER, random access load and latency

Network Location, traffic loads across services, users’ device types, battery levels

Application Users’ preferences, content demands, computing loads, QoS metrics

TABLE II
EXAMPLES OF DATA AVAILABLE AT THE CLOUD SEGMENT OF A COMMUNICATION NETWORK

Layer Data

Network Mobility patterns, network-wide traffic statistics, outage rates

Application User’s behaviour patterns, subscription information, service usage statistics, TCP/IP traffic statistics
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Fig. 5. Illustration of the supervised learning problem of regression: Given
input-output training examples (xn, tn), with n = 1, ...,N , how should we
predict the output t for an unobserved value of the input x?
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Fig. 6. Illustration of the supervised learning problem of classification: Given
input-output training examples (xn, tn), with n = 1, ...,N , how should we
predict the output t for an unobserved value of the input x?

a value tn for some recorded input xn in the training set,

learning is about generalization from the data set to the rest

of the relevant input space.

The problem of extrapolating a predictor from the training

set is evidently impossible unless one is willing to make some

assumption about the underlying input-output mapping. In

fact, the output t may well equal any value for an unobserved x
if nothing else is specified about the problem. This impossibil-

ity is formalized by the no free-lunch theorem: without making

assumptions about the relationship between input and output, it

is not possible to generalize the available observations outside

the training set [14]. The set of assumptions made in order to

enable learning are known as inductive bias. As an example,

for the regression problem in Fig. 5, a possible inductive bias

is to postulate that the input-output mapping is a polynomial

function of some order.

B. Defining Supervised Learning

Having introduced the goal of supervised learning, we now

provide a more formal definition of the problem. Throughout,

we use Roman font to denote random variables and the

corresponding letter in regular font for realizations.

As a starting point, we assume that the training set D is

generated as

(xn, tn) ∼
i.i.d.

p(x, t), n = 1, ..., N, (1)

that is, each training sample pair (xn, tn) is generated from

the same true joint distribution p(x, t) and the sample pairs

are independent identically distributed (i.i.d.). As discussed,

based on the training set D, we wish to obtain a predictor

t̂(x) that performs well on any possible relevant input x. This

requirement is formalized by imposing that the predictor is

accurate for any test pair (x, t) ∼ p(x, t), which is generated

independently of all the pairs in the training set D.

The quality of the prediction t̂(x) for a test pair (x, t) is

measured by a given loss function ℓ(t, t̂) as ℓ(t, t̂(x)). Typical

examples of loss functions include the quadratic loss ℓ(t, t̂) =
(t − t̂)2 for regression problems; and the error rate ℓ(t, t̂) =
1(t 6= t̂), which equals 1 when the prediction is incorrect, i.e.,

t 6= t̂, and 0 otherwise, for classification problems.

The formal goal of learning is that of minimizing the

average loss on the test pair, which is referred to as the
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generalization loss. For a given predictor t̂, this is defined

as

Lp(t̂) = E(x,t)∼p(x,t)[ℓ(t, t̂(x))]. (2)

The generalization loss (2) is averaged over the distribution of

the test pair (x, t).

Before moving on to the solution of the problem of minimiz-

ing the generalization loss, we mention that the formulation

provided here is only one, albeit arguably the most popular, of

a number of alternative formulations of supervised learning.

The frequentist framework described above is in fact comple-

mented by other viewpoints, including Bayesian and Minimum

Description Length (MDL) (see [19] and references therein).

C. When The True Distribution p(x, t) is Known: Inference

Consider first the case in which the true joint distribution

p(x, t) relating input and output is known. This scenario can

be considered as an idealization of the situation resulting from

the conventional engineering design flow when the available

physics-based model is accurate (see Sec. I). Under this

assumption, the data set D is not necessary, since the mapping

between input and output is fully described by the distribution

p(x, t).

If the true distribution p(x, t) is known, the problem of min-

imizing the generalization loss reduces to a standard inference

problem, i.e., an estimation problem in a regression set-up,

in which the outputs are continuous variables, or a detection

problem in a classification set-up, in which the outputs are

finite discrete variables.

In an inference problem, the optimal predictor t̂ can be

directly computed from the posterior distribution

p(t|x) =
p(x, t)

p(x)
, (3)

where p(x) is the marginal distribution of the input x. The

latter can be computed from the joint distribution p(x, t) by

summing or integrating out all the values of t. In fact, given

a loss function ℓ(t, t̂), the optimal predictor for any input x is

obtained as

t̂∗(x) = argmin
t̂

Et∼p(t|x)[ℓ(t, t̂)|x]. (4)

In words, the optimal predictor t̂∗(x) is obtained by identifying

the value (or values) of t that minimizes the average loss,

where the average is taken with respect to the posterior

distribution p(t|x) of the output given the input. Given that the

posterior p(t|x) yields the optimal predictor, it is also known

as the true predictive distribution.

The optimal predictor (4) can be explicitly evaluated for

given loss functions. For instance, for the quadratic loss, which

is typical for regression, the optimal predictor is given by the

mean of the predictive distribution, or the posterior mean, i.e.,

t̂∗(x) = Et∼p(t|x)[t|x], (5)

while, with the error rate loss, which is typical for classifica-

tion, problems, the optimal predictor is given by the maximum

of the predictive distribution, or the maximum a posteriori

(MAP) estimate, i.e.,

t̂∗(x) = argmax
t

p(t|x). (6)

For a numerical example, consider binary inputs and outputs

and the joint distribution p(x, t) such that p(0, 0) = 0.05,

p(0, 1) = 0.45, p(1, 0) = 0.4 and p(1, 1) = 0.1. The predictive

distribution for input x = 0 is then given as p(t = 1|x = 0) =
0.9, and hence we have the optimal predictor given by the

average t̂∗(x = 0) = 0.9× 1+0.1× 0 = 0.9 for the quadratic

loss, and by the MAP solution t̂∗(x = 0) = 1 for the error

rate loss.

D. When the True Distribution p(x, t) is Not Known: Machine

Learning

Consider now the case of interest in which domain knowl-

edge is not available and hence the true joint distribution is

unknown. In such a scenario, we have a learning problem and

we need to use the examples in the training set D in order to

obtain a meaningful predictor that approximately minimizes

the generalization loss. At a high level, the methodology

applied by machine learning follows three main steps, which

are described next.

1. Model selection (inductive bias): As a first step, one

needs to commit to a specific class of hypotheses that the

learning algorithm may choose from. The hypothesis class

is also referred to as model. The selection of the hypothesis

class characterizes the inductive bias mentioned above as a

pre-requisite for learning. In a probabilistic framework, the

hypothesis class, or model, is defined by a family of proba-

bility distributions parameterized by a vector θ. Specifically,

there are two main ways of specifying a parametric family of

distributions as a model for supervised learning:

• Generative model: Generative models specify a family of

joint distributions p(x, t|θ);
• Discriminative model: Discriminative models parameter-

ize directly the predictive distribution as p(t|x, θ).

Broadly speaking, discriminative models do not make any

assumptions about the distribution of the inputs x and hence

may be less prone to bias caused by a misspecification of the

hypothesis class. On the flip side, generative models may be

able to capture more of the structure present in the data and

consequently improve the performance of the predictor [29].

For both types of models, the hypothesis class is typically

selected from a common set of probability distributions that

lead to efficient learning algorithms in Step 2. Furthermore,

any available basic domain knowledge can be in principle

incorporated in the selection of the model (see also Sec. VII).

2. Learning: Given data D, in the learning step, a learning

criterion is optimized in order to obtain the parameter vector

θ and identify a distribution p(x, t|θ) or p(t|x, θ), depending

on whether a generative or discriminative model was selected

at Step 1.

3. Inference: In the inference step, the learned model is used

to obtain the predictor t̂(x) by using (4) with the learned model

in lieu of the true distribution. Note that generative models

require the calculation of the predictive distribution p(t|x) via



7

marginalization, while discriminative models provide directly

the predictive distribution. As mentioned, the predictor should

be evaluated on test data that is different from the training

set D. As we will discuss, the design cycle typically entails a

loop between validation of the predictor at Step 3 and model

selection at Step 1.

The next examples illustrate the three steps introduced

above for a binary classification problem.

Example 1: Consider a binary classification problem in

which the input is a generic D-dimensional vector x =
[x1, ..., xD]T and the output is binary, i.e., t ∈ {0, 1}. The

superscript “T ” represents transposition. In Step 1, we select

a model, that is, a parameterized family of distributions. A

common choice is given by logistic regression1, which is

a discriminative model whereby the predictive distribution

p(t|x, θ) is parameterized as illustrated in Fig. 7. The model

first computes D′ fixed features φ(x) = [φ1(x) · · · φD′(x)]T

of the input, where a feature is a function of the data. Then,

it computes the predictive probability as

p(t = 1|x,w) = σ(wTφ(x)), (7)

where w is the set of learnable weights – i.e., the parameter θ
defined above – and σ(a) = (1 + exp(−a))−1 is the sigmoid

function.

Under logistic regression, the probability that the label is

t = 1 increases as the linear combination of features becomes

more positive, and we have p(t = 1|x,w) > 0.5 for wTφ(x) >
0. Conversely, the probability that the label is t = 0 increases

as the linear combination of features becomes more negative,

with p(t = 0|x,w) > 0.5 for wTφ(x) < 0. As a specific

instance of this problem, if we wish to classify emails between

spam and non-spam ones, possible useful features may count

the number of times that certain suspicious words appear in

the text.

Step 2 amounts to the identification of the weight vector

w on the basis of the training set D with the ideal goal of

minimizing the generalization loss (2). This step will be further

discussed in the next subsection. Finally, in Step 3, the optimal

predictor is obtained by assuming that the learned model

p(t|x,w) is the true predictive distribution. Assuming an error

rate loss function, following the discussion in Sec. III-C, the

optimal predictor is given by the MAP choice t̂∗(x) = 1 if

wTφ(x) > 0 and t̂∗(x) = 0 otherwise. It is noted that the

linear combination wTφ(x) is also known as logit or log-

likelihood ratio (LLR). This rule can be seen to correspond

to a linear classifier [19]. The performance of the predictor

should be tested on new, test, input-output pairs, e.g., new

emails in the spam classification example. �

Example 2: Logistic regression requires to specify a suitable

vector of features φ(x). As seen in the email spam classifi-

cation example, this entails the availability of some domain

knowledge to be able to ascertain which functions of the

input x may be more relevant for the classification task at

hand. As discussed in Sec. I, this knowledge may not be

available due to, e.g., cost or time constraints. Multi-layer

1The term ”regression” may be confusing, since the model applies to
classification.

Fig. 7. An illustration of the hypothesis class p(t|x,w) assumed by logistic
regression using a neural network representation: functions φi, with i =
1, ...,D′, are fixed and compute features of the input vector x = [x1, ..., xD].
The learnable parameter vector θ here corresponds to the weights w used to
linearly combine the features in (7).

Fig. 8. An illustration of the hypothesis class p(t|x,w) assumed by multi-
layer neural networks. The learnable parameter vector θ here corresponds to
the weights wL used at the last layer to linearly combine the features φ(x)
and the weight matrices W 1, ...,WL−1 used at the preceding layers in order
to compute the feature vector.

neural networks provide an alternative model choice at Step 1

that obviates the need for hand-crafted features. The model is

illustrated in Fig. 8. Unlike linear regression, in a multi-layer

neural network, the feature vector φ(x) used by the last layer

to compute the logit, or LLR, that determines the predictive

probability (7) is not fixed a priori. Rather, the feature vector

is computed by the previous layers. To this end, each neuron,

represented as a circle in Fig. 8, computes a fixed non-linear

function, e.g., sigmoid, of a linear combination of the values

obtained from the previous layer. The weights of these linear

combinations are part of the learnable parameters θ, along

with the weights of the last layer. By allowing the weights

at all layers of the model to be trained simultaneously, multi-

layer neural networks enable the joint learning of the last-

layer linear classifier and of the features φ(x) the classifier

operates on. As a notable example, deep neural networks are

characterized by a large number of intermediate layers that

tend to learn increasingly abstract features of the input [7]. �

In the rest of this section, we first provide some technical

details about Step 2, i.e., learning, and then we return to Step

1, i.e., model selection. As it will be seen, this order is dictated

by the fact that model selection requires some understanding

of the learning process.

E. Learning

Ideally, a learning rule should obtain a predictor that min-

imizes the generalization error (2). However, as discussed in

Sec. III-C, this task is out of reach without knowledge of the

true joint distribution p(x, t). Therefore, alternative learning
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criteria need to be considered that rely on the training set D
rather than on the true distribution.

In the context of probabilistic models, the most basic

learning criterion is Maximum Likelihood (ML). ML selects a

value of θ in the parameterized family of models p(x, t|θ) or

p(t|x, θ) that is the most likely to have generated the observed

training set D. Mathematically, ML solves the problem of

maximizing the log-likelihood function

maximize ln p(D|θ) (8)

over θ, where p(D|θ) is the probability of the data set D for

a given value of θ. Given the assumption of i.i.d. data points

in D (see Sec. III-B), the log-likelihood can be written as

ln p(D|θ) =
N
∑

n=1

ln p(tn|xn, θ), (9)

where we have used as an example the case of discriminative

models. Note that most learning criteria used in practice can

be interpreted as ML problems, including the least squares

criterion – ML for Gaussian models – and cross-entropy –

ML for categorical models.

The ML problem (8) rarely has analytical solutions and is

typically addressed by Stochastic Gradient Descent (SGD).

Accordingly, at each iteration, subsets of examples, also

known as mini-batches, are selected from the training set, and

the parameter vector is updated in the direction of gradient

of the log-likelihood function as evaluated on these examples.

The resulting learning rule can be written as

θnew ← θold + γ∇θ ln p(tn|xn, θ)|θ=θold , (10)

where we have defined as γ > 0 the learning rate, and, for sim-

plicity of notation, we have considered a mini-batch given by a

single example (xn, tn). It is noted that, with multi-layer neu-

ral networks, the computation of the gradient∇θ ln p(tn|xn, θ)
yields the standard backpropagation algorithm [7], [19]. The

learning rate is an example of hyperparameters that define

the learning algorithm. Many variations of SGD have been

proposed that aim at improving convergence (see, e.g., [7],

[19]).

ML has evident drawbacks as an indirect means of mini-

mizing the generalization error. In fact, ML only considers the

fit of the probabilistic model on the training set without any

consideration for the performance on unobserved input-output

pairs. This weakness can be somewhat mitigated by regular-

ization [7], [19] during learning and by a proper selection of

the model via validation, as discussed in the next subsection.

Regularization adds a penalty term to the log-likelihood that

depends on the model parameters θ. The goal is to prevent

the learned model parameters θ to assume values that are a

priori too unlikely and that are hence possible symptoms of

overfitting. As an example, for logistic regression, one can add

a penalty that is proportional to the norm ||w||2 of the weight

vector w in order to prevent the weights to assume excessively

high values when fitting the data in the learning step.
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Fig. 9. Training set in Fig. 5, along with a predictor trained by using the
discriminative model (11) and ML for different values of the model order M .

F. Model Selection

We now discuss the first, key, step of model selection,

which defines the inductive bias adopted in the learning

process. In order to illustrate the main ideas, here we study

a particular aspect of model selection, namely that of model

order selection. To this end, we consider a hierarchical set of

models of increasing complexity and we address the problem

of selecting (in Step 1) the order, or the complexity, of the

specific model to be posited for learning (in Step 2). As

an example of model order selection, one may fix a set of

models including multi-layer networks of varying number of

intermediate layers and focus on determining the number of

layers. It is emphasized that the scope of model selection goes

much beyond model order selection, including the possible

incorporation of domain knowledge and the tuning of the

hyperparameters of the learning algorithm.

For concreteness, we focus on the regression problem

illustrated in Fig. 5 and assume a set of discriminative models

p(t|x,w) under which the output t is distributed as

M
∑

m=0

wmxm +N (0, 1). (11)

In words, the output t is given by a polynomial function of

order M of the input x plus zero-mean Gaussian noise of

power equal to one. The learnable parameter vector θ is given

by the weights w = [w0, ..., wM−1]
T . Model selection, to be

carried out in Step 1, amounts to the choice of the model order

M .

Having chosen M in Step 1, the weights w can be learned

in Step 2 using ML, and then the optimal predictor can be

obtained for inference in Step 3. Assuming the quadratic loss,

the optimal predictor is given by the posterior mean t̂(x) =
∑M

m=0 wmxm for the learned parameters w. This predictor is

plotted in Fig. 9 for different values of M , along with the

training set of Fig. 5.

With M = 1, the predictor t̂(x) is seen to underfit the

training data. This is in the sense that the model is not rich
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enough to capture the variations present in the training data,

and, as a result, we obtain a large training loss

LD(w) =
1

N

N
∑

n=1

(tn − t̂(xn))
2. (12)

The training loss measures the quality of the predictor defined

by weights w on the points in the training set. In contrast,

with M = 9, the predictor fits well the training data – so

much so that it appears to overfit it. In other words, the model

is too rich and, in order to account for the observations in the

training set, it appears to yield inaccurate predictions outside

it. As a compromise between underfitting and overfitting, the

selection M = 3 seems to be preferable.

As implied by the discussion above, underfitting can be

detected by observing solely the training data D via the

evaluation of the training loss (12). In contrast, overfitting

cannot be ascertained on the basis of the training data as it

refers to the performance of the predictor outside D. It follows

that model selection cannot be carried out by observing only

the training set. Rather, some information must be available

about the generalization performance of the predictor. This

is typically obtained by means of validation. In its simplest

instantiation, validation partitions the available data into two

sets, a training set D and a validation set. The training set

is used for learning as discussed in Sec. III-E, while the

validation set is used to estimate the generalization loss. This is

done by computing the average in (12) only over the validation

set. More sophisticated forms of validation exist, including

cross-validation [7].

Keeping some data aside for validation, one can obtain a

plot as in Fig. 10, where the training loss (12) is compared

with the generalization loss (2) estimated via validation. The

figure allows us to conclude that, when M is large enough,

the generalization loss starts increasing, indicating overfitting.

Note, in contrast, that underfitting is detectable by observing

the training loss. A figure such as Fig. 10 can be used to choose

a value of M that approximately minimizes the generalization

loss.

More generally, validation allows for model selection, as

well as for the selection of the parameters used by learning

the algorithm, such as the learning rate γ in (10). To this end,

one compares the generalization loss, estimated via validation,

for a number of models and then chooses the one with the

smallest estimated generalization loss.

Finally, it is important to remark that the performance of

the model selected via validation should be estimated on the

basis of a separate data set, typically called the test set. This

is because the generalization loss estimated using validation

is a biased estimate of the true generalization loss (2) due

to the process of model selection. In particular, the loss on

the validation set will tend to be small, since the model

was selected during validation with the aim of minimizing it.

Importantly, the test set should never be used during the three

steps that make up the machine learning methodology and

should ideally only be used once to test the trained predictor.
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Fig. 10. Training loss and generalization loss, estimated via validation, as a
function of the model order M for the example in Fig. 9.

IV. APPLICATIONS OF SUPERVISED LEARNING TO

COMMUNICATION SYSTEMS

In this section, we provide some pointers to existing applica-

tions of supervised learning to communication networks. The

discussion is organized by following the approach described in

Sec. II. Accordingly, we distinguish between tasks carried out

at edge and cloud (see Fig. 4), as well as at different layers

of the protocol stack. We refer to Table I and Table II for

examples of data types that may be available at the edge and

cloud segments.

A. At the Edge

Consider first tasks to be carried out at the edge, i.e., at the

base stations or at the associated edge computing platform.

1) Physical Layer: For the physical layer, we focus first on

the receiver side and then on the transmitter. At the receiver, a

central task that can potentially benefit from machine learning

is channel detection and decoding. This amounts to a multi-

class classification problem, in which the input x is given

by the received baseband signal and the output is the label

of the correct transmitted message (e.g., the transmitted bits)

[13], [30]. When can machine learning help? Recalling the

discussion in Sec. II, we should first ask whether a modelling

or algorithmic deficit exists. A model deficit may occur when

operating over channels that do not have well-established

mathematical models, such as for molecular communications

[31]. Algorithm deficit is more common, given that optimal

decoders over a number of well-established channel models

tend to be computationally complex. This is the case for

channels with strong non-linearities, as recognized as early

as the nineties in the context of satellite communication [2],

[32] and more recently for optical communications [33]; or for

modulation schemes such as continuous phase modulation [34]

– another work from the nineties – or in multi–user networks

[35].

Assuming that the problem at hand is characterized by a

modelling or algorithmic deficit, then one should also check

the remaining criteria listed in Sec. II, particularly those
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regarding the rate of change of the phenomenon under study

and the requirements in terms of performance guarantees. For

channel decoding, the presence of fast-varying channels may

make the first criterion hard to be satisfied in practice (unless

channel estimation is made part of the learning process);

while stringent reliability requirements may preclude the use

of machine learning in the presence of a model deficit.

As mentioned, a generally beneficial idea in the use of data-

aided methods is that of incorporating domain knowledge in

the definition of the hypothesis class. As notable examples

related to channel decoding, in [36], [37], knowledge of the

near-optimality of message passing methods for the decoding

of sparse graphical codes is used to set up a parameterized

model that borrows the message passing structure and that is

trained to decode more general codes. A related approach is

investigated in [38] for polar codes.

Another useful idea is that of directly integrating algorithms

designed using the standard engineering flow with trained

machines. Instances of this idea include [39] in which a

conventional channel decoder is deployed in tandem with a

channel equalizer at its input that is trained to compensate

for hardware impairments. A related approach is proposed in

[40], whereby a conventional decoder is implemented within

a turbo-like iterative loop with a machine learning-based

regressor that has the role of estimating the channel noise.

Other tasks that can potentially benefit from machine learn-

ing at the receiver’s side include modulation classification,

which is a classification problem justified by the complexity

of optimal solutions (algorithm deficit) [41]; localization,

which is a regression problem, typically motivated by the lack

of tractable channels for complex propagation environments

(model deficit) [42]; and channel state information-based

authentication, a classification problem made difficult by the

absence of well-established models relating channel features

with devices’ identities (model deficit) [43].

Turning to the transmitter side, most emerging applications

tackle the algorithmic deficit related to the complexity of the

non-convex programs that typically underlie power control and

precoding optimization for the downlink. Notably, in [44], a

training set is obtained by running a non-convex solver to

produce an optimized output power vector for given input

channels. Note that the approach does not directly optimize

the performance criterion of interest, such as the sum-rate.

Rather, it relies on the assumption that similar inputs – the

channel coefficients – generally yield similar optimal solutions

– the power allocation vector. if the analytical model available

based on domain knowledge is only a coarse approximation

of the physical model, the resulting training set can be used to

augment the data in order to carry out a preliminary training

of a machine learning model [45]2.

For an application at a full-duplex transceiver, we refer to

[47], which learns how to cancel self-interference in order

to overcome the lack of well-established models for the

transmitter-receiver chain of non-linearities.

2This can be thought of as an example of experience learning as part of
small-sample learning techniques [46].

2) Link and Medium Access Control Layers: At the

medium access control layer, we highlight some applications

of machine learning that tackle the lack of mathematical

models for complex access protocols and communication

environments. In [48], a mechanism is proposed to predict

whether a channel decoder will succeed on the basis of the

outputs of the first few iterations of the iterative decoding

process. This binary predictor is useful in order to request

an early retransmission at the link layer using Automatic Re-

transmission Request (ARQ) or Hybrid ARQ (HARQ) in order

to reduce latency. At the medium access control layer, data-

aided methods can instead be used to predict the availability of

spectrum in the presence of interfering incumbent devices with

complex activation patterns for cognitive radio applications

[49] (see also [50]). An approach that leverages depth images

to detect the availability of mmwave channels is proposed in

[51].

3) Network and Application Layers: A task that is particu-

larly well-suited for machine learning is the caching of popular

contents for reduced latency and network congestion [52].

Caching may take place at the edge and, more traditionally,

within the core network segment. Caching at the edge has the

advantage of catering directly to the preference of the local

population of users, but it generally suffers from a reduced hit

rate due to the smaller available storage capacity. Optimizing

the selection of contents to be stored at the edge can be

formulated as a classification problem that can benefit from a

data-driven approach in order to adapt to the specific features

of the local traffic [52].

B. At the Cloud

We now turn to some relevant tasks to be carried out at the

cloud at both network and application layers.

1) Network: The main task of the network layer is routing

(see [53] for further discussion). Considering a software-

defined networking implementation, routing requires the avail-

ability at a network controller of information regarding the

quality of individual communication links in the core network,

as well as regarding the status of the queues at the network

routers. In the presence of wireless or optical communications,

the quality of a link may not be available at the network

controller, but it may be predicted using available historical

data [33], [54] in the absence of agreed-upon dynamic avail-

ability models. In a similar manner, predicting congestion can

be framed as a data-aided classification problem [55].

2) Application: Finally, a relevant supervised learning task

is that of traffic classification, whereby data streams are clas-

sified on the basis of some extracted features, such as packet

sizes and inter-arrival times, in terms of their applications, e.g.,

Voice over IP. [56]

V. UNSUPERVISED LEARNING

As introduced in Sec. I, unlike supervised learning, un-

supervised learning tasks operate over unlabelled data sets

consisting solely of the inputs xn, with n = 1, ..., N , and the

general goal is that of discovering properties of the data. We

start this section by reviewing some of the typical specific
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unsupervised learning tasks. We then cover methodology,

models, and learning, including advanced methods such as

Generative Adversarial Networks (GANs) [7].

A. Goals and Definitions

In unsupervised learning, taking a frequentist formulation

(see Sec. III-A), we are given a training set D consisting of

N i.i.d. samples xn ∼ p(x) with n = 1, ..., N generated from

an unknown true distribution p(x). The high-level goal is that

of learning some useful properties of the distribution p(x).
More specifically, we can identify the following tasks.

• Density estimation: Density estimation aims at estimating

directly the distribution p(x). This may be useful, for

example, for use in plug-in estimators of information-

theoretic quantities, for the design of compression algo-

rithms, or to detect outliers;

• Clustering: Clustering aims at partitioning all points in

the data set D in groups of similar objects, where the

notion of similarity is domain-dependent;

• Dimensionality reduction, representation, and feature ex-

traction: These three related tasks represent each data

point xn in a different space, typically of lower dimen-

sionality, in order to highlight independent explanatory

factors and/or to ease visualization, interpretation, or the

implementation of successive tasks, e.g., classification;

• Generation of new samples: Given the data set D, we

wish to learn a machine that produces samples that

are approximately distributed according to p(x). As an

example, if the data set contains images of celebrities,

the idea is to produce plausible images of non-existent

celebrities. This can be useful, e.g., to produce artificial

scenes for video parameterizes or films.

As suggested by the variety of tasks listed above, unsu-

pervised learning does not have a formal unified formulation

as supervised learning. Nevertheless, the general methodology

follows three main steps in a manner similar to supervised

learning (see Sec. III-D). In Step 1 (model selection), a model,

or a hypothesis class, is selected, defining the inductive bias

of the learning process. This is done by positing a family of

probability distributions p(x|θ) parameterized by a vector θ.

In Step 2 (learning), the data D is used to optimize a learning

criterion with the aim of choosing a value for the parameter

vector θ. Finally, in Step 3, the trained model is leveraged in

order to carry out the task of interest, e.g., clustering or sample

generation.

In the following, we discuss Step 1 (model selection) and

Step 2 (learning). For the formulation of specific tasks to be

carried out at Step 3, we refer to, e.g., [7], [19], [57].

B. Models

Unsupervised learning models, selected at Step 1 of the

machine learning process, typically involve a hidden or latent

(vector of) variables zn for each data point xn. For example,

in a clustering problem, the latent variable zn represents the

cluster index of xn. Latent variables are hidden or unobserved

in the sense that they do not appear for any of the data

Fig. 11. Illustration of typical unsupervised learning models: (a) directed gen-
erative models; (b) undirected generative models; (c) discriminative models;
and (d) autoencoders.

points xn in D.3 The relationship between latent variables

zn and observable variables xn can be modelled in different

ways, giving rise to a number of different types of models

for unsupervised learning. These are illustrated in Fig. 11 and

discussed next.

By way of a short round-up of types of models, with

reference to Fig. 11, directed generative models, illustrated

by Fig. 11(a), posit that there exist hidden causes z yielding

the observation x. Undirected generative models, represented

in Fig. 11(b) model the mutual correlation between x and

z. Discriminative models, illustrated by Fig. 11(c) model

the extraction of the latent representation z from x. Finally,

autoencoders, represented in Fig. 11(d) assume that x is

encoded into a latent representation z in such as way that x
can then be approximately recovered from z. In the following,

we provide some additional details about directed generative

models and autoencoders, and we point to [19] and references

therein for a discussion about the remaining models.

As illustrated in Fig. 11(a), directed generative models

assume that each data point x is caused4 by a hidden variable

z. This is in the sense that the joint distribution p(x, z|θ) is

parameterized as p(x, z|θ) = p(z|θ)p(x|z, θ), where p(z|θ)
is the distribution of the hidden cause and p(x|z, θ) is the

conditional distribution of the data x given the cause z. As a

result, under a directed generative model, the distribution of

an observation x = x can be written as

p(x|θ) =
∑

z

p(z|θ)p(x|z, θ) = Ez∼p(z|θ)[ln p(x|z, θ)], (13)

where the sum in the second term should be replaced by

an integration for continuous hidden variables, and the last

equality expresses the marginalization over z as an expectation.

As an example, for the problem of document clustering,

variable x represents a document in the training set and z is

3Problems in which some of the inputs in D are labelled by a value zn
are filed under the rubric of semi-supervised learning [29].

4The use of the term “cause” is meant to be taken in an intuitive, rather
than formal, way. For a discussion on the study of causality, we refer to [8].



12

interpreted as a latent topic that “causes” the generation of

the document. Model selection requires the specification of a

parameterized distribution p(z|θ) over the topics, e.g., a cate-

gorical distribution with parameters equals to the probability

of each possible value, and the distribution p(x|z, θ) of the

document given a topic. Basic representatives of directed gen-

erative models include mixture of Gaussians and likelihood-

free models [19], [58].

As represented in Fig. 11(d), autoencoders model encoding

from data x to hidden variables z, as well as decoding from

hidden variables back to data. Accordingly, model selection

for autoencoders requires the specification of a parameterized

family of encoders p(z|x, θ) and decoders p(x|z, θ). As an

example, autoencoders can be used to learn how to compress

an input signal x into a representation z in a smaller space

so as to ensure that x can be recovered from z within an

admissible level of distortion. Representatives of autoencoders,

which correspond to specific choices for the encoder and

decoder families of distributions, include Principal Component

Analysis (PCA), dictionary learning, and neural network-based

autoencoders [19], [57], [58].

C. Learning

We now discuss learning, to be carried out as Step 2. For

brevity, we focus on directed generative models and refer to

[19] and references therein for a treatment of learning for

the other models in Fig. 11. In this regard, we note that the

problem of training autoencoders is akin to supervised learning

in the sense that autoencoders specify the desired output for

each input in the training set.

As for supervised learning, the most basic learning criterion

for probabilistic models is ML. Following the discussion in

Sec. III-E, ML tackles the problem of maximizing the log-

likelihood of the data, i.e.,

maximize
θ

ln p(x|θ) = lnEz∼p(z|θ)[ln p(x|z, θ)]. (14)

Note that problem (14) considers only one data point x in the

data set for the purpose of simplifying the notation, but in

practice the log-likelihood needs to be summed over the N
examples in D.

Unlike the corresponding problem for supervised learning

(8), the likelihood in (14) requires an average over the hidden

variables. This is because the value of the hidden variables

z is not known, and hence the probability of the observation

x needs to account for all possible values of z weighted by

their probabilities p(z|θ). This creates a number of technical

challenges. First, the objective in (14) is generally more com-

plex to optimize, since the average over z destroys the typical

structure of the model p(x|z, θ), whose logarithm is often

selected as a tractable function (see, e.g., logistic regression).

Second, the average in (14) cannot be directly approximated

using Monte Carlo methods if the goal is to optimize over

the model parameters θ, given that the distribution p(z|θ)
generally depends on θ itself.

To tackle these issues, a standard approach is based on

the introduction of a variational distribution q(z) over the

hidden variables and on the optimization of a tractable lower
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Fig. 12. The ELBO (15) is a global lower bound on the log-likelihood that
is tight at values of the model parameters θ0 for which equality (17) holds.

bound on the log-likelihood known as the Evidence Lower

BOund (ELBO). To elaborate, for any fixed value x and any

distribution q(z) on the latent variables z (possibly dependent

on x), the ELBO L(q, θ) is defined as

L(q, θ) = Ez∼q(z)[ln p(x|z, θ)]−KL(q(z)||p(z|θ)), (15)

where KL(q||p) = Ez∼q(z)[ln(q(z)/p(z))] is the Kullback-

Leibler (KL) divergence. The latter is a measure of the distance

between the two distributions, as we will further discuss in

Sec. V-D (see [59], [60]). The analytical advantages of the

ELBO L(q, θ) over the original log-likelihood are that: (i) it

entails an expectation of the logarithm of the model p(x|z, θ),
which, as mentioned, is typically a tractable function; and (ii)

the average is over a fixed distribution q(z), which does not

depend on the model parameter θ.

Using Jensen’s inequality, it can be seen that the ELBO (15)

is a global lower bound on the log-likelihood function, that is,

ln p(x|θ) ≥ L(q, θ). (16)

An illustration of the lower bounding property of the ELBO

can be found in Fig. 12. An important feature of this inequality

is that the ELBO “touches” the log-likelihood function at

values θ0, if any, for which the distribution q(z) satisfies the

equality

q(z) = p(z|x, θ0). (17)

In words, the ELBO is tight if the variational distribution

is selected to equal the posterior distribution of the hidden

variables given the observation x under the model parameter

θ0. Stated less formally, in order to ensure that the ELBO is

tight at a value θ0, one needs to solve the problem of inferring

the distribution of the hidden variables z given the observation

x under the model identified by the value θ0.

The property (16) leads to the natural idea of the

Expectation-Maximization (EM) algorithm as a means to

tackle the ML problem. As illustrated in Fig. 13, EM maxi-

mizes the ELBO iteratively, where the ELBO at each iteration

is computed to be tight at the current iterate for θ. More
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Fig. 13. Illustration of the EM algorithm: At each iteration, a tight ELBO
is evaluated in the E step by solving the problem of estimating the latent
variables (via the posterior distribution p(z|x, θ)), and then the ELBO is
maximized in the M step by solving a problem akin to supervised learning
with the estimated latent variables.

formally, the EM algorithm can be summarized as follows5.

The model vector is initialized to some value θold and then for

each iteration the following two steps are performed.

• Expectation, or E, step: For fixed parameter vector θold,

solve the problem

maximize
q

L(q, θold). (18)

The solution of this problem is given by qnew(z) =
p(z|x, θold). In fact, as discussed, the tightest (i.e., largest)

value of the ELBO is obtained by choosing the variational

distribution q(z) as the posterior of the latent variables

under the current model θold. This step can be interpreted

as estimating the latent variables z, via the predictive

distribution p(z|x, θold), assuming that the current model

θold is correct.

• Maximization, or M, step: For fixed variational distribu-

tion qnew(z), solve the problem

maximize
θ

L(qnew, θ) = Ez∼qnew(z) [ln p(x, z|θ)] . (19)

This optimization is akin to that carried out in the corre-

sponding supervised learning problem with known latent

variables z with the difference that these are randomly

selected from the fixed variational distribution qnew(z)
obtained in the E step.

Given that the EM algorithm maximizes at each step a

lower bound on the log-likelihood that is tight at the current

iterate θold, EM guarantees decreasing objective values along

the iterations, which ensures convergence to a local optimum

of the original problem. We refer to [57], [58] for detailed

examples.

The EM algorithm is generally impractical for large-scale

problems due to the complexity of computing the posterior

of the latent variables in the E step and of averaging over

such distribution in the M step. Many state-of-the-art solutions

5EM is an instance of the more general Majorization-Minimization algo-
rithm [61].
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Fig. 14. Illustration of the limitations of ML unsupervised learning, here
obtained via the EM algorithm: The ML solution tends to be blurry, missing
the modes of the true distribution p(x).

to the problem of unsupervised learning with probabilistic

models entail some approximation of the EM algorithm.

Notably, the E step can be approximated by parametrizing the

variational distribution with some function q(z|ϕ), or q(z|x, ϕ)
to include the dependence on x, and by maximizing ELBO

over the variational parameters ϕ. This approach underlies the

popular variational autoencoder technique [7]. In the M step,

instead, one can approximate the expectation in (19) using

Monte Carlo stochastic approximation based on randomly

sampled values of z from the current distribution q(z). Finally,

gradient descent can be used to carry out the mentioned

optimizations for both E and M steps (see, e.g., [62]).

D. Advanced Learning Methods

As discussed in the previous section, ML is generally

prone to overfitting for supervised learning. For unsupervised

learning, the performance of ML depends on the task of

interest. For example, consider the tasks of density estimation

or of generation of new samples (see Sec. V-A). In order to

illustrate some of the typical issues encountered when applying

the ML criterion, in Fig. 14 we report a numerical result for a

problem in which the true data distribution p(x) is multi-modal

and the model distribution p(x|θ) is assumed to be a mixture of

Gaussians, i.e., a directed generative model. The ML problem

is tackled by using EM based on samples generated from the

true distribution (see [19] for details). The learned distribution

is seen to be a rather“blurry” estimate that misses the modes

of p(x) in an attempt of being inclusive of the full support of

p(x). Being a poor estimate of the true distribution, the learned

model can clearly also be problematic for sample generation

in the sense that samples generated from the model would

tend to be quite different from the data samples. In the rest

of this section, we briefly review advanced learning methods

that address this limitation of ML.

In order to move beyond ML, we first observe that ML can

be proven to minimize the KL divergence

KL(pD(x)||p(x|θ)) = Ez∼pD(x)

[

ln
pD(x)

p(x|θ)

]

(20)
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between the empirical distribution, or histogram, of the data

pD(x) =
N [x]

N
, (21)

where N [x] counts the number of occurrences of value x
in the data, and the parameterized model distribution p(x|θ).
In other words, ML fits the model to the histogram of the

data by using the KL divergence as a measure of fitness.

Indeed, as mentioned in Sec. V-C, the KL divergence is a

quantitative measure of “difference” between two distributions.

More precisely, as per (20), the KL divergence KL(p||q)
quantifies the difference between two distributions p(x) and

q(x) by evaluating the average of the LLR ln(p(x)/q(x)) with

respect to p(x).

Consider now the problem illustrated in Fig. 15, in which a

discriminator wishes to distinguish between two hypotheses,

namely the hypothesis that the data x is a sample from

distribution p(x) and the hypothesis that it is instead generated

from q(x). To fix the ideas, one can focus as an example on

the case where p(x) and q(x) are two Gaussian distributions

with different means. To this end, the discriminator computes

a statistic, that is, a function, T (x) of the data x, and then

decides for the former hypothesis if T (x) is sufficiently large

and for the latter hypothesis otherwise. Intuitively, one should

expect that, the more distinct the two distributions p(x) and

q(x) are, the easier it is to design a discriminator that is able

to choose the correct hypothesis with high probability.

The connection between the hypothesis testing problem in

Fig. 15 and the KL divergence becomes evident if one recalls

that the LLR ln(p(x)/q(x)) is known to be the best statistic

T (x) in the Neyman-Pearson sense [63]. The KL divergence

is hence associated to a particular way of evaluating the per-

formance of the discriminator between the two distributions.

Considering a broader formulation of the problem of designing

the discriminator in Fig. 15, one can generalize the notion of

KL divergence to the class of f -divergences. These are defined

as

Df (p||q) = max
T (x)

Ex∼p(x)[T (x)]− Ex∼q(x)[g(T (x))], (22)

for some concave increasing function g(·). The expression

above can be interpreted as measuring the performance of

the best discriminator T (x) when the design criterion is

given by the right-hand side of (22), i.e., Ex∼p(x)[T (x)] −
Ex∼q(x)[g(T (x))], for a given function g(·). Note that this

criterion is indeed larger for a discriminator that is able to

output a large value of the statistic T (x) under p(x) and a

small value under q(x). The KL divergence corresponds to a

specific choice of such function (see [19] for details).

In order to move beyond ML, one can then consider

fitting the model distribution to the data histogram by using

a divergence measure that is tailored to the data and that

captures the features of the empirical distribution that are most

relevant for a given application. Such a divergence measure

can be obtained by choosing a suitable function g(·) in (22)

and by optimizing (22) over a parameterized (differentiable)

discriminator function Tϕ(x). Integrating the evaluation of the

discriminator

Fig. 15. Discriminator between the hypotheses x ∼ p(x) and x ∼ q(x) based
on the statistic T (x). The performance of the optimal discriminator function
T (x) under different design criteria yields a measure of the difference between
the two distributions.

divergence with the problem of learning the model parameters

yields the min-max problem

min
θ

max
ϕ

Ex∼pD(x)[Tϕ(x)]− Ex∼p(x|θ)[g(Tϕ(x))]. (23)

This can be famously interpreted as a game between the

learner, which optimizes the model parameters θ, and the

discriminator, which tries to find the best function Tϕ(x) to

distinguish between data and generated samples. The result-

ing method, known as GAN, has recently led to impressive

improvements of ML for sample generation [64].

VI. APPLICATIONS OF UNSUPERVISED LEARNING TO

COMMUNICATION SYSTEMS

In this section, we highlight some applications of unsuper-

vised learning to communication networks.

A. At the Edge

1) Physical Layer: Let us first consider some applications

of autoencoders at the physical layer as implemented by the

network edge nodes. A fundamental idea is to treat the chain

of encoder, channel, and decoder in a communication link

as an autoencoder, where, with reference to Fig. 11(d), the

input message is x, the transmitted codewords and received

signals represent the intermediate representation z, and the

output of the decoder should match the input [30]. Note that,

for this particular autoencoder, the mapping p(x|z) can only

be partially learned, as it includes not only the encoder but also

the communication channel, while the conditional distribution

p(x|z) defining the decoder can be learned. We should now ask

when this viewpoint can be beneficial in light of the criteria

reviewed in Sec. I-C.

To address this question, one should check whether a model

or algorithm deficit exists to justify the use of machine learning

tools. Training an autoencoder requires the availability of a

model for the channel, and hence a model deficit would make

this approach inapplicable unless further mechanisms are put

in place (see below). Examples of algorithm deficit include

channels with complex non-linear dynamical models, such

as optical links [65]; Gaussian channels with feedback, for

which optimal practical encoding schemes are not known [66];

multiple access channels with sparse transmission codes [67];

and joint source-channel coding [68].

Other applications at the physical layer leverage the use of

autoencoders as compressors (see Sec. V-B) or denoisers. For

channels with a complex structure with unavailable channel
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models or with unknown optimal compression algorithms, au-

toencoders can be used to compress channel state information

for the purpose of feedback on frequency-division duplex links

[69]. Autoencoders can also be used for their capacity to

denoise the input signal by means of filtering through the lower

dimensional representation z. This is done in [70] for the task

of localization on the basis of the received baseband signal. To

this end, an autoencoder is learned for every reference position

in space with the objective of denoising signals received from

the given location. At test time, the location that corresponds

to the autoencoder with the smallest reconstruction error is

taken as an estimate of the unknown transmitting device.

We now review some applications of the generative models

illustrated in Fig. 11(a). A natural idea is that of using

generative models to learn how to generate samples from a

given channel [71], [72]. This approach is sound for scenarios

that lack tractable channel models. As a pertinent example,

generative models can be used to mimic and identify non-

linear channels for satellite communications [2]. The early

works on the subject carried out in the nineties are also notable

for the integration of the domain knowledge into the definition

of machine learning models (see Sec. IV). In fact, mindful of

the strong linear components of the channels, these works posit

a learnable model that includes linear filters and non-linearities

[2].

Another approach that can be considered as unsupervised

was proposed in [73] in order to solve the challenging problem

of power control for interference channels. The approach

tackles the resulting algorithm deficit by means of a direct

optimization of the sum-rate with the aim of obtaining the

power allocation vector (as fractions of the maximal available

powers) at the output of a neural network. Related supervised

learning methods were discussed in Sec. IV. A similar ap-

proach – also based on the idea of directly maximizing the

criterion of interest so as to obtain an approximate solution at

the output of a neural network – was considered in [74] for

minimum mean squared error channel estimation with non-

Gaussian channels, e.g., multi-path channels.

2) Medium Access Layer: At the medium access layer,

generative models have been advocated in [75] as a way to

generate new examples so as to augment a data set used

to train a classifier for spectrum sensing (see Sec. IV). An

unsupervised learning task that has found many applications in

communications is clustering. For example, in [76], clustering

is used to support radio resource allocation in a heterogeneous

network.

B. At the Cloud

1) Network Layer: Another typical application of cluster-

ing is to enable hierarchical clustering for routing in self-

organizing multi-hop networks. Thanks to clustering, routing

can be carried out more efficiently by routing first at the level

of clusters, and then locally within each cluster [77]. For

an application of the unsupervised learning task of density

estimation, consider the problem of detecting anomalies in

networks. For instance, by learning the typical distribution of

the features of a working link, one can identify malfunctioning

ones. This approach may be applied, e.g., to optical networks

[54].

2) Application Layer: Finally, we point to two instances of

unsupervised learning at the application layer that are usually

carried out at data centers in the cloud. These tasks follow

a conceptually different approach as they are based on dis-

covering structure in graphs. The first problem is community

detection in social networks. This amounts to a clustering

problem whereby one wishes to isolate communities of nodes

in a social graph on the basis of the observation of a realization

of the underlying true graph of relationships [78]. Another

application is the ranking of webpages based on the graph of

hyperlinks carried out by PageRank [19], [79].

VII. CONCLUDING REMARKS

In the presence of modelling or algorithmic deficiencies in

the conventional engineering flow based on the acquisition

of domain knowledge, data-driven machine learning tools

can speed up the design cycle, reduce the complexity and

cost of implementation, and improve over the performance

of known algorithms. To this end, machine learning can

leverage the availability of data and computing resources in

many engineering domains, including modern communication

systems. Supervised, unsupervised, and reinforcement learning

paradigms lend themselves to different tasks depending on the

availability of examples of desired behaviour or of feedback.

The applicability of learning methods hinges on specific fea-

tures of the problem under study, including its time variability

and its tolerance to errors. As such, a data-driven approach

should not be considered as a universal solution, but rather as

a useful tool whose suitability should be assessed on a case-by-

case basis. Furthermore, machine learning tools allow for the

integration of traditional model-based engineering techniques

and of existing domain knowledge in order to leverage the

complementarity and synergy of the two solutions (see Fig.

2).

As a final note, while this paper has focused on applications

of machine learning to communication systems, communi-

cation is conversely a key element of distributed machine

learning platforms. In these systems, learning tasks are car-

ried out at distributed machines that need to coordinate via

communication, e.g., by transferring the results of intermediate

computations. A recent line of work investigates the resulting

interplay between computation and communication [80].
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bile channels with neural network techniques,” Space Communications,
vol. 15, no. 4, pp. 209–220, 1998.

[33] Y. Wang, M. Martonosi, and L.-S. Peh, “A supervised learning approach
for routing optimizations in wireless sensor networks,” in Proc. Int.
Workshop on Multi-hop ad hoc Networks. ACM, 2006, pp. 79–86.

[34] G. De Veciana and A. Zakhor, “Neural net-based continuous phase
modulation receivers,” IEEE Transactions on Communications, vol. 40,
no. 8, pp. 1396–1408, 1992.

[35] X. Jin and H.-N. Kim, “Deep Learning Detection Networks in MIMO
Decode-Forward Relay Channels,” ArXiv e-prints, Jul. 2018.

[36] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and
Y. Be’ery, “Deep learning methods for improved decoding of linear
codes,” IEEE Journal of Selected Topics in Signal Processing, vol. 12,
no. 1, pp. 119–131, 2018.

[37] L. Lugosch and W. J. Gross, “Neural offset min-sum decoding,” in IEEE
int. Symp. Information Theory (ISIT 2017). IEEE, 2017, pp. 1361–1365.

[38] S. Cammerer, T. Gruber, J. Hoydis, and S. ten Brink, “Scaling deep
learning-based decoding of polar codes via partitioning,” in IEEE

GLOBECOM 2017, 2017, pp. 1–6.
[39] S. Schibisch, S. Cammerer, S. Dörner, J. Hoydis, and S. t. Brink, “Online

label recovery for deep learning-based communication through error
correcting codes,” arXiv preprint arXiv:1807.00747, 2018.

[40] F. Liang, C. Shen, and F. Wu, “An iterative bp-cnn architecture for chan-
nel decoding,” IEEE Journal of Selected Topics in Signal Processing,
vol. 12, no. 1, pp. 144–159, Feb 2018.

[41] H. Agirman-Tosun, Y. Liu, A. M. Haimovich, O. Simeone, W. Su,
J. Dabin, and E. Kanterakis, “Modulation classification of mimo-
ofdm signals by independent component analysis and support vector
machines,” in Proc. ASILOMAR 2011, 2011, pp. 1903–1907.

[42] S.-H. Fang and T.-N. Lin, “Indoor location system based on
discriminant-adaptive neural network in ieee 802.11 environments,”
IEEE Transactions on Neural networks, vol. 19, no. 11, pp. 1973–1978,
2008.

[43] Q. Wang, H. Li, Z. Chen, D. Zhao, S. Ye, and J. Cai, “Supervised and
Semi-Supervised Deep Neural Networks for CSI-Based Authentication,”
ArXiv e-prints, Jul. 2018.

[44] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
“Learning to optimize: Training deep neural networks for wireless
resource management,” in IEEE Signal Processing Advances in Wireless

Communications (SPAWC) 2017, 2017, pp. 1–6.
[45] A. Zappone, M. Di Renzo, M. Debbah, T. T. Lam, and X. Qian, “Model-

Aided Wireless Artificial Intelligence: Embedding Expert Knowledge in
Deep Neural Networks Towards Wireless Systems Optimization,” ArXiv
e-prints, Aug. 2018.

[46] J. Shu, Z. Xu, and D. Meng, “Small Sample Learning in Big Data Era,”
ArXiv e-prints, Aug. 2018.

[47] A. Balatsoukas-Stimming, “Non-linear digital self-interference cancella-
tion for in-band full-duplex radios using neural networks,” arXiv preprint

arXiv:1711.00379, 2017.
[48] N. Strodthoff, B. Göktepe, T. Schierl, C. Hellge, and W. Samek,

“Enhanced Machine Learning Techniques for Early HARQ Feedback
Prediction in 5G,” ArXiv e-prints, Jul. 2018.

[49] V. K. Tumuluru, P. Wang, and D. Niyato, “A neural network based
spectrum prediction scheme for cognitive radio,” in IEEE International
Conference on Communications (ICC 2010), 2010, pp. 1–5.

[50] D. Del Testa, M. Danieletto, G. M. Di Nunzio, and M. Zorzi, “Estimating
the number of receiving nodes in 802.11 networks via machine learning
techniques,” in IEEE Global Communications Conference (GLOBE-
COM), 2016, pp. 1–7.

[51] H. Okamoto, T. Nishio, K. Nakashima, Y. Koda, K. Yamamoto,
M. Morikura, Y. Asai, and R. Miyatake, “Machine-learning-based future
received signal strength prediction using depth images for mmwave
communications,” arXiv preprint arXiv:1803.09698, 2018.

[52] M. Chen, W. Saad, C. Yin, and M. Debbah, “Echo state networks for
proactive caching in cloud-based radio access networks with mobile
users,” IEEE Transactions on Wireless Communications, vol. 16, no. 6,
pp. 3520–3535, 2017.

[53] M. Zorzi, A. Zanella, A. Testolin, M. D. F. De Grazia, and M. Zorzi,
“Cognition-based networks: A new perspective on network optimization
using learning and distributed intelligence,” IEEE Access, vol. 3, pp.
1512–1530, 2015.

[54] F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini,
and M. Tornatore, “A survey on application of machine learning tech-
niques in optical networks,” arXiv preprint arXiv:1803.07976, 2018.

[55] F. Tang, B. Mao, Z. M. Fadlullah, N. Kato, O. Akashi, T. Inoue,
and K. Mizutani, “On removing routing protocol from future wireless
networks: A real-time deep learning approach for intelligent traffic
control,” IEEE Wireless Communications, vol. 25, no. 1, pp. 154–160,
2018.



17

[56] T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” IEEE Communications
Surveys & Tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[57] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[58] K. P. Murphy, Machine learning: a probabilistic perspective. MIT
press, 2012.

[59] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley & Sons, 2012.

[60] O. Simeone, “Introducing information measures via inference [lecture
notes],” IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 167–171,
2018.

[61] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algo-
rithms in signal processing, communications, and machine learning,”
IEEE Transactions on Signal Processing, vol. 65, no. 3, pp. 794–816,
2017.

[62] A. Mnih and K. Gregor, “Neural variational inference and learning in
belief networks,” arXiv preprint arXiv:1402.0030, 2014.

[63] H. V. Poor, An introduction to signal detection and estimation. Springer
Science & Business Media, 2013.

[64] I. Goodfellow, “NIPS 2016 tutorial: Generative adversarial networks,”
arXiv preprint arXiv:1701.00160, 2016.

[65] B. Karanov, M. Chagnon, F. Thouin, T. A. Eriksson, H. Bülow, D. Lav-
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