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I. INTRODUCTION

C
YBER-PHYSICAL systems (CPSs) are smart systems

that include engineered interacting networks of physi-

cal and computational components [1]. The comprehensively

interconnected and integrated systems contribute new func-

tionalities to enable technological development in critical in-

frastructures, such as electric power systems, water networks,

transportation, home automation, and health care. A CPS en-

compasses complex systems of control, awareness, computing,

and communication. The complexity and heterogeneity have

indicated the potential challenges to the security and resilience
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of CPSs. The interconnection of bulk physical layer compo-

nents is challenging the protection against inherent physical

vulnerabilities therein. On the other hand, cyber-integration,

which relies on network communication and the internet of

things (IoT) based devices, requires extraordinary investments

in security designs and upgrades against unanticipated threats

from cyberspace [2]. A cyber-physical attack is defined as a

security breach in cyberspace that adversely affects the phys-

ical space of a CPS. [3]. Cyber-physical attacks compromise

the confidentiality, integrity, and availability of information

by coupling cyber and physical spaces in a CPS. In the past

decades, several noteworthy cyber-physical attacks have been

reported in the industry, facilitating synergistic efforts from

industry practitioners and research communities towards a

new CPS security era [4]. The first proclaimed cyber-physical

attack dated back to 1982 in the Siberian wilderness, where

attackers manipulated the pipeline control software, which led

the valves’ control to misbehave, resulting in severe crossing

of pressure limits and eventually a massive explosion [5].

In 2003, the Slammer worm invaded the control system of

the David-Besse nuclear plant in Ohio through a contractor’s

network, which disabled the supervisory system for 5 hours

[6]. In June 2010, a cyber worm dubbed Stuxnet struck the

Iranian nuclear fuel enrichment plant by utilizing four zero-

day vulnerabilities and digitally signed certificates to bypass

intrusion detection. The targets were the programmable logic

controllers in the supervisory control and data acquisition

(SCADA) system [7]. The Stuxnet maliciously alternated the

frequency of electrical current powering the centrifuges and

then switched them between high and low speeds at intervals

for which the machines were not designed [8]. In December

2015, a coordinated cyberattack compromised three Ukrainian

electric power distribution companies. Thirty substations suf-

fered blackout for about three hours, resulting in wide-area

power outages affecting approximately 225,000 customers.

BlackEnergy3 malware was used to steal the authorized users’

virtual private network credentials, and a telephonic denial-

of-service (DoS) attack was executed to frustrate reports of

outages [9].

The smart grid landscape, arguably one of the most com-

plex CPSs in history, is undergoing a radical transformation.

Particularly, increased renewable energy resources, demand

diversification, and integration of information and commu-

nication technologies (ICTs) [10]. The cyber-physical smart

grid (CPSG) that has organized a universal cyberinfrastructure

interwoven with the bulk physical systems is susceptible to

cyber-physical attacks. A wide variety of motivations exist
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Fig. 1: Illustration of cyber-physical attacks on smart grid. This paper focuses on reviewing attacks that target either the EMS

within the control center or physical devices in the field. Defense mechanisms against those attacks are also discussed.

for launching such an attack in the smart grid, ranging

from economic reasons, to terrorism, to a grudge (a dis-

gruntled employee [11]). A large body of recent work has

been dedicated to addressing the cyber-physical security of

smart grids, with many warnings becomes prominent [12]–

[15] and new vulnerabilities are continuously unveiled [16].

Regarding cyber and physical security, neither of them alone

can provide broad solutions without incorporating the other.

In this regard, the investigations of the cyber-physical attacks

and the developments of effective defense strategies are still

incomprehensive. Thereby, it has become paramount to keep

up with the latest progress along the research frontier of smart

grid security, especially from a joint perspective of cyber and

physical security.

This paper tries to bridge this gap by providing a compre-

hensive review of cyber-physical threat models and defense

mechanisms. Over the last five years, several survey and

review papers on the cyber-physical security of the smart grid

have been published. Table I lists a comparison between this

paper and other works in terms of the publication year, smart

grid models, attack taxonomy, technological focus, challenges

and opportunities, and the review scope.

The contributions of this paper, as illustrated in Table 1,

are four-fold. First, a discrete-time nonlinear time-invariant

system is proposed to represent a CPSG by using the state-

space representation. Such a high-level abstraction is a useful

strategy to form the foundation and generalize a defense

analysis across all attack types. Second, the state-of-the-

art cyber-physical attack models are summarized based on

the proposed abstraction and categorized according to the

control-feedback loop segment each attack involves. This new

taxonomy provides the grid operator with intuitive situational

awareness on how to enhance the system’s cyber-physical

security. Third, cyber-physical security of the smart grid is

an extremely hot research topic, and a lot of good works have

been published every year. Therefore, it is a much needed

effort to keep up with the progress and furnish a concise

summary and a clear categorization for readers to understand

the current state-of-the-art. In order to provide a timely review,

this paper surveys the most recent publications, including 78 in

the last five years (i.e., 2016-2020) 49 of which were published

in the past three years (i.e., 2018-2020). A thorough review

of the cutting-edge defense approaches such as data-driven

machine learning, moving target defense, and watermarking

is provided. Finally, the challenges and opportunities of future

CPSGs are discussed, which may shed light on cyber-physical

security issues that the next-generation smart grid needs to

tackle.

The remainder of this paper is organized as follows. The

unified cyber-physical security model of the smart grid is

proposed in Section II. The current state-of-the-art in attack

models and defense mechanisms are surveyed in Sections III

and IV, respectively. The challenges and opportunities with

respect to the cyber-physical security of the smart grid are

discussed in Section V. The concluding remarks are drawn in

Section VI.

II. SMART GRID CYBER-PHYSICAL SECURITY

A. State-space representation of power grid control model

A CPSG is a monolithic system with electricity genera-

tion, transmission, and distribution sectors [27]. The physical

systems are interconnected through transmission lines and

substations deployed in the field. The integration and coordina-

tion of heterogeneous components require reliable capabilities

on information, computation, and communication. These re-

quirements rely on a ubiquitous cyberinfrastructure interwoven

with the physical systems. Measurements and commands are

constantly generated and transmitted through communication

channels. A CPSG consists of physical devices, actuators,

sensors, communication channels, and a centralized control

center equipped with a state estimator, a bad data detector,

and an energy management system (EMS), as shown in Fig.

1.

We describe the CPSG as a discrete-time nonlinear time-

invariant system by using a state-space representation as

follows:

xt+1 = A(xt) +B (ut) + wt (1)
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TABLE I: A Comparison of Related Literature

Ref.-Yr CPSG model Taxonomy Attack types

Challenge

and

opportunity

Scope (attack

or defense)
Technological focus

[17]-2015
Conceptual

model
N/A DoS Yes

Both attack
and defense

Informational

[18]-2015
Conceptual

model

Layers (physical,
MAC, network,

application)
CIA triad attacks Yes Attack only

Both informational
and operational

[19]-2016 N/A CPSG components CIA triad attacks No Attack only Informational

[20]-2016 Abstract model
Security objectives

(Confidentiality,
integrity, availability)

CIA triad attacks No
Both attack
and defense

Both informational
and operational

[21]-2016 N/A

Layers
(communication,

measurement,
control)

DoS, wrapping,
phishing attacks

No Attack only
Both informational

and operational

[2]-2016 Abstract model
Layers (generation,

transmission,
distribution)

Control, measurement
attacks

Yes
Both attack
and defense

Both informational
and operational

[22]-2017 N/A N/A Malware Yes Attack only Informational

[23]-2018 Abstract model Source of threats
Technical and

non-technical attacks
No Attack only

Both informational
and operational

[24]-2018 N/A Attack behavior

Interruption,
interception,
modification,

fabrication attacks

No
Both attack
and defense

Both informational
and operational

[25]-2019
Mathematical
model (linear
time invariant)

Spatial–temporal
hiddenness

FDI, topology attack,
DoS, replay attack,

Stuxnet, dynamic attack
No

Both attack
and defense

Both informational
and operational

[26]-2020
Conceptual

model

Security objectives
(Confidentiality,

integrity, availability)
CIA triad attacks Yes

Both attack
and defense

Informational

This
paper-
2021

Mathematical
model

(nonlinear time
invariant)

Control and feedback
loop (control,
measurement,

control-measurement)

Aurora, pricing attacks,
AGC attacks, FDI,
Topology attacks,

GPS-spoofing,
Line-outage masking,
Stuxnet-like attacks

Yes
Both attack
and defense

Both informational
and operational

yt = C (xt) + vt (2)

where xt ∈ R
n and yt ∈ R

m are system state and mea-

surements at time interval t, respectively; m is the number

of measurements; n is the number of system states (usually

m ≥ n). Typically, system measurements include nodal net

injections, line power flows, line current phasors, and bus

voltage phases from the emerging phasor measurement units

(PMUs). System states include bus voltage magnitudes and

angles. A (•) denotes a system state function; B (•) is a

control function; C (•) is a nonlinear measurement function;

wx ∈ R
n and wy ∈ R

m are system operating noise and

measurement noise, respectively. The measurement function

is reliant on the specific measurement type and involves the

power system network topology and parameters, such as line

impedance and transformer tap ratios. The noise is generally

assumed to be Gaussian distributed with a covariance matrix

R ∈ R
m×m. The received sensor measurement data, which

are called raw data, cannot be utilized directly by the EMS

and must be processed by state estimation (SE) and bad data

detection (BDD).

B. Cyber-physical security concerns

The wide-area field sensors and communication channels

are exposed to an increased level of cyber threats. As shown

in Fig. 1, the communication networks are vulnerable to adver-

saries who can manipulate the control and measurement sig-

nals. For countermeasures, the National Electric Sector Cyber-

security Organization Resource (NESCOR) has conducted im-

pact analyses and assessment of data integrity attacks against

the wide-area monitoring, protection, and control (WAMPAC)

systems [28], in which a dozen attack scenarios are discussed

with the corresponding failure scenarios, including line trip,

improper synchronous closing, and control actions that create

undesirable states. For instance, the WAMPAC.2 scenario

indicated that the network equipment could be leveraging to

spoof WAMPAC messages [28]. A threat agent may perform

a spoofing attack and inject messages in WAMPAC network

equipment (router, switch, etc.). The altered messages in-

volve measurement that goes into the WAMPAC algorithms

or control command to PMUs or phasor data concentrators

(PDCs). The WAMPAC.4 scenario leverages the compromised

PDC authentication to manipulate the measurement data. Such

compromise may be due to a backdoor or network sniffing,

which allows the malicious introduction of false measurement

data. The altered data can trigger actions when none are

necessary or fail to take action when needed. Meanwhile, The

WAMPAC.8 scenario shows an attacker can insert malware in

PMU/PDC firmware to alter measurements. When the altering

action is triggered, significant effort or cost is invested in
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troubleshooting the systems given the lack of measurement

consistency, followed by equipment replacement [28].

Figure 2 illustrates the cyber-physical attacks and their

corresponding targets. Following the WAMPAC scenarios pre-

scribed in [28], we summarize the cyber-physical attacks in

CPSGs in the following three categories:

1) Control signal attacks: By relying on the ability to

bypass the data authentication and integration examina-

tions, control signal attacks aim at acquiring the physical

device authority and then operate it at the attacker’s

will. This type of attack is usually designed to target

mission-critical devices in power systems such as auto-

matic generation control (AGC), relays, smart inverters,

flexible AC transmission system (FACTS) devices, and

circuit breakers. To achieve the adversaries’ malicious

goals effectively, adversaries likely have the knowledge

about the target device (e.g., inverter P -Q setpoints,

generator ramping limits, line flow limits). Despite the

study of N -1 contingency for loss of a generator or

transmission line, researchers show that by exploiting

the clustering-based vulnerability, simultaneous attacks

against the elaborately identified, most vulnerable de-

vices may cause cascading failures [29]. Control attacks

can achieve significant consequences in a short period.

However, the lack of coordinated masks in the feedback

measurement makes the attacks unhidden to detection

methods.

2) Measurement attacks: These attacks focus on manipu-

lating the sensor measurement data transferred through

the communication channels or falsifying the remote

terminal units (RTU) in the field. Physical communi-

cation links are usually compromised to deliver falsified

messages (e.g., false data injection attacks, GPS spoof-

ing, and replay attacks). Depending on the attackers’

capabilities, they may change the firmware of devices,

eavesdrop measurements for reconnaissance, and con-

trol sensors for reporting tampered measurements. For

example, an attacker may change the Domain Name

Systems (DNS) server of the device gateway to an

attacker-controlled DNS server [30]. By doing this, DNS

hijacking attacks can be implemented to control the

device-remote server interactions. Once an attacker con-

trols the communication between the gateway and the

remote server, all the measurement reports are going to

be sent to the malicious server instead of the legitimate

server. In addition, traditional DoS or a Black Hole can

block the packets in the network, decreasing the system’s

situational awareness. This type of attack may disable

the system operator’s situational awareness to cover

intrusions or induce inappropriate operations according

to the falsified system state based on the manipulated

measurements.

3) Control-signal-measurement attacks: This type of at-

tack is also called control-measurement-loop attacks, in

which adversaries launch coordinated attacks on both the

control signals and measurements. The control signal at-

tack may cause immediate physical layer consequences,

Fig. 2: Cyber-physical attacks and their targets reviewed in

this paper.

while the measurement attacks such as replay attacks can

disguise the ongoing control signal attack. The manipu-

lated measurements can pass existing anomaly detection

mechanisms in the system. Existing research revealed

that attackers might utilize the control-measurement-

loop attack [31] (e.g., line outage masking attacks,

Stuxnet attacks) to enhance the stealthiness of control

signal attacks by masking the attack consequences as

well as deceiving the attack detection and mitigation

mechanism. For instance, the notorious Stuxnet attack

[32], [33] targeted the SCADA systems and caused

substantial damage to the centrifuge of a nuclear plant.

A Stuxnet attack can compromise the programmable

logic controllers and give unexpected commands while

returning normal operation system measurements to the

SCADA.

III. CYBER-PHYSICAL ATTACKS

Analyzing vulnerabilities of a CPSG has attracted increasing

attention in the last few years. The general approach is to

study specific attacks against a particular system component.

A CPSG consists of information technologies (IT) and op-

erational technologies (OT). IT refers to the application of

networks that deal with the data and the flow of digital

information. In contrast, OT refers to technology that monitors

and controls specific devices such as the SCADA system. IT

and OT are merging together, known as IT-OT convergence,

and the boundary between them has become blurry. This paper

primarily focuses on the OT attacks and defense approaches in

a smart grid. Several attack behaviors against the IT systems

of a CPSG are briefly reviewed in Subsection A. Then, the

OT attacks are discussed in greater detail in the rest of this

section. Figure 2 shows the attacks and their targets surveyed

in this paper.

A. Data Availability Attacks

Since wireless communication is commonly used in a

CPSG, adversaries can launch attack schemes against the com-
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munication channel. In this paper, we classify the attacks that

impede data availability as IT attacks. For example, Byzantine

attacks against communication networks such as cognitive

radio networks and mobile Adhoc networks were discussed in

[34], [35]. These attacks are launched by compromised insider

nodes to affect the trusted routing, which in turn reduces

the overall network performance. After intrusion, a selfish

sensing node can report falsified channel sensing results and

increase its own gains at the cost of performance degradation

of other honest nodes. Typically, attackers intentionally launch

Byzantine attacks for two attack objectives. The first objective

is vandalism, where attackers report channel vacancy when the

sensing results indicate that the channel is busy. The second

objective is exploitation, where attackers can access the idle

channel exclusively by sending channel busy information when

their sensing results indicate that the channel is idle. Attackers

can pursue attack utility maximization of the above objectives

[36].

Compared with Byzantine attacks that hinder the data

availability by degrading the communication channel, DoS is

another notorious attack that blocks the normal data transfer

by occupying the communication channel with junk data. In a

CPSG, the objective of a DoS attack is to disrupt the communi-

cation between a control center and sensors or actuators in the

field. DoS attackers are not required to have the knowledge of

the CPSG configuration or the ability to manipulate the control

or measurement data in the communication channel. The attack

consequence is that system operators can easily notice the

attack due to the loss of measurement data. However, the

operators cannot mitigate the attack since they cannot send

control signals to the actuators. An example of the DoS attacks

is the incident of the Ukrainian electric power companies

discussed earlier. In [37], Qin et al. considered how to damage

the system performance most severely when launching a DoS

attack against the state estimation over the packet-dropping

network environment. They presented an optimal attack sched-

ule that maximizes the trace of the average expected estimation

error covariance. In [38], Zhang et al. proposed a scenario that

a DoS attacker with attack cost constraint jams the sensor-to-

estimator communication channel. The authors formulated an

optimization problem that balances the destruction on the cost

of system control and the cost of attack in an infinite time

horizon concurrently.

B. Control Signal Attacks

1) Aurora attacks: The aurora generator vulnerability was

originally tested by the Idaho National Laboratory, where

a hypothetical attacker maliciously opens and re-closes the

circuit breaker of a generator by injecting a series of com-

promised control commands [39]. When disconnected from

the power grid, the generator becomes desynchronized. The

aurora attack is designed to re-close the breaker when the

system and generator slip out of synchronism before the

protection system responds to the attack. Since generator

protection elements are intentionally delayed preventing un-

necessary tripping, attackers typically get a 15-cycle window

to re-close the breaker before any protection device kicks in

[40]. The physical damage to the generator is caused by the

variation of electrical power output from the generator and

the incremental generator rotating speed during the aurora

attack. Each time the breakers are re-closed, the difference

of frequency and phase angle between the main grid and the

generator may result in high torque and currents, which can

ultimately damage the generator [41].

A scoring methodology with vulnerability ranking criteria to

find the most vulnerable breakers for an aurora attack has been

presented in [42]. In [43], modeling and an impact analysis of

aurora attack targeting microgrid point of common coupling

(PCC) and synchronous generator breakers were examined.

The classic sync-check relays for coping with aurora attacks

can lead to unintentional islanding in a microgrid, which

is forbidden by the IEEE 1547 Standard [44]. The authors

demonstrated that an attacker could successfully damage the

microgrid synchronous generator by attacking the PCC breaker

of a microgrid connected to the main grid.

2) Pricing attacks: Demand-response programs have been

drawing more attention from retail-markets to increase the

efficiency of the power grid. In a basic form, demand-response

is a control mechanism where the control signals are the

incentives. Tan et al. [45] introduced a pricing attack by

performing scaling (sending the scaled value of the true price)

and delay (sending old prices) attacks on the price signals.

Giraldo et al. [49] further improved the attack by modeling

an attacker who aims to increase the mismatch between the

generated and the consumed power by compromising the

communication channel and deploying an attack time series

to manipulate the price signal. In contrast to one-snapshot

attacks, where the attackers inject malicious data only once,

Maharjan et al. [47] considered attacks capable of injecting

false pricing information at any moment and repeatedly over

a long-time duration. The power mismatch caused by the long-

term attacks can lead to over-generation, economic losses, and

poor power quality. To quantify the impact of the repeated

attacks, the authors proposed a sensitivity analysis method.

In their analysis, the authors utilized a z-transform sensitivity

function to model the dynamics of the system.

Zhang et al. [46] analyzed the vulnerabilities in transactive

energy systems. In such a system, the home controllers at the

end-user react to the price signal sent by the transactive market

and return bid information automatically. Data exchanged

between the prosumer and the market agent can be manip-

ulated by attackers. The authors extended the pricing attack

using malware to inject both malicious bidding prices and

quantities from prosumers. Under these attacks, the market-

clearing price was manipulated, and the energy consumption

of each individual prosumer was affected, which in turn

adversely influenced the overall demand on the distribution

feeders. Two attack scenarios were studied in [46], where

the first scenario aimed at compromising the reliability of the

system by manipulating the bid price to some extreme values,

while the second scenario aims at making profits over time

by manipulating the bid price within limits to avoid being

detected. Note that prosumers know these bid limits from the

service agreement. If the attacker manipulates the signals such

that they are out of the limits, the manipulation will become
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TABLE II: Control Signal Attack

Control

signal

attack

Target Objective Means Consequence
Mathematical

expression

Aurora

attack
[41], [44],

[45]

Generators in
power plants,

microgrid
synchronous
generators

Cause damage
to generators,
motors, and
transformers

Intentionally
open and close

a breaker or
PCC breaker

Electromagnetic
torque and

current
fluctuations

Control
command

injection ua

t

Pricing

attack

[46]–[48]

Price signal,
transactive

energy systems
bid signal

Mismatch
between the

generated and
the consumed

power,
profitability

Manipulate the
price signal,

bid prices and
bid quantities

System
emergencies

(e.g., line and
transformer
overload),

economic losses

Price signal
manipulation λa

t
,

bid price
manipulation ba

i
,

bid quantity
manipulation qa

i

obvious [47]. In contrast to the first scenario, the attack in

the second scenario has a small impact on the total load,

which makes it difficult to be detected. Table II summarizes

the existing works on the control signal attacks.

C. Measurement Attacks

1) AGC attacks: The Automatic generation control is a

wide-area frequency control application in interconnected

power grids. It ensures system frequency remains within the

acceptable bounds and limits the tie-line power flow between

adjacent control areas to their scheduled values. AGC relies

on power flow and frequency measurements from remote

sensors to calculate the area control error (ACE). The ACE

represents the power exchange error and the system frequency

error between the real system state and the scheduled state.

Based on the ACE, automated control commands on AGC

generators are computed once every few seconds. However,

existing measurement validation techniques such as the state

estimation typically run once every a few minutes, which can-

not accommodate the second-level frequency of AGC. There-

fore, the lack of measurement validation or attack detection

mechanism makes AGC susceptible to measurement attacks.

Moreover, AGC is a highly automated system that requires

minimal supervision and intervention by system operators.

Once compromised, it may rapidly cause a power imbalance

in the system [48].

Sridhar et al. [50] injected four adverse measurements,

i.e., scaling, ramp, pulse, and random attacks, to demonstrate

their impacts on the physical system stability and the market

operation. In scaling attacks, measurements are modified to

higher/lower values during the entire duration of the attack.

Ramp attacks gradually increase or decrease original measure-

ments over time. Pulse attacks modify measurements through

temporally spaced short pulses. Random attacks add random

values to true measurements. In an attack scenario to jeopar-

dize system stability, the attacker’s goal is to cause a rapid

decline in the system frequency to trigger under-frequency

load shedding. In the other attack scenario to manipulate

the market operation and make a profit by generating more

power, the attack involves modification of generator operating

points identified by the security-constrained economic dispatch

(SCED). In this case, the attacker is a utility that wants to

generate more power than the dispatched schedule without

being detected. The attacker injected fabricated tie-line power

and system frequency measurements to force ACE miscalcu-

lation, forcing generators in the targeted area to ramp down.

Meanwhile, the attacker ramped up its own generator, thereby

generating more than the operating point suggested by SCED.

As an increased generation in the attacker’s area compensated

for a decrease in the targeted area, the system frequency was

kept.

Similarly, the four types of attacks discussed above were

studied by Chen et al. [51] to implement the AGC attack

strategy targeting explicitly at the load frequency control. Tan

et al. [48] considered that the grid frequency is a global

parameter that can be easily verified. They assumed there

exist upper and lower bounds, known by the attackers, as

stealthiness constraints for any injected attack vector to pass

the data quality checks. The stealthiness constraints limit

the attack vector magnitude and make the attacker unable

to cause an unsafe frequency deviation in a single AGC

cycle. Thus, Chen et al. [51] focused on attacks on power

flow measurements using a continuous false data injection

attack over multiple AGC cycles to overcome the stealthiness

constraints. They defined a metric to assess the effectiveness

of their attacks, i.e., Time-to-Emergency (TTE), as the time

from the onset of an attack to the first time instant when

the average frequency deviation of the system is out of the

threshold (e.g., 0.5 Hz) in their case study. They optimized

their proposed attack by minimizing the TTE and satisfied the

stealthiness constraints simultaneously; therefore, leaving the

shortest time period for the system to counteract.

2) FDI attacks: False Data Injection (FDI) attacks against

state estimation, and bad data detection is one of the hottest

topics in the smart grid. It was first presented by Liu et al. [52],

[53] with DC system models. The authors assumed that the

attacker knows the topology and network parameters of the

entire power system and has the capability of manipulating

the data measurements from the meters. An FDI attack can

cheat the power system state estimation, which is the basis of

many power system applications, such as contingency analysis,

and economic dispatch [54], [55]. Falsified state estimation

results could potentially mislead the operation and the auto-

control mechanism of the EMS. The consequences of such

attacks include economic loss, unstable system states, and even

system voltage collapse [56]. Liang et al. [57] introduced an

FDI attack that can induce physical line overflows. By con-

sidering the EMS sequential data processing functionalities,
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their optimized attack vector resulted in line overload when the

false measurements cause generation re-dispatch. Elaborately

constructed attack vectors can bypass bad data detection by

keeping consistent with physical laws like Kirchhoff’s circuit

laws. The construction of the FDI attack vector a in DC

models obey (3):

a = Hẋ (3)

where H is the measurement matrix; ẋ is the estimated state

deviation due to the attack; and x̂attack = x̂ + ẋ. Therefore,

the malicious measurements Za = Z + a will get the same

BDD residual r as the original measurements Z do.

Hug et al. further investigated the FDI attack in AC state

estimation [58]. Unlike the DC model, where the elements

in the measurement matrix H are constant, the relationship

between the measurements and the states become non-linear

in AC systems. The attack vector is derived as:

a = H(x̂+ ẋ)−H(x̂) (4)

where x̂ is the estimated state; ẋ is the change in the estimated

state. The BDD residual under such an attack is determined

by the covariance matrix, the malicious measurements, and

the estimated states after the attack. Since the attack vector

is noiseless, the residual after the attack is not greater than

the original residual; thus, the attack is hidden. Note that the

construction of AC FDI attacks requires the estimated states,

as shown in (4).

The state-of-the-art research on FDI attacks is on weakening

the assumption that the attacker has the full knowledge of

the system network information (i.e., H and H(•) are known

to the attackers). However, the attacker has limited ability to

hack into meters. In this case, the attacker can only access

some specific measurements due to the different physical

protection of the meters [59]. The limited access to meters

leads to a subset of research works generating attack vectors by

minimizing the number of manipulated measurements. For an

attacker, minimizing the number of attacked meters, as shown

in (5), can reduce the risk of being detected and the attack

cost.

αk = min
x

‖Hx‖
0

(5)

where αk denotes the minimum objective value, ‖•‖
0

is the

cardinality of a vector. Such a problem is proven to be NP-hard

and non-convex; thus, it is often solved by mixed-integer linear

programming (MILP) methods [60]. By exploiting the sparsity

of H in the power system on account of physical topology, Sou

et al. [60] proposed a min-cut polynomial time approximate

algorithm, which is faster but still as accurate as the MILP

method. Wang et al. [61] simplified the original problem

by solving the relaxed L1-norm problem for sparse attack

construction. Due to recent studies, the L0-norm minimization

can be relaxed to L1-norm minimization for sparse attack

evaluation [62], [63]. Recall that the construction of a perfect

AC FDI attack requires the knowledge of estimated states.

In reality, however, an adversary cannot obtain the same

estimated state as the operators. To close the gap, Zhao et

al. [64] provided a sufficient condition to an imperfect FDI

attack. By satisfying this condition, an imperfect attack vector

can avoid being detected.

3) Blind FDI attacks: Recently, FDI attacks with little to

no information inspired researchers to construct blind FDI

attacks without explicit knowledge of the power grid topology.

Some researchers proved that such attacks exist and can

further decrease the attack cost. Kim et al. [65] presented the

subspace method to learn the system operating subspace from

measurements and launch attacks accordingly. Their subspace

method did not require any system parameter information and

depended on partial sensor measurements. In 2015, Yu et al.

[66] studied the problem of blind FDI attack which makes

inferences from the correlations of the line measurements.

The construction of the attack utilizes the principal component

analysis (PCA) [67] approximation method to transform the

observation vector (a set of possibly correlated measurement

variables z) into a set of linearly uncorrelated variables, x̃,

called principal components. In the proposed attack model

[66], attackers first collect some historical measurement data

and run the PCA transformation. The PCA matrix, HPCA ∈
R

m×n, is introduced by the dimensionality reduction of PCA,

m is the number of measurements, and n is the number of

principal components. The attacker can generate the stealthy

blind FDI attack vector a = HPCAẋ with an arbitrary n × 1
non-zero vector ẋ. The attack was proven stealthy in the

noiseless condition, and the noise will slightly degrade the

performance of the attack.

In cases where attackers have the topology information

needed, Rahman and Mohsenian-Rad [68] proved that an

attack could estimate H by collecting offline topology data

manually (e.g., getting access to the grid topology maps

through intruders or utility company employees), and online

measurements data (deploying attacker’s sensors and PMUs).

Another approach exploits the relationship between the pub-

licly available locational marginal prices (LMPs) and the

Lagrange multipliers of the network-constrained economic dis-

patch. Thus, LMPs components can unveil the topology infor-

mation. Kekatos et al. [69] developed a regularized maximum

likelihood estimator (MLE) to recover the grid Laplacian from

the LMPs. A convex optimization problem was solved using an

iterative alternating direction method of multipliers (ADMM)

based algorithm. In the scenario where the loads vary within

a small range, the topology information can be embedded into

the correlations among power flow measurements. Esmalifalak

et al. [70] proposed an independent component analysis (ICA)

algorithm to speculate the matrix H from power flow mea-

surements. Higgins et al. [71] proposed a data prepossessing

before the ICA process. The proposed data classification is

through T-distributed stochastic neighbor embedding (T-SNE)

for dimensional reduction. Despite of the above cases where

attackers can obtain the topology information, attackers are

also able to construct FDI attacks with limited topology

information. Deng et al. [72] demonstrated that the adversary

could launch unobservable FDI attacks to modify the state

variable on a bus if they know the susceptance of every

transmission line that is incident to that bus.

Meanwhile, attackers can launch effective and unidentifiable

FDI attacks based on data-driven strategies [73]. Data-driven

methods, especially machine learning based approaches, are

an essential branch of cyber-physical attacks on the smart
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TABLE III: Measurement Signal Attack

Control signal

attack
Target Objective Means Consequence

Mathematical

expression

AGC attack [48],

[50], [51]

Automatic
generation

control

Rapid decline in
the system
frequency

ACE
manipulation

Under-frequency
load shedding

Measurement
injection ya

t

FDI attack [52]–[61]

State
estimation

based BDD

Incorrect
estimated state

Measurement
manipulation

CPSG functional
failure

Measurement
injection ya

t

Blind FDI attack

[65], [66], [68]–[70],

[72]–[74]

State
estimation

based BDD

Incorrect
estimated state

Measurement
manipulation

CPSG functional
failure

Measurement
injection ya

t

LR attack [75]–[81]

State
estimation

based BDD

Incorrect
estimated state

Realistic
measurement
manipulation

CPSG functional
failure

Realistic
measurement
injection ya

t

Topology attack

[82], [83]

Topology
estimation

Incorrect
topology

estimation

Measurement
manipulation

Incorrect
topology state

Measurement
injection ya

t

Spoofing attack [84],

[85]
PMU

Manipulating
PMU

measurements

GPS signal
manipulation

Incorrect location
and time stamp

Measurement
injection ya

t

grid. Chen et al. [73] assumed an attacker who has little

knowledge of the power system and is unable to estimate

important parameters from observations. The attacker can only

perform attacks and online learning iteratively to search for

an optimal strategy. The optimal attack strategy was modeled

as a partially observable Markov decision process (POMDP).

Which, however, was impossible to be solved. Thus, the at-

tacker could obtain an approximately optimal strategy through

a Q-learning algorithm with the nearest sequence memories

(NSM). Markwood et al. [74] proposed a measurement matrix

estimation attack, which was termed as a topology leaking

attack. When the attacker knows the historical bus power

injections and relative voltage phase angles, the measurement

matrix H can be estimated. In cases where attackers can not

distinguish the eavesdropped measurement corresponding to

the current system topology, Higgins et al. [71] proposed

an unsupervised learning method to cluster the data set via

the density based spatial clustering of application with noise

(DBSCAN) algorithm.

4) Load Redistribution Attacks: In 2011, Yuan et al. [75]

defined a special type of false data injection attacks, namely

load redistribution (LR) attacks. By considering the charac-

teristics of the power system and the attacker’s capability,

limited access to specific meters is available to LR attackers.

Unlike original FDI attacks with a strong assumption that the

attacker has access to all the meters in the system, LR attacks

only manipulate the injection measurements of load buses and

line power flow measurements. Centralized generator mea-

surements and zero load bus injection measurements are not

attackable. In other words, LR attacks are realistic false data

injection attacks. Liu et al. [76] proposed a local LR attack,

which does not require the network parameter information

of the whole system. They defined non-attacking regions,

attacking regions, and boundary buses that connect these two

types of regions. According to their research, an attacker,

without knowing the network information of the entire power

system, can launch a successful local load redistribution attack

with only the knowledge of the network information (topology

and line admittance) of the attacking region. This is done by

keeping the same phase angle variations at all boundary buses.

Researchers have been recently focused on revealing the

specific attack consequences. Che et al. [78] analyzed the

mechanism that the attacker can implicitly identify the targeted

initial contingency as a system weak point, then leverage such

weak point to implement LR attacks to cause physical damages

to the system. Under the impact of the load attack vector, the

SCED enforces the line flow limits based on the incorrect

power flow state. When the generators are following the

dispatch commands sent from the SCED, severe transmission

overloads can be caused [86]. Xiang et al. [80] quantified the

impact of LR attack on the long-term power supply reliability

by proposing a power system reliability evaluation model.

The proposed Monte Carlo simulation based assessing method

considers LR attacks that can cause load curtailment. Fu et al.

[81] presented an attacker who does not pursue a temporary

profit but the most tripped lines during the cascading process

by coordinating LR attacks with physical attacks. As the main

cause of cascading failure is a physical attack, the system

operator will always try to prevent cascading failure by re-

dispatching the system back to a security operation point. This

is when LR attacks come into play to disrupt and mislead

the re-dispatching by causing the maximum line overloading.

Fu’s case study showed that the LR enhanced coordinated

attack is more serious than a single physical attack causing

cascading attacks. Zhang et al. [77] extended the LR attack to

AC distribution systems by presenting a net load redistribution

attack (NLRA), which aims at misleading the distribution

system state estimation to observe illusory voltage violations.

Measurements from prosumer buses with behind-the-meter

distributed energy resources (DER) can be manipulated by an

NLRA. Choeum et al. [79] proposed an LR attack against the

conservation voltage reduction (CVR) in distribution systems

with DERs. The presented adversary injects malicious load

data into the advanced metering infrastructure network and

misleads the CVR to come up with an abnormal control

signal for the voltage regulator and smart inverter set points.

The CVR results are consequently distorted, which cause an

increase in active power flow from the substation.
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TABLE IV: Control-Signal-Measurement Attacks

Control signal

attack
Target Objective Means Consequence

Mathematical

expression

Line outage

masking attack

[88]–[92]

Topology
estimation

Measurement
manipulation to mask

line-outage

Measurement
manipulation

Voltage
violation and
line overflow

Measurement
injection ya

t

Stuxnet-Like Attack
[93], [94]

Communication
channel

Incorrect control and
measurement signal

Control signal
and

measurement
manipulation

Stealthy
malicious

control
commands

Control
command

injection ua

t

and
measurement
injection ya

t

5) Topology Attacks: In 2013, Kim et al. [82] proposed

topology attacks in distinguishing from the FDI attack. The

main difference between the topology attack and the FDI

attack is that the topology attack manipulates the estimated

topology state (switch and breaker states) instead of the esti-

mated system state (power injection, power flow). A topology

attack is achieved by manipulating both the meter measure-

ment data and the network data, which can be represented as

binary bits indicating on and off states of various switches and

line breakers. The attack vector in a DC model is shown in

(6):

a = (H̄ −H)x (6)

where H and H̄ are the measurement matrices before and after

the attack, respectively. When the measurement is noiseless,

the system state x can be replaced with a function of measure-

ments to generate the attack vector. However, the estimated

state x̂ is required when considering measurement noise.

Note that both DC and AC attack vectors previously men-

tioned in this subsection require full knowledge of network

information to construct the measurement matrices and func-

tions. In reality, this may not be possible. Therefore, a topology

attack with local network information [82], [87] has been

studied. Kim et al. [82] considered a weak attacker who has

access to a few local meters only. The authors proposed line

removal attacks, i.e., the adversary tries to remove lines from

the actual network topology and mislead the operator that

the line is disconnected. Liu et al. [87] observed the existing

topology attacking model has two practical issues. The first

issue is that there is no limit on the attacking amounts for

load measurements at buses. The second issue is that attack-

ers have limited capability to obtain necessary information.

Thus, the authors proposed a local topology attack model to

determine the feasible attack region by obtaining less network

information.

6) GPS Spoofing Attack: In CPSGs, spoofing attacks on

PMUs are conducted via global position system (GPS) spoof-

ing, where the adversary produces artificial GPS signals.

Two attack approaches, i.e., source ID mix attacks and time

stamp attacks, are studied based on the spatio-temporal char-

acterization of the GPS signals. A source ID mix attack

is that attackers can exchange the location information of

measurement data among different PMU’s channels without

altering the measurement values. This type of attack places the

measured data into wrong positions in associated data servers.

Cui et al. [84] demonstrated the impact of source ID mix

spoofing on the wide-area monitoring systems (WAMS) and

the wide-area damping control. By swapping the signals of two

buses, the WAMS estimated the disturbance at a location far

away from the correct location; the damping control failed,

and the system frequency kept dropping. The other type of

GPS spoofing attack is called time stamp attack, also known as

time synchronization attacks (TSAs), which aim to maliciously

introduce erroneous time stamps, thereby inducing a wrong

phase angle in the PMU measurements [83]. Risbud et al.

[85] formulated an optimization problem to identify the most

vulnerable PMUs to construct a TSA. The vulnerability was

quantified by the state estimation error, and a greedy algorithm

was utilized to solve the problem.

D. Control signal measurement Attacks

1) Line Outage Masking Attacks: The recent attack on the

Ukrainian power grid [95], which affected both the physical

infrastructure and the situational awareness at the control

center, is drawing more attention from researchers. A novel

line outage masking attack was proposed [88]–[92], where an

adversary attacks an area by physically disconnecting some

lines from the attacked area (i.e., remotely open the circuit

breakers) to occur short-term damage like voltage violation

and line overflow, and then mask the measurements within the

attacked area by DoS or FDI attacks. Such attacks combine

both control and measurement layer attacks to cause imme-

diate failure and block the operator’s awareness at the same

time, which may lead to cascading failures.

Deng et al. [92] presented two coordinated cyber-physical

attacks (CCPAs) to mask the line outage, namely replay and

optimized CCPA. To construct the replay CCPA, attackers alter

the meter readings on all the branches to force the active

power flow measurements after the line outage to be the same

as the power flow measurements from a normal state. The

replay CCPA is extremely costly, and the actual system state

is not consistent with the manipulate measurements, which

makes it detectable by independently known-secure PMUs.

The optimized CCPA neutralizes the impact of the line outage

on the BDD residual. Soltan et al. [88] proved that finding

the set of line failures after data distortion and data replay

masking attack is an NP-hard problem, based on the operator’s

knowledge of the phase angle measurement before and after

the attack as well as the line admittance matrix. Li et al.

[96], [97] proposed to conduct two-step cyberattacks that

mask line outages resulting from the physical attacks. The

cyberattacks are decomposed into two steps, which include

a topology-preserving attack as the first step, followed by the
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load redistribution attack (if the first step is not feasible). More

specifically, the topology attack masks line outages caused by

physical attacks while the load redistribution attack keeps the

total load unchanged and redistributes the line flow to bypass

the state estimation-based detection. Chung et al. [91] further

improved the masking approach by deploying a line-removing

FDI attack (topology attack) that misled the SCADA system

with a fake outage in another position. After the real line

outage attack, the topology attack region is then selected to re-

dispatch the power flow. The attack vector is generated in an

AC model with local network information and the capability

to manipulate the measurement within the attacked area.

2) Stuxnet-Like Attacks: Traditional Stuxnet attacks inject

the malicious control commands to the actuators and, mean-

while, corrupt the sensor readings to cover the ongoing attack.

To avoid being detected, Stuxnet attacks require the attacker’s

capabilities of replaying all the measurements during the

steady state of the system. Forensic analysis of Stuxnet attacks

[93] has shown the feasibility of a very targeted and highly

sophisticated cyberattack. Moreover, with some modifications,

Stuxnet can be tailored as a platform for targeting other

systems e.g., automobile or power systems.

Tian et al. [94] defined Stuxnet-like attacks against sec-

ondary voltage control, which assume the attacker has write

access to both the control signal and sensor measurement. The

cyber-physical system dynamic is described as a discrete-time

linear time-invariant (LTI) model. In the presence of an attack,

the system dynamics are as follows:

xa(t+ 1) = Axa(t) +Bua(t) + w(t) (7)

ya(t) = Cxa(t) + v(t) (8)

where the notations are similar to those in (1) and (2) with

an exception that the subscript a denotes the under attack

status. The attacker knows the state transit matrix A, the

control matrix B, and the measurement matrix C. Variable ua

is the contaminated control signal received by the actuators;

ya is the manipulated sensor measurement received by the

control center; xa denotes the system state. Functions w(t)
and v(t) respectively denote the process and sensor noises.

This Stuxnet-like attack is only implemented on a converged

system, where the control center expects unchanged system

states. The attacker needs to judge whether the system has

converged, according to the eavesdropped control signal and

measurement data.

IV. CYBER-PHYSICAL DEFENSE

Cyber-physical defense is absolutely the focus of ongoing

research efforts, where a massive number of works have

already been published in the literature. In this section,

we first categorize cyber-physical defense approaches into

temporally-relevant and spatially-relevant approaches. Further,

several state-of-the-art cyber-physical defense approaches in

the CPSG, including securing measurement sensors, model

and algorithmic enhancement, data-driven approaches, moving

target defense, and watermarking, are reviewed.

A. temporally- and spatially-relevant DETECTION

In a temporally-relevant detection, the current system state

is estimated by prior estimated state, measurement, and control

signal. At time t, the estimated measurement ŷ (t) and the

residual δ (t) are shown as:

ŷ (t) = L1

(

X̂ (t− 1) , U (t− 1) , Y (t− 1)
)

(9)

δ (t)
∆
= y (t)− ŷ (t) (10)

where L1 (•) is an abstract function; X̂ (t− 1) =
[x̂ (t− 1) · · · x̂ (0)] ∈ R

n×t is the set of the prior estimated

state; U (t− 1) = [u (t− 1) · · ·u (0)] ∈ R
l×t; Y (t− 1) =

[y (t− 1) · · · y (0)] ∈ R
m×t. After the estimation, if the

calculated residual is larger than a pre-defined threshold, the

detection method will signal an alert. Among all temporally-

relevant approaches, the most widely used method is the

Kalman filter based state estimator and the chi-squared test

[98]–[100]. The Kalman filter based estimator minimizes the

variance of the estimated state, given the previous observa-

tions. The chi-squared test [101] is commonly used to detect

anomalies.

The spatially-relevant detection method estimates the sys-

tem by the correlation between different sensors in one time-

interval only. A power system state estimator and the residual-

based BDD is an example of the spatially-relevant detection

approach. An essential of this estimation is measurement

filtering, which utilizes the measurement data redundancy to

increase the measurement accuracy. At time t, the estimated

system state is calculated based on the measurement from the

same time interval,

x̂ (t) = L2 (y (t)) (11)

where L2 (•) is an abstract function. From equation (2), the

estimated measurement is shown as:

ŷ (t) = C (x̂) . (12)

The residual-based alarm mechanism is also implemented in

spatial-relevance detection. One notable difference is that in

a temporally-relevant detection, the estimated measurement is

calculated from prior system state (9); however, in a spatially-

relevant detection, the estimation is based on the current state

(12).

B. Securing measurement sensors

As previously mentioned, the majority of attacks require,

more or less, the attacker’s knowledge about the system control

and measurement signal. An assessment in [30] has shown that

the major cybersecurity concerns range from exploiting well-

known protocols to the leakage of confidential information.

Therefore, one natural approach is to select and protect critical

control or measurement signal strategically.

Bobba et al. [55] explored the detection of false data

injection by protecting a set of critical sensor measurements

and a method to verify the values of strategically selected

state variables. The authors demonstrated that an attack aims

to construct an attack vector such that it avoids specific mea-

surements and state variables that are protected and verified.
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From the defender’s perspective, the operator should select

the sets of the protected measurements and the verified state

to ensure that an adversary cannot find a stealthy attack vector.

Thus, FDI attacks could always be detected. The trade-off here

is that the protection and verification of a large number of

measurements and state variables could be costly.

Phasor measurement units have recently attracted re-

searchers’ attention due to their ability to provide measurement

redundancy and assist in FDI detection. Zhao et al. [64]

developed a robust FDI attack detection method by checking

the statistical consistency of measurements from a limited

number of secured PMUs. In the proposed detector, short-

term measurement forecasting [102] was advocated to enhance

the PMU data redundancy. Giani et al. [103] proposed that it

is sufficient to place p + 1 known secure PMUs at carefully

chosen buses to neutralize a collection of p cyberattacks.

Since then, the optimal PMU placement has been researched

to detect the stealthy FDI attacks with the least PMUs. Qi

et al. [104] formulated the optimal PMU placement as an

optimization problem, which maximizes the determinant of

the empirical observability Gramian matrix. Pal et al. [105]

presented an integer linear programming methodology for the

PMUs placement scheme while considering realistic cost and

practical constraints. Sarailoo et al. [106] adopted synchropha-

sor availability (SA) on all buses as a constraint and then

minimized the number of PMUs. The SA is the fraction of time

on average the bus voltage synchrophasor is correctly present.

As mentioned in Section III, the synchronization between

PMUs requires GPS signals, which are vulnerable and can be

attacked [107]–[109]. Fan et al. [110] proposed a cross-layer

detection against simultaneous GPS spoofing attacks towards

multiple PMUs.

C. modeling and algorithmic enhancement

Another category of defense approaches is on the im-

provement of the detection models and algorithms. Huang

et al. [111] proposed an adaptive cumulative sum (CUSUM)

algorithm, which detects the adversary fast while maintaining

a low detection error rate. Liu et al. [112] proposed a false

data detection mechanism that utilized the intrinsically low-

dimensional power grid measurements and the sparse nature of

FDI attacks. The detection problem is formulated as a matrix

separation problem and is solved by two methods: the nuclear

norm minimization and low-rank matrix factorization. Gu et

al. [113] proposed a detection method to detect FDI attacks

by tracking the dynamics of measurement variations. They

utilized the Kullback-Leibler distance (KLD) to calculate the

distance between two probability distributions, i.e., historical

measurements and suspicious measurements, to detect the FDI

attacks. Zhao et al. [114] proposed a short-term state forecast-

ing method considering the temporal correlation to calculate

the approximate prior system measurements. The consistency

between the forecasted and received measurements is checked

by a statistics-based test method. From the consistency test

result, a detection metric is constructed by the infinity and

the L2-norm-based measurement residual analysis. Ashok et

al. [115] showed that the existing CPS defense focuses on

either redundant measurements or the cybersecurity of sensors

and communication channels. These offline approaches make

specific assumptions about the attacks and systems, which

are restrictive. One solution of PMUs placement or security

mechanism may no longer be adequate under another sys-

tem configuration. Therefore, the author proposed an online

anomaly detection that covers broad attack scenarios. The

proposed method leverages online information obtained from

load forecasts, generation schedules, and real-time data from

PMUs to detect anomaly measurements.

D. data-driven approaches

Another noteworthy category of defense approaches is on

data-driven machine learning methods that have been gaining

traction due to the following two salient advantages:

1) The construction of the data-driven approaches does not

depend on the network topology; and

2) This approach is usually sensitive to time-variance mea-

surement, which can be very effective in detecting one

time interval stealthy FDI attacks created based on the

spatial-relationship of CPSGs.

The use of supervised learning classifiers as alternate FDI

detectors was proposed by Ozay et al. [116] in 2015. Su-

pervised machine learning based binary-classifiers were pre-

sented to check the distance between ”secured” and ”attacked”

measurements. With the distance information, attacks can

be recognized by the learning algorithms. Yan et al. [117]

proposed to implement the learning based false data classifiers

as a secondary detector after the residual-based BDD. They

designed FDI detectors with three widely used supervised

learning based classifiers, including support vector machine, k-

nearest neighbor, and extended nearest neighbor. The proposed

detectors are capable of detecting stealthy FDI attacks that can

bypass the residual-based BDD. Sakhnini et al. [118] tested

three classification techniques with different heuristic feature

selection techniques. The authors concluded that the support

vector machine and the k-nearest neighbor algorithms could

get better accuracy than the artificial neural network. How-

ever, the artificial neural network is expected to have better

performance on larger systems at a higher computational cost.

The recent breakthrough in computing provides the foundation

for ”deep” neural network. Niu et al. [119] developed a smart

grid anomaly detection framework based on a neural network.

The recurrent neural network with a long short-term memory

cell is deployed to capture the dynamic behavior of power

systems. According to the captured behavior, the estimated

measurements are calculated and compared with the observed

measurements. If the residual between the observed and the

estimated measurements is greater than a given threshold, an

attack is detected.

As for reinforcement learning based methods, Chen et

al. [73] proposed a BDD method based on Kernel density

estimation. By using historical records, the measurements can

be estimated. The effectiveness of the proposed detection

method relies on the abundance of integrated records of normal

operations of the power grid. When an attack vector is injected

consistently, the tempered measurements could be used for the
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Kernel density estimation analysis. Thus, the proposed BDD

detection method could fail. Other than the studies that con-

tribute to attack detection, Li et al. [120] proposed a defense

methodology that recovers the real measurements to maintain

uninterrupted state estimation under FDI attacks. The proposed

method utilized a generative adversarial network based data

model which captures the deviations from ideal measurements

and then generates correct data to replace the manipulated

data. Besides the aforementioned defense approaches that

protect the transferred measurement data, the defense on

the communication channel is vital. One of the cutting-edge

wireless communication technologies used in the smart grid is

the cognitive radio, which is motivated by the ever-increasing

demand for high data rates in the face of limited spectral

resources. Ding et al. [121] introduced a spectrum attacker

who can inject attack data into the honest spectrum sensor

to mislead the fusion center to lower the spectrum utilization.

Moreover, the authors show that the kernel K-means clustering

(KMC) algorithm yields better performance than the KMC

algorithm in the detection of spectrum attacks. However, high-

quality clean training data are too expensive or too difficult

to obtain in some cases. Xie et al. [122] proposed a convex

framework to provide robust classification and training in

improving the anomaly-resistant against sensor failures (i.e.,

falsified channel sensing resulting in Byzantine attacks) in

which possibly anomalous samples occur in the training set.

Qin et al. [123] proposed a low-rank matrix completion based

malicious user detection framework for the secure cooperative

spectrum sensing with a lower data acquisition cost.

E. Moving Target Defense

The aforementioned operational defense approach is either

computationally complex or somewhat passive. As an emerg-

ing technique, moving target defense (MTD), is originally

proposed to enhance network security [124]. It proactively

changes the system configuration so that it reduces the at-

tack surface and increases the uncertainty about the network

system. With the properly arranged MTD perturbation, the

attacker’s knowledge about the system is always outdated.

This approach increases the barriers for the attackers to launch

stealthy attacks. MTD has recently been introduced in the

physical layer of the cyber-physical power system (CPPS)

to provide proactive defense, which is an advantage over the

traditional remedial defense. Comparing with the MTD in the

cyber-layer network system, MTD in CPPS is very complex

as it requires the physical dispatch of control, measurements,

or device properties.

The concept of MTD was first introduced into the physical

layer of the power system by Morrow et al. [125] and Davis

et al. [126]. In general, MTD utilizes distributed flexible AC

transmission system (D-FACTS) devices to actively modify

impedance perturbations to invalidate attackers’ knowledge

about the power system configurations, which is essential for

constructing stealthy attacks. Table V summarizes the existing

works on MTD, where the superscript ”AC” or ”DC” indicates

the corresponding AC or DC model used.

There are two essential steps in the construction of an

MTD, namely MTD planning and MTD operation. First, in

the MTD planning, a utility needs to install D-FACTS devices

on an appropriately identified subset of transmission lines,

namely solving the problem of D-FACTS placement. Arbitrary

placement and full placement are the two simplest D-FACTS

placement strategies. Arbitrary placement randomly selects a

subset of lines to install D-FACTS devices [127]. Full place-

ment is the most expensive method in which D-FACTS devices

are installed on every transmission line [128]. However, the

detection effectiveness of MTDs under these two placements

is not considered. Max-rank placement [129], [130] can make

MTDs achieve the maximum rank of the composite matrix (

i.e., max-rank MTDs), a metric of the detection effectiveness.

Spanning-tree placement proposed in [131] installs D-FACTS

devices on the lines which form a spanning tree of the

system. MTDs under spanning-tree placement is effective to

detect single-bus, uncoordinated multiple-bus, and coordinated

multiple-bus FDI attacks.

After the allocation of D-FACTS devices, the system oper-

ator/defender needs to continuously determine the D-FACTS

setpoints under different load conditions in the MTD op-

eration. The MTD operation includes four methods. First,

random selection is the simplest operation method without any

computational overhead, in which the D-FACTS setpoints are

randomly perturbed [127]. As D-FACTS devices are originally

used to control the power flow, OPF-based operation methods

integrate the D-FACTS devices into the optimal power flow

model to minimize the system losses or generation costs [129],

[132], [133]. Neither the random selection method nor OPF-

based operation methods consider the detection effectiveness.

Thus, these two methods must be constructed in the D-FACTS

placements, which ensure the detection effectiveness, such

as the max-rank placements. Second, the optimization-based

operation takes both the economic cost and the detection

effectiveness into account, in which the metric of detection

effectiveness is maximized or taken as constraints [128], [130].

Finally, the hidden MTD operation method delicately selects

D-FACTS setpoints such that all measurements remain the

same after MTD is applied [134]–[136]. In this case, vigilant

attackers cannot detect the MTD in place using BDD. To

find suitable placement for hidden MTD operation, authors

in [135] enumerate all placement combinations, while authirs

in [136] use the max-rank placement in [130], with the help

of protected meters.

In the literature, there are three important concerns to

evaluate the performance of MTD. First, attack detection

effectiveness is the most important metric for a defense

algorithm. As not all MTDs are effective in detecting FDI

attacks, the feasibility and the limitation of MTD is discussed

in [131]. Many works focus on improving the attack detection

effectiveness of MTDs though the MTD planning [129]–[131],

[136] and MTD operation [128], [132], [135]. Two metrics

are proposed to measure the detection effectiveness of MTD,

namely the Lebesgue measure [132] and the rank of the

composite matrix [128]–[130], [135]. The composite matrix

rank is superior to the Lebesgue measure in the evaluation of

MTD detection effectiveness since it demonstrates the inherent

nature of MTD on FDI attack detection and provides an

explicit objective for constructing an effective MTD. Authors
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TABLE V: Moving Target Defense in CPSG

MTD Algorithm MTD planning MTD operation Characteristics

Random MTD

[127]DC Arbitrary placement Random selection Detection effectiveness is not considered

OPF-based MTD

[132]DC, [133]AC N/A OPF-based operation
Minimize generation cost and guarantee

detection effectiveness [132]

Hidden MTD

[135]DC, [134]AC,

[136]DC

Placement
enumeration [135];
max-rank placement

using protected
meters [136]

Random selection
subject to hidden
condition [135]

MTD has max-rank and is hidden to alert
attacker, but [136] uses extra protected

sensors

Spanning-tree MTD

[131]DC
Spanning-tree

placement
Random selection

Covers all buses, but max-rank MTD is
not ensured

Max-rank MTD

[128]DC, [130]DC,

[129]DC, AC

Full placement [128],
max-rank placement

[129], [130]

Optimization-based
operation [128];
ACOPF-based

operation [129]

Minimizes system losses [128] or
generation costs [129]. Guarantees

max-rank MTD based on numerical
methods [128], [130] or graph-theory

methods [129]

in [129] proved the rank of the composite matrix could be

merely determined by D-FACTS placement, as long as no D-

FACTS devices work in idle-states. In addition, the number

of buses covered by D-FACTS devices and the incremental

line reactance introduced by D-FACTS devices also impact

the MTD detection effectiveness [131]. However, there is no

metric proposed to measure this impact.

Second, the cost of the MTD application is a must-concern

for a utility. The cost consists of the planning cost and the

operation cost. In the planning cost, the number of D-FACTS

devices used in MTD determines the capital cost and labor fee.

Max-rank placement in [129] uses the minimum number of D-

FACTS devices to achieve the maximum rank of the composite

matrix. In the operation cost, the D-FACTS setpoints impact

the generation cost and system losses, as these setpoints can

change power flow in the system. Thus, OPF-based operation

methods can be used to reduce the MTD operation cost in both

AC and DC models. To integrate the OPF-based operation

methods into the EMS, an interior-point solver proposed in

[133] can solve these methods within seconds.

Third, the hiddenness of MTDs provides a superior function

as it makes the MTD stealthy to attackers. Vigilant attackers

use BDD to detect the existence of MTD before launching

any attacks. If attackers detect any MTD in place, they may

stop FDI attacks and invest more resources to launch data

exfiltration attacks to obtain the latest system configuration

[135]. Hidden MTDs can mislead these attackers to launch

detectable attacks based on incorrect line parameters. In sum-

mary, a desirable MTD would be a hidden MTD with maximal

detection effectiveness and low cost.

F. Watermarking

Watermarking is originally used to identify the ownership

of noise-tolerant signals such as audio, video, or image data.

It also can be used to check the integrity and authenticity of

a signal. The first use of watermarking to defend the replay

attack employed in Stuxnet was introduced by [98], [137],

where the physical watermarking as a control-theoretic method

to authenticate the correct control operation was proposed.

Although existing tools like cryptography can provide au-

thentication, physical watermarking is more effective against

physical attacks or insiders who are usually authenticated

users. The concept is that by injecting a known noise as

a probe input of the system, an expected effect of such

input should be found in the true measurement output due

to the system dynamics. Thus, if the attacker is unaware

of the watermarking, the injected attack will be detected by

a chi-squared detector. Weerakkody et al. [99] considered a

more adversarial attacker who has access to a subset of real-

time control and sensing signals. The physical watermarking

approach is extended to show the ability to counter a more

intelligent adversary. Since introducing a random probe signal

into the system could clearly affect the operating cost, Miao

et al. [138] proposed an optimization method for the trade-off

between cost-centric and security-centric controllers. Despite

the detection capability, the physical watermarking needs to

inject perturbation as a probe into the system, which may affect

the system performance. Moreover, the physical watermarking

detection sensitivity is usually related to the probe signal

magnitude. Thus, to increase the detection performance, the

defender has to sacrifice the optimal system performance.

Satchidanandan et al. [139] extended the physical water-

marking to dynamic watermarking in a noisy dynamical sys-

tem. The authors introduced independent and identically dis-

tributed random variables to actuator nodes, namely privately

imposed excitation. The actual realization of the time-sequence

excitation is superimposed on the control input from an honest

actuator. The author assumed that the control policy is in

place, and the excitation is only known by the honest actuator

itself. The proposed dynamic watermarking can ensure that

a malicious sensor is constrained to distorting the process

noise by at most a zero-power signal by implementing the

correlation detector. Ferdowsi et al. [140] proposed a deep

learning framework for dynamic watermarking of IoT signals.

The framework is based on the long short-term memory blocks

to extract stochastic features from IoT signals and watermarks

the features inside the original signal. This dynamic extraction

enables eavesdropping attack detection since the attacker will

not be able to extract the watermarked information.

Watermarking can also be used for attack identification in

CPSG. Liu et al. [128] designed a reactance perturbation-

based scheme to identify originally covert FDI attacks on

power system state estimation. The term originally covert
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Fig. 3: Infographic of attack and defense mechanisms in smart

grid.

attack refers to the stealth of the attack prior to reactance

perturbation. The authors proved that the originally covert

attack (constructed with original measurement matrix H0) is

detectable and identifiable in a reactance perturbation with a

new measurement matrix H if and only if the rank of [H0 H]

is equal to 2(n−1), where n is the number of buses. Zhang et

al. [141] proposed an attack identification approach for GPS

spoofing attacks (GSAs) against PMUs. They performed a

probing technique on each PMU in parallel to determine the

locations of spoofed PMUs and the ranges of GSA phase shifts

under the assumption that the PMU in a substation is secure.

The attack models reviewed in Section III and the defense

mechanisms surveyed in Section IV are summarized in Fig.

3. The two-layer model in this figure is a graphic form of the

CPSG model abstracted in Section II-A. In Fig. 3, each attack

on smart grid functionalities is shown with corresponding

counter-measurements labeled next to it.

V. OPPORTUNITIES AND CHALLENGES

Despite the tremendous research efforts reviewed in this

work, cyber-physical security challenges remain to be thor-

oughly addressed. Critical power system functionalities such

as market operation, advanced metering, and network oper-

ation may also face attacks. Meanwhile, the potential impli-

cations of these attacks remain to be further investigated. In

addition, the emerging applications, including time of use,

demand response, and large-scale electric vehicles, will have

strong impacts on the smart grid and may also become targets

of cyber-physical attacks in the future. In this section, we

highlight four critical challenges and opportunities in the

field of smart grid cyber-physical security that deserve further

research efforts.

A. Cyber-physical security in distribution systems on the grid

edge

A CPSG is a critical infrastructure with an enormous

number of complicated devices. Cyber-physical attack and de-

fense simulations are necessary to estimate their performance,

though it is impossible to implement most experiments on a

real-world power grid. However, the existing cyber-physical

studies focus primarily on transmission systems, while the

work on the three-phase unbalanced distribution systems with

low system observability is significantly under-researched. A

growing number of distribution systems on the grid edge are

experiencing significant penetration of DERs. The emerging

power-electronic-device-based electric vehicles, local energy

storage, and demand-response have also contributed to the

system dynamics and complexity. Fully taking into account the

new dynamics and complexity in low-observability distribution

systems is quite challenging in the context of cyber-physical

security. More research efforts are therefore necessary in

distribution systems on the grid edge.

On the other hand, conventional, discrete-time, model-based

simulations are accepted by researchers [142]. However, the

traditional power system simulation tools may not be suitable

for studying the distribution grid with increasing complex-

ity and cyber-physical concerns. There has been a growing

need to use continuous-time simulation with hardware in the

loop (HIL) capabilities. In [143], the authors developed a

SCADA security testbed, which integrates a real-time immer-

sive network simulation environment with PowerWorld. The

authors in [144] developed a testbed with PowerWorld and

OPNET. A platform equipped with GridLAB-D and NetSim

has been used for power systems and communication network

simulation in [145]. Due to time-domain analysis complexity,

these simulation platforms cannot run in real-time or perform

HIL simulation. In a broader sense, the real-time simulation

reflects the exact dynamic behavior of a CPSG, and the HIL

ensures precise operation as the real devices. While these

two functionalities are usually unavailable with the current

simulation structure, development on the real-time simulation

testbed with HIL largely remain to be conducted.

B. Interdependence

Studying the CPSG security issues relies on the interdepen-

dence of both the cyber layer and the physical layer. The attack

detection requires advanced communication technologies to

transfer data from the physical devices to the control center.

On the other hand, most cyber-physical attack schemes have

taken advantage of this interdependence to launch attacks

in the cyber layer and induce physical damages. For future

research in this area, cyber-physical interdependence needs

to be comprehensively explored. For instance, the physical

attacks on cybersecurity have been under-investigated, and the

threats can be devastating when the dependence of physical

systems is exploited by an attacker [2]. Another cyber-physical

interdependence that has been largely ignored is simulation

software. Traditional software is developed to simulate or

emulate either communication networks (e.g., OPNET, NS2,

OMNET) or physical power systems (e.g., RTDS, DSATools,
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PSS/E, PowerWorld). Such software cannot provide realistic

cyber-physical environments [146]. Additionally, the interde-

pendence between CPSGs and other critical infrastructures,

such as communication, water, and transportation networks,

ought to be researched in the context of cyber-physical attacks

against CPSGs.

C. Attack coordination

In real-word CPSG, sequential outages are the most com-

mon causes of blackouts [147], e.g., the 2003 Northeast

Blackout [148] and the 2011 Southwest Blackout [149]. If a

series of attacks can trigger such events, then an intimidating

cyber-physical security risk will be worthy of attention. In

Section III, we discussed the line outage masking attack, one

of the popular methods among coordinated attacks. Mean-

while, most researchers assume that the cyberattack vector

is injected simultaneously with the physical damage in the

existing research. This assumption may be validated in a

specific condition, such as the system is in a steady state.

However, the general circumstances in which the attackers

cannot promise timely cyberattack injection with respect to the

system dynamic have remained to be considered. However, the

timing and ordering of coordinated attacks can also have an

impact on the eventual damages. With an elaborate schedule,

not only will concurrence be relaxed, but the damage may be

amplified. On the other hand, from a defender’s perspective,

analyzing the coordinated attacks on CPSG based on temporal-

topological correlation can help to restore the complete attack

path and identify the intent of the attacks [150].

D. Attack identification and mitigation

In future power systems, an attack detector will be an

indispensable tool for detecting and identifying anomalous

measurements. Without reliable attack identification, it is hard

to implement a mitigation process with pertinence. While de-

tecting attacks is computationally straightforward, identifying

the attack location and strategy is computationally challenging

[151]. For instance, bad data cannot be identified once belong-

ing to the critical sets of measurements, also known as bad data

groups, because they cause the same normalized residuals for

each element of the set [152]. Another problem is that existing

state estimation based algorithms in transmission systems are

not suitable for unbalanced distribution systems with high r/x
ratios [153]. With the aforementioned issues, few solutions

have been proposed for the identification of attacks. In addi-

tion, rather than brutally getting rid of identified compromised

measurements, how best to mitigate the adverse effect of those

attacks is also a very challenging issue depending on particular

operation and controls of a CPSG.

VI. CONCLUSION

A CPSG relies on the cooperation of both cyber and

physical layer functionalities. The ubiquitous threat to the

entire smart grid’s large attack surface makes it necessary

to comprehensively analyze and classify attacks. This paper

provides a CPPS operation model and addresses the associated

vulnerabilities targeted by an attacker. We classify the existing

attack approaches against different components based on the

CPPS model. A review of the cutting-edge operational defense

approaches was presented to summarize and categorize the

state-of-the-art in the field, ranging from the state estimation

based detector to the emerging moving target defense and

watermarking methods. As smart grid technologies become

more prevalent and more physical devices are connected to

the cyber-physical infrastructures, significant attack surfaces

are introduced, as well as a wide range of opportunities and

challenges. Four challenges were highlighted in the investiga-

tion of smart grid cyber-physical security. Our survey provides

insights that future research efforts must target a new set

of cyber-physical security concerns, including real-time risk

modeling and simulation, risk mitigation, and coordinated

attack defense.
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