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Reinforcement Learning over Knowledge Graphs

for Explainable Dialogue Intent Mining

KAI YANG1, XINYU KONG1, YAFANG WANG1, JIE ZHANG1, GERARD DE MELO2

Abstract—In light of the millions of households that have
adopted intelligent assistant powered devices, multi-turn dialogue
has become an important field of inquiry. Most current methods
identify the underlying intent in the dialogue using opaque
classification techniques that fail to provide any interpretable
basis for the classification. To address this, we propose a
scheme to interpret the intent in multi-turn dialogue based on
specific characteristics of the dialogue text. We rely on policy-
guided reinforcement learning to identify paths in a graph to
confirm concrete paths of inference that serve as interpretable
explanations. The graph is induced based on the multi-turn
dialogue user utterances, the intents, i.e., standard queries of the
dialogues, and the sub-intents associated with the dialogues. Our
reinforcement learning method then discerns the characteristics
of the dialogue in chronological order as the basis for multi-turn
dialogue path selection. Finally, we consider a wide range of
recently proposed knowledge graph-based recommender systems
as baselines, mostly based on deep reinforcement learning and
our method performs best.

Index Terms—knowledge graph, dialogue intent mining, rein-
forcement learning

I. INTRODUCTION

Across the globe, millions of households have adopted

intelligent assistant powered devices. In light of this, multi-

turn dialogue, in particular, task-oriented multi-turn dialogue

which aims to handle with certain questions, has become an

important field of inquiry with substantial real-world impact.
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The system not only needs to identify a user’s information

need from this dialogue but also locate an appropriate answer

from all the knowledge that is accessible to it. Such knowledge

can oftentimes be regarded as taking the form of a knowledge

graph and locating an answer often corresponds to identifying

relevant nodes in the graph [1].

Recent work in this area has exploited advances in neural

representation learning to address this task [2, 3]. However, in

real-world deployments of such systems, it is not sufficient for

a multi-turn dialogue recognition system to merely use latent

vector representations for knowledge graph nodes to identify

appropriate responses. Rather, the system ought to be able to

offer the user clear explanations of how the multi-turn dialogue

led to specific intention recognition outcomes. In this paper,

we consider a knowledge graph providing information such as

user utterances, the sub-intents associated with the dialogues,

and the standard queries of the dialogues.

We propose a method called PGMD that draws on a neural

reinforcement learning network to navigate the knowledge

graph in pursuit of the pertinent query nodes in the graph. The

reinforcement learning agent starts from a user utterance from

the current multi-turn dialogue and searches the knowledge

graph iteratively with the goal of obtaining a precise and

interpretable path in the graph for intent recognition. As the

agent makes its prediction based on specific paths in the graph,

we have a highly interpretable model that can easily explain

the underlying process of intent recognition [4].

Thus, the goal of our paper is not only to identify the

candidate sets of intentions in multi-turn dialogue, but also

to provide an interpretable path in the knowledge graph that

explains the process of identifying such intentions. This novel

strategy yields a means of overcoming the shortcomings of

current approaches. We use the intent recognition process

as a Markov decision process based on a knowledge graph.

Reinforcement learning is invoked for each given multi-turn

dialogue, wherein the agent learns to search for the sub-

intents associated with the dialogues, and finally search for the

standard queries of the dialogues. The search path can serve

as an explanation of the dialogue intent prediction process.

The main contributions of this paper are as follows:

1) We use multi-turn dialogue data to construct a knowl-

edge graph and train a node embedding model for this

knowledge graph, which mainly includes the following

types of nodes: user utterance nodes, sub-intent nodes,

and standard query nodes. In light of the sparsity of the

textual data, our model draws on the BERT pre-training

model [5] to obtain the word representations of the user

utterances to train the model.
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2) We propose a reinforcement learning method for path

selection called PGMD. Since multi-turn dialogue has

chronological characteristics, we consider an BiLSTM

(Bidirectional Long Short-Term Memory) network with

attention mechanism in our reinforcement learning agent

to obtain the state characteristics of the path. And we

proposed a new reward to compute the macro-averaged

matching score between nodes on the path with the query

nodes.

3) We have designed multi-turn dialogue tracking path

searching algorithms including backward tracking strat-

egy and forward tracking strategy to find different paths

as candidate sets for identified intents.

II. RELATED WORK

Knowledge graph-driven recommendation. The primary

objective in a recommendation task is to determine the

suitability of items for users that they have not yet seen

or used. There are two principal ways of incorporating a

knowledge graph into a recommendation engine. The first

is based on a feature-driven recommendation method, and

involves extracting pertinent user and item attributes from

the knowledge graph as features, which can then be in-

cluded into traditional models, such as the FM model, LR

model, etc. [6]. The second is the path-based recommendation

method. [7] considers the knowledge graph as a heterogeneous

information network and then constructs meta-graph based

features between items. [8] proposed a new model named

KPRN which can generate path based on the semantics of

entities and relations. [9] transferred the relation information

in knowledge graph in order to figure out the reasons why a

user prefers an item. [10] proposed a model named KGCN

which can mine the associated attributes between items in

knowledge graph. In particular, [11, 12, 13, 14] proposed

different path-based methods to get recommended results for

the Linked Open Data(LOD). [12] found out the recommended

path in LOD based on variable importance scores. [11] and

[13] used DBpedia to extract semantic path-based features to

compute the recommended results eventually. [14] made an

investigation about the incorporation of graph-based features

into LOD path-based systems. One advantage of this second

approach is the full and intuitive use of the network structure

of the knowledge graph.

In existing work, the recommendation engine is trained

based on prior interactions between users and items. However,

in our dialogue engine, we need to recommend appropriate

query nodes based on the user dialogue, and there may not

have been any prior interaction at all with any relevant items.

Thus, our setting is quite different from general recommen-

dation systems. However, we compare our algorithm against

state-of-the-art recommendation engines.

Reinforcement learning. In recent years, a large number

of studies in different areas have identified reinforcement

learning as a promising artificial intelligence technique. Thus,

reinforcement learning is not only used for standard text

mining tasks such as text classification [15]. Additionally, it

has also been explored for knowledge graphs of the sort men-

tioned above. For example, in terms of question answering,

a knowledge graph may be considered as the environment

for an agent. [1] used reinforcement learning whose reward

function considers accuracy, diversity and efficiency to find

paths in the knowledge graph and [16] proposed a multi-

hop knowledge graph to handle Question Answering. [17]

proposed a knowledge graph question answering model based

on end-to-end learning. [18] proposed a collaborative system

which contains two agents. And one agent is used to reason

path in knowledge graph, another is used to extract relation

from background corpus. More recently, [19] proposed a

method called Policy-Guided Path Reasoning which couples

recommendation and interpretability by providing actual paths

in a knowledge graph. [20] proposed a method which can

identify explicit paths from users to items over the knowledge

graph as the recommendation results, and experimental results

show that not only the method gets a good recommendation

results, but also provides explanations. [21] proposed a co-

operative system including reasoning agent and information

extraction agent to handle with Question Answering problem.

The reasoning agent identifies the path over knowledge graph,

and the information extraction agent provides shortcut or

missing relations for long-distance target entity. [22] proposed

a new performance metric for Question Answering agents

which improve the results of Question Answering models

while not to answer a limited number of questions which

have been answered correctly. [23] proposed a new method

named CogKR which includes summary module and reasoning

module to handle with the one-shot knowledge graph rea-

soning problem. Besides, reinforcement learning can also be

used in automated knowledge base completion and knowledge

aware conversation generation. [24] proposed a new frame-

work which reasons the relations between the missing factors

and updates the knowledge base to implement the automated

knowledge base completion. [25] proposed a new chatting

machine which can generate conversation by reasoning over

the augmented knowledge graph containing both triples and

texts. We compare against such work in our experiments.

Compared with other reinforcement learning path reasoning

methods, PGMD use an BiLSTM network with attention

mechanism to extract path features which has an important

underlying ordered time sequence, and use a new formula

which computes the macro-averaged matching score between

nodes on the path with the query nodes as the soft reward.

Besides, the action trimming method also plays an import role

in the algorithm.

Dialogue construction. Building an automated conversational

agent is a long cherished goal in Artificial Intelligence (AI). At

present, there are two common ways to construct a dialogue

bot: generation-based methods [26, 27] and retrieval-based

methods [2, 3, 28, 29, 30, 31]. In particular, [2, 28, 29] ana-

lyzed different baselines which aim to select the next response

on the Ubuntu Dialogue Corpus. [3] formed a fine-grained

context representation via formulating previous utterances into

context to get a better performance. [30] proposed a model

named SMN to address problem i.e., losing relationships
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among utterances or important contextual information. [31]

used Deep Attention Matching Network to select response

which takes advantage of attention mechanism to extract

information from user utterance and response. Generation-

based models generate the best answer under the context. With

sufficient data, they can learn various ways to generate di-

verse responses. However, they may not be sufficiently stable.

Retrieval-based chatbots, on the other hand, select a suitable

response from a pre-built inventory of potential responses.

Their advantage is that the entire system is relatively stable as

they only considers a specific narrow domain. However, the

set of potential answers is limited by the repository.

Multi-turn retrieval-based dialogues usually compute the

matching scores between user utterances and responses and

then select the suitable responses from the response inventory.

However, our method primarily identifies the standard queries

for the multi-turn dialogues. Then the users can get responses

according to the standard queries identified by our systems.

Dialogue intent mining. Generally, the dialogue systems are

usually classified into two categories including task-oriented

dialogue systems and non-task-oriented dialogue systems. The

task-oriented dialogue systems aim to handle certain questions

and the non-task-oriented dialogue systems do not have certain

targets. The first step of the pipeline for task-oriented dialogue

systems is to capture users’ intents according to the users’

utterances, then the second step is to make actions based on the

task policy, and finally the systems select a decent responses to

reply to users from the pre-built inventory associated with the

actions[32]. The methods using deep learning techniques have

made great progress in dialogue intent mining [33, 34, 35],

and convolutional neural networks (CNN) are used to capture

the user utterance features to identify standard queries [36].

Moreover, [37] and [38] resembled CNN-based model to get

a better performance.

There is no previous work using knowledge graphs to

identify suitable query nodes with explainable paths for multi-

turn dialogue. Our method can give clear explanations about

how the multi-turn dialogues led to the query nodes.

III. PRELIMINARIES

In a task-oriented dialog system(cf. Figure 1), the system

response in each turn of the dialogue is decided by the

intention analyzed from the previous turns of user utterances,

which plays a significant role in the whole dialogue system.

And the goal of our system is exactly the intent mining in

the certain task-oriented dialogue system via reinforcement

knowledge graph reasoning.

Input. In our experiments, we consider a dataset coming from

a company’s real customer service hotline, with 19 predefined

standard queries and about 120,000 call dialogues. As input,

we consider multi-turn dialogue data including the automated

customer service agent from the company that attempts to

identify the human caller’s intent with regard to an inventory

of standard queries, i.e., the intents for which the customer

service can provide predefined help. The user utterances in the

dataset refer to user questions, the sub-intents for dialogues

include the demands associated with the dialogues and the

Fig. 1: Multi-turn Dialogue Example.

TABLE I: Example of a 3-turn dialogue.

Customer Utterance Business Unit Demand QID

1 Well, how to restrict the
payment of credit cards?

Credit payment Close

1
5

(P
ay

m
en

t
is

su
es

)

2 No Credit payment Payment
method

3 I want to set a restriction for
my receiving code so others
cannot pay me with credit
cards.

Credit receipt Open

relevant business units for the dialogues, and the intents for

dialogues refer to standard queries. An example of such a

conversation is given in Table I. The data comprises customer

utterance, business unit and demand for each turn of customer

questions or utterances, and the standard query IDs (QIDs)

for the overall multi-turn dialogue. We assume the connection

between business units and their demands is known.

Problem formulation. A knowledge graph (KG) G is a graph

G = {(e, r, e′) | e, e′ ∈ ε, r ∈ R} that captures factual

information. A node e represents an entity, class, type, or

literal. ε is the set of nodes, and R is the set of edges between

pairs of entities e, e′, where two nodes e, e′ are connected by

a predicate r, forming a semantic fact (subject e, predicate r,

object e′), e.g., (Berkeley, locatedIn, California).

KGs are widely used to model such semantics relationships.

In this paper, we model the multi-turn dialogue process as an

ad hoc knowledge graph GD, created on the fly to capture

relationships between nodes including multi-turn dialogue text

utterances T of customers and a subset of standard queries Q,

where T,Q ⊆ ε and T∩Q = ∅. The two entities are connected

via predicates rt,q , where t ∈ T , q ∈ Q. Overall, in our

dataset, there are 4 kinds of entities and 7 types of predicates,

as described in Table II. Given a knowledge graph GD, the

maximum length of searchable paths K and the number of

standard queries N , the goal is to learn a model and identify

a candidate set {(qn, pn) | 0 ≤ n < N} for each customer

question t ∈ T , where pn denotes the probability of query qn.

Thus, for every pair (t, qn), we need to have a path pk(t, qn)
with 2 ≤ k ≤ K.

Definitions.
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TABLE II: Data Description (counted by turns)

Entities Description Count

Question User question/utterance for every turn in a dialogue 190,273
Demand Underlying demand for dialogue 205
Business Business units for dialogue 41
Query Standard query, i.e., intent for overall dialogue 19

Predicate Description Count

goesOn question
goesOn
−−−−−→ question 190,273

hasDemand question
hasDemand
−−−−−−−−−→ Demand 190,478

hasBusiness question
hasBusiness
−−−−−−−−−→ Business 190,314

includes Business
includes
−−−−−−→ Demand 246

demandHas Demand
demandHas
−−−−−−−−−→ query 224

businessHas Business
businessHas
−−−−−−−−−→ query 60

isQuery question
isQuery
−−−−−−→ query 190,292

Definition 1: (k-hop path.) A k-hop path from entity e0 to

entity ek is a sequence of k + 1 entities with k intermediate

relationships. This is expressed as pk(e0, ek) = {e0
r1←→

e1
r2←→ ...

rk←→ ek}, among them ei−1
ri←→ ei indicated

as (ei−1, ri, ei) ∈ GD or (ei, ri, ei−1) ∈ GD, i ∈ [k].
Definition 2: (1-hop scoring function.) We define a scoring

function f to compute the degree to which the entity e matches

the entity ek, where the relationship r is a relationship along

the k-hop path of the entity e to the entity ek.

f(e, ek) = 〈e+ r, ek〉+ bek (1)

IV. METHODOLOGY

We construct a knowledge graph for the multi-turn dialogue

based on the entities and relations shown in Table II. All

user questions (or utterances), standard queries (which serve

as the intents of dialogues), sub-intents of dialogues which

include business units and demands can become entity nodes

in such a graph. The goal is to find the correct query for the

overall dialogue. This entails devising a strategy to pursue

paths emanating from the user question node and leading

to an appropriate query node. The searching path which

begins from the first turn, passes through the following turns

and finally reaches the query can be modeled as a Markov

Decision Process. Hence, we rely on reinforcement learning

for navigation along the graph towards the correct query node.

A. Dialogue Graph Construction

From the multi-turn dialogue, we induce a knowledge graph

(cf. Figure 2) with edges connecting 4 types of entities. For

every customer utterance node, there are multiple paths in the

graph that can reach the standard query nodes. We assess

which standard query has the highest probability based on

scores within the knowledge graph.

First, in order to construct a knowledge graph, we begin by

extracting triples of the form (e, r, e′) from the data and add

them to the knowledge graph. For instance, according to the

Table II, “Credit Pay” is a business unit entity (business b2 in

Figure 2), while “stolen” is a Demand entity (Demand d2 in

Figure 2), and the predicate “includes” is the relationship for

the edge linking these two nodes.

Fig. 2: An example of a multi-turn dialogue knowledge graph.

Vector Representations. While it is possible to apply struc-

tured queries on a knowledge graph, to make full use of

the rich information that it provides, we additionally learn

vector representations. We exploit the elegant TransE method

[39] to learn such representations. For the embedding layer,

the embeddings for query nodes, business nodes and demand

nodes are initialized randomly based on a certain distribution,

and then updated in the process of training TransE.

BERT Question Text Embeddings.

Edemand, Ebusiness, Equery, Equestion =

TransE(Edemand, Ebusiness,Equery, Equestion)
(2)

with embedding matrix initialization

Edemand = Embeddingrandom(Vdemand)

Ebusiness = Embeddingrandom(Vbusiness)

Equery = Embeddingrandom(Vquery)

Equestion = EmbeddingBERT(Vquestion)

(3)

However, considering only structural information, the embed-

dings for question entities would remain overly coarse-grained

and uninformative in light of the rich semantic structure of

linguistic utterances. Hence, in order to learn richer embed-

dings capturing fine-grained semantic nuances, we invoke the

pretrained BERT model [5] for embedding initialization, and

fine-tune it in the process of training the TransE model.

Overall, the process of training TransE can be summarized

as Equation 2 and Equation 3.

B. Multi-Turn Dialogue Path Searching Algorithms

In order to identify the user intent by mapping it to a stan-

dard query, we need to find the correct path in the knowledge

graph from the user question node to such a query node. We

design multi-turn dialogue path searching algorithms including

backward tracking strategy and forward tracking strategy. We

formalize the forward tracking strategy as Algorithm 1 and

propose the algorithmic procedure using forward tracking

strategy formalized as Algorithm 2 by considering the specific

multi-turn property of the data.
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While searching for paths, we rely on reinforcement learn-

ing to select the next node in the knowledge graph (cf. blue

lines). For a multi-turn dialogue, the shorter the search path,

the more reliable its result tends to be. Hence, we define a

threshold σ as the maximum number of search steps. When us-

ing forward tracking strategy, we start searching the path from

the utterance in the first turn of the multi-turn dialogue. For a

three-turn dialogue {question1 → question2 → question3},
for instance, we set the node question1 as the starting point

when searching for a query node. However, it is possible that

the query node is not reached when limiting the number of

steps. If the path searching process stops at a certain step, the

multi-turn dialogue will fail to return a query. In this case, we

forward track to search from question2.

Inversely, when using backward tracking strategy, we start

searching the path from the utterance in the last turn of the

multi-turn dialogue. If the query node is not reached, we

backward track to search from the previous turn of the multi-

turn dialogue.

For this path selection part, the time complexity for each

dialogue is O(T ∗ L ∗ A), the T represents the maximum

turns of the dialogue, the L represents the maximum length of

path when system search query nodes, and the A represents

maximum out-degree in the knowledge graph.

Algorithm 1 Multi-turn Forward tracking Path Searching

Require: The dialogue questions list, T ;

Require: The query set, Q;

Require: The maximum searching steps, σ;

1: Initialize l = length(T ), k = 0
2: while k < l do

3: current node = T [k]
4: s = 1 ⊲ start with step 1

5: while s ≤ σ do

6: current node =
search next node(current node) ⊲ find next node in

KG

7: s++ ⊲ next step

8: if current node ∈ Q then

9: return current node ⊲ find the target node

10: end if

11: end while

12: k++ ⊲ need forward tracking

13: end while

14: return ∅

C. Reinforcement Learning

The goal of our reinforcement learning is to pursue suitable

paths in the knowledge graph. Algorithm 2 provides the details

of the proposed reinforcement learning empowered PGMD

algorithm, which extends the path searching process.

1) Policy/Value Network: At every step, the reinforcement

learning model requires the state of the current search path

to select the best action to take. An important property for

multi-turn dialogue is that the different turns adhere to an un-

derlying ordered time sequence. For instance, the query nodes

Algorithm 2 Policy Guided Multi-turn Path Reasoning

(PGMD)

Require: The dialogue questions list, T ;

Require: The query set, Q;

Require: The maximum searching steps, σ;

Ensure: Reward r, path node set P

1: Initialize l = length(T ), k = 0
2: while k < l do

3: P = φ ⊲ path node set

4: i = 0
5: current node = T [k]
6: while i ≤ k do

7: P ← T [i] ⊲ save T [i] to P

8: end while

9: s = 1 ⊲ start with step 1

10: while s ≤ σ do

11: s = State(P ) ⊲ get state from path

12: A = kg(current node) ⊲ get action space from

KG

13: Ã = pruning(A | f) ⊲ action pruning

14: next node = PGMD(s, Ã) ⊲ determine next

action

15: current node = next node

16: P ← current node ⊲ save current node to P

17: s++ ⊲ next step

18: if current node ∈ Q then

19: r = Reward(current node | f) ⊲ calculate

reward

20: return r, P

21: end if

22: end while

23: k++ ⊲ need forward tracking

24: end while

25: return ∅

for two partial dialogues question1 → question2 versus

question2 → question1 may be entirely different. Thus, the

network needs to account for this temporal order property of

the data. We use an Actor-Critic algorithm, with the structure

of the network as given in Figure 3. An BiLSTM network with

attention mechanism is invoked to extract path features. We

further concatenate the embedding of the historical nodes with

the BiLSTM model’s output as a fusion layer, and then pass it

through two fully-connected layers. Finally, the probabilities

of actions in the action space are emitted by the actor layer.

The effect of the network is evaluated by the critic layer.

2) States: The state is the input of the policy network

and provides information about the current path. To avoid

overfitting, we only consider partial paths. Define k as the

upper-bound of the historical nodes used to make decision.

State st at step t is the start node embedding Eq and the path

embedding starts from the current node et to the previous k

nodes et−k+1 including edges: (Eet−k+1
, Ert−k+2

..., Ert , Eet)
(Ee is the embedding of the entity e, and Er is the embedding

of the predicate r).

3) Actions: For a current node et at step t, the complete

action space includes all the outgoing connected nodes of et
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Fig. 3: The Policy Network

(but excluding historical nodes). Some nodes in the graph may

have a large out-degree. Owing to efficiency considerations,

we propose an action pruning strategy. We compute scores

of node et with all nodes in the complete action space A

according to the 1-hop scoring function f(et, a), a ∈ A.

Given δ as the upper-bound of the size of the action space, we

eliminate low-scoring actions after sorting. The pruned action

space Ã is defined in Equation 4.

Ã = {(et, a) | |(et, a)| ≤ δ, a ∈ A} (4)

4) Reward: During path searching in the KG, it is not

possible to confirm whether the action will ultimately reach

the correct target before the final step. Hence, we cannot only

use a binary reward to indicate whether the agent has reached

the target. Instead we propose a soft reward formula when the

agent reach query nodes except the target. As the number of

nodes of each type on the path may vary, and we wish for

each type of node to play the same role, we consider as the

reward the macro-averaged matching score between nodes on

the path and the query node. The reward function is defined

as Equation 5.

r =





1
3 [

1
n0

∑n0

i=1 max(0,
f(ei0,et)

maxq∈Q f(ei
0
,q)

)+

1
n1

∑n1

j=1 max(0,
f(ej

1
,et)

maxq∈Q f(ej
1
,q)

)+

1
n2

∑n2

k=1 max(0,
f(ek2 ,et)

maxq∈Q f(ek
2
,q)

)] if et ∈ Q

and et 6= er

1 if et = er

0 otherwise.
(5)

where Q is a set of query entities, B is a set of business

entities, D is a set of demand entities, and T is a set of question

entities. e0, e1 and e2 represent nodes of searching path, and

e0 ∈ D, e1 ∈ B, e2 ∈ T . er is the query node corresponding

to the multi-turn dialog. n0 is the number of demand nodes

of the path, n1 is the number of business nodes of the path,

n2 is the number of question nodes of the path.

V. EXPERIMENTAL RESULTS

A. Settings

Dataset. The details of the dataset were already given in

Section III. From the total of 120, 000 call dialogues, we

randomly selected one-tenth as the test set, one-tenth as the

valid set and the remaining eight tenths for training.

Data Protection Statement.

1) The data used in this research does not involve any

Personal Identifiable Information (PII).

2) The data used in this research were all processed by data

abstraction and data encryption, and the researchers were

unable to restore the original data.

3) Sufficient data protection was carried out during the

process of experiments to prevent the data leakage and the

data was destroyed after the experiments were finished.

4) The data is only used for academic research and sampled

from the original data, therefore it does not represent any

real business situation in Ant Financial Services Group.

Evaluation Metrics. The experiments target at evaluating

whether our algorithm can predict the correct query for a user-

provided questions within the dialogue. To this end, we com-

pute macro-Precision (Prec.), macro-Recall (Rec.) and macro-

F1 to evaluate the performance of the top-1 result. There are

also scenarios in the company requiring multiple queries to

be selected. Thus, we additionally computed Precision@K,

which counts a result as correct when among the top-ranked K

result queries, there is at least one match with the ground-truth

query.

Implementation Details. In our experiments, we relied on

a maximum searching step limit σ = 3, an upper-bound of

historical state nodes k = 3, and an upper-bound δ = 100
for the action space. We set the dimensionality of the word

embeddings to 100. To increase the diversity of paths, we set

the dropout rate to 0.5, and use SGD2 optimizer. We train the

model for 10 epochs, setting the learning rate to 0.0001, and

adopting a batch size of 64, with the entropy loss weight set

to 0.001. Especially, the SGD2 refers to the SGD optimizer

with 0.9 momentum. We have presented the performance when

we set different parameters which are the most important

parameters including optimizer, maximum searching step limit

and upper-bound for action space in the paper Section V-C,

Section V-G and Section V-F, and select the parameters

corresponding to the best result as the configuration. As for

other parameters such as dimensionality of word embedding

[1], dropout rate [17], learning rate [4], batch size [4], upper-

bound of historical state nodes [4], entropy loss weight [17],

are set according to the previous work.

B. Baselines

We compare the proposed PGMD against both recom-

mender systems and text classification methods. As the base-

lines are not specifically designed for our problem, they rely

on varying subsets of data sources. Details of the data sources

used by every baseline could check Table III.

BERT-classification. We use the pre-trained BERT vectors



AUTHOR ET AL.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS 7

TABLE III: Data sources used by baselines.

Model Question Business Demand Optimizer

BERT-classification T T T Adam
BPR T - - SGD

DeepCoNN T - - RmsProp
KGCN T T T SGD
KTUP T - - Adam
JRL T T T SGD

semhash-classification T T T Adam
DeepPath T T T Adam

MultiHopKG T T T Adam
MINERVA T T T Adam

PGPR T T T Adam
PGMD(ours) T T T SGD

of the questions for the task of intent classification.

BPR. [40] The Bayesian Personalized Ranking approach for

recommendation, which is one of the state-of-the art ranking-

based method for top-N recommendation with numerical rat-

ings. and we use BPR-MF for model learning.

DeepCoNN. [41] The Deep Cooperative Neural Networks

model for recommendation, which models users and items

jointly using review text for rating prediction.

KGCN. [42] The Knowledge Graph Convolutional Network

for recommendation, which mines associated attributes be-

tween items on knowledge graph.

KTUP. [43] A Joint Knowledge Graph Recommender,

which transfers the relation information in knowledge graph

in order to figure out the reason why an user prefers an item.

JRL. [44] A Joint Representation Learning(JRL) framework

based on multi-view machine learning, which is capable of

incorporating heterogeneous information sources for top-N

recommendation by learning user/item representations in a

unified space.

semhash-classification. [45] We use Semantic Hashing

vectors of the questions for the task of intent classification.

DeepPath. [1] A method for knowledge graph reasoning,

which includes a reward function that takes the accuracy,

diversity and efficiency into consideration.

MINERVA. [16] An reinforcement learning method for

knowledge reasoning, which navigates the agent based on the

input query to identify predictive paths in the graph.

MultiHopKG. [17] An approach to reason in knowledge

graph, which reduces the influence of false negative supervi-

sion and weakens the sensitivity to spurious paths of on-policy

RL.

PGPR. We adapt PGPR to our problem by removing the

BiLSTM and attention mechanism in the policy/value network

(cf. Figure 3), but only keeping the concatenation layer of

historical nodes.

C. Optimizer

We analyze the performance when using different optimizer

during training. Five optimizers are compared in the Table V

including Adam, SGD1, SGD2, RMSProp and AdaGrad.

Particularly, the SGD1 refers to the SGD optimizer with no

momentum, while the SGD2 represents the SGD optimizer

with 0.9 momentum. The alpha parameter for RMSProp

optimizer is set as 0.9. The time(min) refers to the average

cost time for every epoch in the training procedure. By using

the SGD2, the system performs the best, but costs too much

training time. One explanation is that the momentum increases

the rate of convergence and helps the optimizer avoid the local

optima value. When using Adam, the performance is not the

best, but less time cost. Thus Adam is an optimizer with

excellent comprehensive performance in our experiments. The

application of adaptive learning rate allows the loss function to

converge quickly. However, although Adam has an excellent

convergence speed at the early stage of training, the final

generalization ability of the model is not as good as the model

trained with SGD.

D. Quantitative Analysis

In order to compare PGMD against other baseline models

exhaustively, we conduct an extensive quantitative analysis

of these models. First, we train the model for 10 epochs

with the default settings mentioned above including SGD2

optimizer, and observe the results of different models’ top-1,

top-2, top-3. The best values for every model are reported in

Table VI. Overall, PGMD performs better than other baselines

in precision, recall, and F1 of the results.

The results of DeepCoNN and KGCN are dismal. This

might be because DeepCoNN relies on user reviews and item

scores for training. KGCN, meanwhile, builds a knowledge

graph around the item and the corresponding attributes. It

relies on the user’s previous interactions with the item to

update the embedding matrix of users and achieve the effect

of “knowing” a particular user. However, for our dialogue

dataset, text utterances are often not repeated. Thus, the user

information is limited to that given by the BERT vector

representation of the dialogue text. As there is little duplicate

text in the data, it is difficult to learn relationships between a

text item and a target query node. Thus, every dialogue shows

up as introducing a new user at test time, severely hampering

the result quality.

E. Evaluation of Path Searching Strategies

For further analysis, we compare our forward tracking

strategy during path searching with a backward tracking one.

We trained the model with SGD2 optimizer and other default

settings. The total numbers of multi-turn dialogues with re-

spect to different turns of the dialogue is listed in Table IV.

The table also provides statistics about which question nodes

the algorithm could find query nodes for during the path

search. Dialogue for which it is unable to find the query

node are referred to as invalid dialogues when reasoning path.

“Que” refers to question nodes in the tables. For example, the

value 6, 822 in Table IV signifies that there are 6, 822 3-turn

dialogues for which the query node is found at the second turn

among all the 42, 175 3-turn dialogues.

The experimental results show that by using the forward

path searching strategy the number of searches from the

previous question is more than the number of searches from

the next question. In contrast, with the backtracking path

search strategy, the number of searches from the next question

is more than the number of searches from the previous one.
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TABLE IV: Statistics of epoch 1, 5 and 10 for backward (Right) and forward (Left) tracking path searching.

Forward Backward

Epoch Turn Total Que1 Que2 Que3 Que4 Que5 Invalid F1(%) Que1 Que2 Que3 Que4 Que5 Invalid F1(%)

1 Epoch

1 6,348 1,324 - - - - 5,024

38.006

1,300 - - - - 5,048

34.991
2 35,392 7,273 6,548 - - - 21,571 5,591 8,252 - - - 21,549
3 42,175 8,843 6,822 6,473 - - 20,037 5,283 6,669 10,074 - - 20,149
4 17,764 3,679 3,098 2,330 2,040 - 6,617 1,814 2,295 2,942 4,100 - 6,613
5 5,554 1,213 953 795 571 440 1,582 429 569 805 876 1,310 1,565

SUM 100,885 22,332 17,421 9,598 2,611 440 54,831 14,417 17,785 13,821 4,976 1,310 54,924

5 Epoch

1 6,348 1,654 - - - - 4,694

37.844

1,556 - - - - 4,792

34.858
2 35,392 9,039 8,381 - - - 17,972 6,073 11,003 - - - 18,316
3 42,175 10,829 7,991 7,590 - - 15,765 5,451 7,359 13,263 - - 16,102
4 17,764 4,687 3,434 2,613 2,174 - 4,861 1,739 2,465 3,192 5,415 - 4,953
5 5,554 1,541 1,089 895 530 441 1,058 411 575 761 1,012 1,666 1,129

SUM 100,885 27,750 20,895 11,098 2,704 441 44,350 15,230 21,400 17,216 6,427 1,666 45,292

10 Epoch

1 6,348 1,742 - - - - 4,606

36.493

1,793 - - - - 4,555

34.178
2 35,392 9,557 9,271 - - - 16,564 6,097 12,464 - - - 16,831
3 42,175 11,685 8,453 8,010 - - 14,027 5,313 7,470 15,030 - - 14,362
4 17,764 4,994 3,746 2,507 2,263 - 4,254 1,700 2,377 3,388 5,946 - 4,353
5 5,554 1,565 1,196 872 541 504 876 359 539 794 1,038 1,881 943

SUM 100,885 29,543 22,666 11,389 2,804 504 40,327 15,262 22,850 19,212 6,984 1,881 41,044

TABLE V: Evaluation results of different optimizers during

training

optmizer. Prec.(%) Rec.(%) F1(%) Prec.@2(%) Prec.@3(%) time(min)

Adam 37.919 38.601 37.836 52.275 59.019 101

SGD1 38.069 38.573 37.820 50.868 57.211 205

SGD2 38.234 38.534 38.006 52.314 59.791 191
RMSProp 37.417 38.429 37.479 52.478 59.938 97
AdaGrad 37.741 37.769 37.372 51.389 59.679 164

TABLE VI: Evaluation results of top-1, top-2 and top-3.

Model Prec.(%) Rec.(%) F1(%) Prec.@2(%) Prec.@3(%)

BERT-classification 45.377 26.852 30.190 38.360 45.410
BPR 43.281 26.253 29.307 37.790 45.251

DeepCoNN 7.317 6.810 3.880 17.487 24.503
JRL 23.345 20.099 17.180 44.791 52.218

KGCN 6.127 7.621 6.719 14.21 22.219
KTUP 41.160 26.083 28.885 37.715 44.748

semhash-classification 48.533 25.410 28.759 37.044 44.413
DeepPath 20.972 20.350 18.610 28.266 31.614

MultiHopKG 30.637 31.242 30.642 47.774 56.987
MINERVA 23.249 32.138 23.760 25.676 27.027

PGPR 29.829 30.704 30.045 43.104 49.918
PGMD (ours) 38.234 38.534 38.006 52.314 59.791

TABLE VII: Evaluation results of different action space during

training

Action space
Adam SGD2

F1(%) Prec.@2(%) Prec.@3(%) F1(%) Prec.@2(%) Prec.@3(%)

100 37.836 52.275 59.019 38.006 52.314 59.791
200 35.065 49.888 57.598 35.508 50.190 57.607
300 35.105 50.147 57.779 35.217 49.288 57.094
400 34.254 49.456 57.546 34.806 49.672 57.080
500 33.370 49.102 56.406 33.243 48.006 56.061

The model using the backward tracking strategy attains a lower

accuracy than that adopting the forward tracking strategy. One

explanation is that for a multi-turn dialogue in our scenario,

a new turn usually serve as additional information of the

previous turn and doesn’t contain complete information. When

using forward tracking strategy, it is easier for the system to

find the target query node based on the complete information.

In contrast, when using backward tracking strategy, it is

possible for the system to find wrong query node because of

the incomplete information contained of the later turn.

F. Influence of Action Pruning Strategy

The action space has an important effect on the result.

In this experiment, we evaluated the result of PGDM with

TABLE VIII: Evaluation results of different max. path search

lengths.

Len.
Adam SGD2

F1(%) Prec.@2(%) Prec.@3(%) F1(%) Prec.@2(%) Prec.@3(%)

3 37.836 52.275 59.019 38.006 52.314 59.791

4 34.570 46.999 51.481 36.598 51.770 59.463
5 34.501 46.866 51.718 37.887 51.813 59.316

different sizes of trimming action spaces. When the number of

actions is lager than the upper-bound δ, the action space will

be adjusted according to the scoring function. Higher score

actions are more likely to be saved, the lower score actions will

be removed from the action space. We want to explore whether

a larger action space, even we keep all the actions, can help

the system perform better than smaller action space. Because

the Adam optimizer is the most widely used optimizer, we

analyze the performance of system using different action space

with Adam optimizer and SGD2 optimizer. The size of the

trimmed action space varies from 100 to 500, with a step size

of 100. We can observe from Table VII that when using a

smaller pruning action space, it is more possible to get a better

performance. The results indicate that it is effective to apply

the action pruning strategy by 1-hop score function. Therefore

when using smaller pruning action space, the system trim more

noisy nodes, which increases the probability of reaching the

correct query nodes.

G. History Representations

The maximum length of the path when the system searching

query node is an important hyper-parameters. We compared

the use of different maximum path searching lengths, consider-

ing 3, 4, and 5 as the maximum lengths with Adam optimizer

and SGD2 optimizer. The above Table VIII provides the

results for different maximum lengths. We find that with 3

as the maximum path length, the system performs best. One

explanation is that though longer searching paths directed

to more query nodes, they lead to less reliable predictions.

Therefore when define the maximum path length, we need to

consider the trade off between the reliability of the predictions

and the searching range of query nodes. .
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Fig. 4: Examples.

VI. CASE STUDY ON PATH REASONING

In order to visually understand how our model allows

for interpretability, we present a case study based on the

previous experimental results. Figure 4 illustrates how to use

the predicted path to explain the process of intent recognition

through the paths. For the first example, the question value

“I don’t know why there is a default on my Credit Account.”

has the Demand value “Max term”, while the question value

“Yes I used to default once but not this time. I want to ask that

why I cannot use my credit pay and how to solve this issue?”

also has the Demand value “Max term”, and the query of

the question value “Yes I used to default once but not this

time. I want to ask that why I cannot use my Credit Pay and

how to solve this issue?” is query “Default issues”. Thus, we

can infer that the query for the question “I don’t know why

there is a default on my credit account.” is also query “Default

issues”.

For the second example, the question value “Why I still

cannot use my Credit Pay after repaying the debts.” has the

Business value “Pay for Credit Pay advanced”, and the

question value “I didn’t register any Credit Pay account,

but I was informed that I borrowed money from it and then

paid back to it.” also has the Business value “Pay for

Credit Pay advanced”, and the query of the question value

“I didn’t register any Credit Pay account, but I was informed

that I borrowed money from it and then paid back to it.” is

query “Repaying issues”, then we can think the query of the

question value “Why I still cannot use my Credit Pay after

repaying the debts” is also query “Repaying issues”.

For the third example, the question value “I lost my phone,

and I can’t log in my credit account.” can go on the dialog

question value “I cannot log in my credit account now. How

can I pay the bill?”, while the dialog question value “I cannot

log in my credit account now. How can I pay the bill?” can

go on the dialog question value “When I log in the credit

account, It says that the account doesn’t exist.”, and the query

of the dialog question value “When I log in the credit account,

It says that the account doesn’t exist.” is query “Login issues”,

then we can think that the query of the question value “I lost

my phone, and I can’t log in my credit account.” is also query

“Login issues”.

VII. CONCLUSION

In this paper, we present a novel explainable approach for

intent identification in multi-turn dialogue. Our novel PGMD

approach relies on a reinforcement learning neural network

to navigate an query-specific ad hoc knowledge graph in

pursuit of relevant query nodes, via our order-aware forward

tracking path searching algorithm for multi-turn dialogue. We

conducted a series of experiments demonstrating that PGMD is

a powerful method for multi-turn dialogue intent identification

providing intuitive explanations and outperform state-of-the-

art related work. We believe our method can be extended to

dynamic knowledge graphs to deal with dynamic problems

that new knowledge will appear in the future. As new nodes

and edges being added in the knowledge graph, some existing

nodes and edges are probably removed from the knowledge

graph. In order to get the embedding of nodes and edges

efficiently once updating, we could use DKGE model [46]

which can achieve online embedding learning to get the

updated knowledge graph embedding.
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