
EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 1

An In-Depth Benchmarking and Evaluation of

Phishing Detection Research for Security Needs

AYMAN EL AASSAL,†* SHAHRYAR BAKI,†* AVISHA DAS,† AND RAKESH M. VERMA† Member, IEEE

Abstract—We perform an in-depth, systematic benchmarking
study and evaluation of phishing features on diverse and extensive
datasets. We propose a new taxonomy of features based on the
interpretation and purpose of each feature. Next, we propose
a benchmarking framework called ‘PhishBench,’ which enables
us to evaluate and compare the existing features for phishing
detection systematically and thoroughly under identical exper-
imental conditions, i.e., unified system specification, datasets,
classifiers, and evaluation metrics. PhishBench is a first in the
field of benchmarking phishing related research and incorporates
thorough and systematic evaluation and feature comparison.
We use PhishBench to test methods published in the phishing
literature on new and diverse datasets to check their robustness
and scalability. We study how dataset characteristics, e.g., varying
legitimate to phishing ratios and increasing the size of imbalanced
datasets, affect classification performance. Our results show that
the imbalanced nature of phishing attacks affects the detection
systems’ performance and researchers should take this into
account when proposing a new method. We also found that
retraining alone is not enough to defeat new attacks. New features
and techniques are required to stop attackers from fooling
detection systems.

Index Terms—Feature Engineering, Feature Taxonomy,
Framework, Phishing Email, Phishing URL, Phishing Website

I. INTRODUCTION

Phishing is a popular form of social engineering attack

wherein the attacker deceives a victim through impersonation.

Emails and messages with malicious attachments or poisoned

URLs (Uniform Resource Locator) redirecting to malicious

websites are a few of the common attack vectors used in

phishing. Technological advancement has provided phishers

with better tools to launch dangerous and sophisticated attacks.

The 2018 Phishlabs report on phishing trends [60] mentions

that the targets of phishing attacks shifted from individuals to

enterprises. To make matters worse, phishers now have access

to free SSL certificates. Nearly half of all phishing websites

currently use HTTPS, which was one of the major indicators

of the legitimacy of websites [45]. Another report published

by APWG in the first quarter of 2019 states that the number of

phishing attacks increased by 30% from the previous quarter

and that the primary targets were the Software-as-a-Service

(SaaS) and webmail services [3].

Phishing has become such a pernicious threat that re-

searchers have devoted increasing attention to combating it

†University of Houston, Houston, TX 77204 USA (e-mail: {aelaassal,
sbaki2, adas5, rverma}@uh.edu)

*First and second authors contributed equally to the paper.
Corresponding author: Rakesh M. Verma (e-mail: rverma@uh.edu).

since 2004. The query ‘phishing’ on DBLP1 shows approxi-

mately 55 research papers on average are published every year

that address phishing attacks and their detection for the email,

website and URL vectors. The literature on phishing also

includes several surveys, e.g., [12], [19], that try to compare

these techniques at least at a theoretical level. However, the

research on phishing detection raises several questions that

have not been adequately addressed in previous literature. How

to choose the most appropriate phishing detection technique in

a given specific scenario? What does a good solution mean in

this context? More fundamentally, are the claims of accuracy,

and other metrics, made by research papers true and realistic?

As a security challenge, phishing has several parameters

which need careful attention for a good solution [52], [58].

These include: (i) The active attacker who is constantly

learning the defensive methods and trying to break them, (ii)

diverse and representative datasets, (iii) imbalanced scenarios

and use of proper metrics for evaluation, and (iv) real-time or

near real-time detection. Researchers often fail to consider

how their features can be defeated by active attackers. They

sometimes demonstrate their techniques on non-representative

datasets like URLs from Alexa.com, which only contain

domain names. They generally use balanced datasets even

though phishing is an imbalanced classification problem since

the number of legitimate samples is higher than phishing ones.

The lack of new public datasets results in training on old data,

which could affect the detection rate for new and improved

phishing attacks.

Owing to this huge parameter space it is difficult to identify

a technique that is optimal across all the parameters. Different

methods have been published using a variety of features and

classifiers and tested on different datasets. However, no frame-

work was published that can systematically and efficiently

compare different methods, features, and classifiers on the

same datasets. Consequently, a benchmarking study is the need

of the day. This benchmarking exercise, however, is non-trivial

and poses an array of unique challenges.

• Given the huge diversity of features and classifiers em-

ployed by proposed techniques, a universal framework

for phishing is quite difficult to be summarized and ab-

stracted. Nonetheless, building a systematic framework is

critical to compare, analyze and diagnose the techniques

from a common viewpoint (under identical experimental

conditions).

• In this study, we need to either collect the code from

the researchers or re-implement their methods. Given the

1https://dblp.uni-trier.de/

Digital Object Identifier: 10.1109/ACCESS.2020.2969780

2169-3536 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 2

large body of work, this itself is a significant challenge.

Furthermore, authors often do not give clear enough

description of the features and implementation methods

they used, which makes it a challenging task to reproduce

the experiments in the literature.

• When proposing new features or approaches, authors

often test their work across limited metrics, datasets,

and/or parameters. To evaluate the techniques as com-

prehensively as possible, we need to identify a suite of

metrics and a diverse set of parameters that consider the

security challenges and characterize all aspects of the

phishing detection problem.

We present in this paper a benchmarking framework, Phish-

Bench, which can help researchers in the field of phishing

detection by providing a template to develop new methods

and features as well as a platform to compare their proposed

techniques with previous works. We also review the features

used in the literature, propose a taxonomy of features and

test previous methods on new datasets2 using PhishBench. To

summarize, we make the following contributions:

• We study the different classes of attributes that have

been used in previous literature and propose systematic

taxonomies of features for URLs, websites, and emails

(Section IV) based on how these features are interpreted

on the victim’s end. We further identify possible sources

for new features. We also determine the features that

lead to the best detection performance and have the

fastest extraction time in the context of phishing detection

(Section VII-D).

• We implement a flexible and customizable benchmarking

framework, PhishBench (Section V), and collect diverse

datasets (Section VI) to facilitate research on phishing

detection. The framework includes a total of 226 (83

URL and Website and 143 email) features along with the

top machine learning algorithms for supervised learning,

deep neural learning, online learning, and imbalanced

learning. We plan to make PhishBench available for

future research.

• Leveraging PhishBench, we conduct a systematic bench-

marking study and an in-depth evaluation of phishing

features and techniques including automated machine

learning suites like AutoML and TPOT (Section VII). The

experiments include comparing classifiers’ performance

on balanced as well as imbalanced datasets, running

scaling experiments, studying feature importance and

finally, comparing with prior research work.

Paper Organization: The next section compares Phish-

bench with other tools and gives an overview of previous re-

lated works. Section III includes some necessary background.

Proposed feature taxonomies are motivated and presented in

Section IV. Section V contains a description of PhishBench

and its utility. Datasets used in the literature, as well as our

datasets, are discussed in Section VI. Experiments are reported

in Section VII along with analyses to answer the questions

posed above. Section VIII concludes.

2Information on how to obtain a copy of these datasets can be found at
http://www2.cs.uh.edu/~rmverma/datasets.html.

II. RELATED WORKS

We divide the related works into two sections: (1) works

that provided a benchmarking framework, and (2) studies on

feature importance.

A. Benchmarking Frameworks

In the machine learning era, there are several tools that

researchers can use instead of implementing everything from

scratch. Scikit-learn for Python developers, Weka for Java

developers, Caret for R developers, and several stand-alone

tools such as RapidMiner and SPSS are available so that

people can build their frameworks. These tools provide various

kinds of machine learning and data mining methods but require

some effort to build a benchmarking system. Someone needs

to write the code for feature extraction (if the features are not

already collected) and feed the features to the system.

New automated machine learning (AutoML) frameworks

have been developed to help users, who do not have any

expertise in this field, to deploy and run machine learning

algorithms. Several automated systems can be found on the

AutoML website3 including TPOT [46] and H2O [54]. Some

AutoML frameworks use multiple preprocessing steps (scal-

ing, feature selection, etc.) on the given data and train several

machine learning algorithms along with hyperparameter tuning

to find the best model. The models can also be ensembled or

stacked to find the best combination. The downside to this

solution is the long time it takes to find the best pipeline -

taking somewhere between hours to even days. These frame-

works generally include options to stop the algorithm from

running and get the results at a specific time, however, there

is no guarantee that the provided solution is the best model

for the problem. Also, these systems evaluate their models on

a dataset of preprocessed and extracted features and do not

offer feature extraction modules, contrary to PhishBench.

Despite considerable research on detecting phishing URLs,

websites, and emails, there is no existing framework that

collates commonly used attributes and algorithms in phishing

detection. Most researchers do not make their code publicly

available. Moreover, there is a lack of common datasets that

researchers can use to compare newer techniques with previous

work. However, the authors of URLNet system [36] have made

their system available online.4 Their system leverages deep

learning architecture (using character and word embedding)

to analyze URLs. Although URLNet just covers one learning

method (Neural Networks) and a specific feature, other re-

searchers can still add and use it as part of their systems. We

also found three other available sources for phishing detection

[5], [39], [51], but none of them have any feature extraction

nor different types of detection methods. They just used a

fixed learning method (Random Forest, Naive Bayes, and

Covariance Matrix) on an already prepared dataset with a set

of fixed features.

Comparison with existing frameworks:

Table I summarizes similar automated frameworks that have

been used for machine learning-based tasks. We did not

3https://www.ml4aad.org/automl/
4https://github.com/Antimalweb/URLNet

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 3

TABLE I: Comparison of existing frameworks with PhishBench. New: Whether adding new features is possible.

Source
Feature Extraction Learning

Methods
Automation

Imbalanced
Methods

Feature Importance Ease of
Use

GUI
New Existing Selection Ranking

RapidMiner X X 32a X X X X High X

Scikit-learn X X 42b Xd X X X Low X

Weka X X 45c X X X X High X

PhishBench X X 31 Xe X X X Moderate X

a https://rapidminer.com/products/studio/feature-list/
b https://scikit-learn.org/stable/user_guide.html
c http://weka.sourceforge.net/doc.dev/weka/classifiers/Classifier.html
d Not part of Scikit-learn - https://automl.github.io/auto-sklearn/master/
e Uses AutoSklearn and TPOT

find any comprehensive framework designed specifically for

phishing to include in this table. We look at whether these au-

tomated systems allow the addition of new or existing feature

extraction methods. We only add the number of supervised

methods under the “learning methods” column to enable a

direct comparison with PhishBench.

Other criteria are whether the frameworks implement auto-

mated learning algorithms (AutoSKLearn, TPOT, etc.), include

methods to handle imbalanced datasets, implement feature

importance (selection and/or ranking), ease of use (the level

of coding required) and the type of user interface. Weka

and RapidMiner have a Graphical User Interface (GUI) im-

plemented, which makes them easier for people with lower

programming skills. Building a machine learning workflow in

Scikit-learn is not straightforward and requires knowledge of

Python. Although PhishBench does not offer a GUI, being able

to change its workflow by turning different options on and off

in the configuration file makes it more user friendly and easier

to use than Scikit-learn. In the Ease of Use column of Table

I, we use high when no programming is required and low

when significant prior coding knowledge is essential to add

a function or algorithm.5 We define ease of use as moderate

when users need some effort to extend the functionalities, as

for PhishBench (Section V-B). The top three rows of Table

I show the need for a convenient framework that enables

researchers to implement and evaluate new phishing detection

features and models without too much effort.

B. Feature Importance

Several studies analyzed the importance and impact of the

features used for learning [2], [14], [15], [17], [18], [20], [22],

[26], [28], [29], [37], [40], [44], [56], [64]. Table II summa-

rizes them from four aspects: 1) feature ranking methods, 2)

top five features, and 3) dataset ratio and 4) dataset sources.

For URL classification, we observe the prevalence of lexical

features under syntactic and semantic categories and a few

pragmatic network features. We will describe these categories

in more detail in Section IV: Features and Taxonomies. URL

features tend to dominate also in the website classification

papers. However, this could be due to the infrequent use of

website features. Note that there are some conflicts between

these results. Potential reasons for these conflicts are the use

of different datasets or different criteria for ranking features.

5To add algorithms to Scikit-learn, please look at https://scikit-learn.org/
stable/faq.html#what-are-the-inclusion-criteria-for-new-algorithms

TABLE II: Comparison of previous works on feature impor-

tance.

Category Paper Dataset Ratio Metric Top Features

URL

[15]

Alexa, DMOZ
PhishTank
Openphish

6:1 IG
HostName 1-4Gram
URL QuadGram

[26] Twitter API 4:1 IG

Type of referring domains
Link/domain creation difference
Domain age, Link creation hour
Type of encoders

[22]
DMOZ

Phishtank
N/A

IG,
Chi-2

caramispa_com, paypal_com
cgi_bin, uk_webapp, com_uk

[37] Twitter APIs 7:1 F-score

Account creation date
Number of sources
Number of initial URLs
Tweet text similarity
Follower-friend ratio

[40]
Alexa (crawled)

Openphish
4:1

IG,
CFSSa

Domain token length
TLD, URL & Domain length
File name length

Website

[18]
Facebook’s

API
100:1 IG

Facebook.com URL
URL param. length
Post type, Link field length
No. of parameters in URL

[24] Private N/A
Odds
Ratio

Host based obfuscation
Organization in URL’s path
word: ‘confirm’, ‘banking’,
‘signin’

[48]

Millersmiles
Phishtank

Yahoo directory
N/A

IG,
Chi-2

SSLfinal state, URL of anchor
Web traffic, Having sub-domain
prefix/suffix

[30]
UCI Machine

Learning Repo.
1.2:1

Omitting
redundant
features

having-Sub-Domain,
SSLfinal-State
Domain-registration-length
Favicon, URL-of-Anchor

[44]
Alexa

PhishTank
4:1

mean
impurity
decrease

Avg. cyclomatic complexity
of landing page variants
avg. number of external blocks
Set-Cookie, lines of code (LOC)

Email
[33] Private 2:1

IG,
Chi-2

Alexa rank, word “n’t”
Number of replies
Number of attachments
word ‘something’

[29]
SpamAssassin

Nazario
2:1 IG

SpamAssassin, Urlnumlink
Bodyhtml, Urlnumperiods
Sendnumwords

[2]
SpamAssassin

Nazario
1:1 IG

SpamAssassin, Bodyhtml
Urlnumlink, Urlnumperiods
URL target/text mismatch

[56]
SpamAssasin

Nazario
1:1 IG

No. of function words
Body richness, Subject richness
No. of characters, No. of URLs

[64]
SpamAssasin

Nazario
1:1 IG

Bodyhtml, Hex characters
Number of domains
URL different from anchor
Urlnumperiods

a Correlation-based Feature Subset Selection

In this paper, we conducted a thorough study using diverse

datasets and multiple runs to address these issues.

Another problem with the above rankings is that most of

them used IG, which is known to prefer features that take

a large number of values. Other techniques, e.g., Gain Ratio

and Chi-squared, can be used to avoid this problem. Authors

in [28] used Gain Ratio and Symmetrical Uncertainty besides

IG but they only tested a small number (7) of features. Based

on their results, the ranking for all three methods was almost

similar (“Email’s subject blacklist word” and “IP-Based URL”

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 4

were the best features). Researchers in [14] also used gain

ratio, Fisher score, and Chi-square on a dataset of legitimate

and malicious emails (emails with a malicious attachment).

They only used the features that can be extracted from the

email itself without using external services. Since their goal

was detecting emails with malicious attachments, their set of

best features are quite different from the above-mentioned

works, type of attachment, content type, content disposition

and email span time6 were the top features for their dataset.

Authors in [22] used classification on a different subset of

features for URL detection instead of using feature selection

methods. They showed that host-based features have the best

performance (94%) on their dataset and lexical features have

the lowest performance (84%). The same method has been

used by [37] for twitter suspicious URL detection. Their

results showed that the similarity of the account creation dates,

the relative number of source applications, and the relative

number of initial URLs (beginning URLs that redirect users

to the same URL) are important features.

Previous works rarely report time information. They usually

consider a narrow set of classifiers and metrics and use

balanced datasets without checking for diversity. In this paper,

we do a thorough study of feature importance using diverse

datasets.

III. PRELIMINARIES

Term Frequency - Inverse Document Frequency (TFIDF)

is a popular statistical feature. It is a term weighting scheme

that uses term frequency in a document and log of the inverse

popularity of the term in the collection [50]. It is defined by

Equation (1), where nt,d is the number of times term t appears

in a document d, Nd is the total number of terms in d, D

is the total number of documents, and dt is the number of

documents containing the term t. In our feature extraction,

the TFIDF vector extracted from an email or website content

is considered as a single feature.

TFIDF (t, d) =
nt,d

Nd

∗ loge(
D

1 + dt
) (1)

We use the below metrics to report our results.

• Confusion Matrix: The total number of true positives

(TP), true negatives (TN), false positives (FP), and false

negatives (FN) identified by the classifier. Reported as

raw values or percentages. We also define P = TP + FN

and N = TN + FP.
• Accuracy: The ratio of correctly classified instances ver-

sus the total number of instances (Equation (2)).

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

• Precision: The ratio of instances correctly identified by
the classifier as relevant versus the total number of
instances classified as relevant (Equation (3)).

Precision =
TP

TP + FP
(3)

• Recall: The ratio of instances correctly identified by the

classifier as relevant versus the total number of instances

that are relevant (Equation (4)).

6difference between the email’s sent and received time

Recall =
TP

TP + FN
(4)

• F1-score: The harmonic mean of precision and recall

(Equation (5)).

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(5)

• Geometric Mean: The geometric mean of true negative

rate (specificity) and recall (Equation (6)).

G−Mean =

√

TP

TP + FN
∗

TN

TN + FP
(6)

• Balanced Detection Rate [1]: A metric to measure the

number of minority class instances that were correctly

classified and to penalize appropriately using the incor-

rectly classified instances of the majority class (Equation

(7)).

BDR =
TP

1 + FP
(7)

• Area Under Curve: When using normalized units, the area

under the curve (AUC) is equal to the probability that a

classifier will rank a randomly chosen positive instance

higher than a randomly chosen negative one [21].

• Matthew’s Correlation Coefficient [6]: It takes into ac-

count true and false positives and negatives and is

generally regarded as an imbalanced measure that can

be used even if the classes are of very different sizes

(Equation 8)).

MCC =
TP ∗ TN − FP ∗ FN

√

(TP + FP)(TN + FN)(P)(N)
(8)

IV. FEATURES AND TAXONOMIES

Over the past decade, researchers have identified and catego-

rized features extracted from phishing attack vectors in various

ways. Some papers classify features from the viewpoint of the

attack type, some classify them based on how or where they

appear in an attack vector [2], [7], [8], [65]. However, to our

knowledge, no one has given systematic taxonomies that are

independent of detection approaches and cover all the possible

features that can be extracted from the attack vectors. Phishing

vectors, i.e., emails, websites, and URLs, are all specialized

strings. Hence, language/logic categories: syntax, semantics,

and pragmatics, can be effectively used to categorize their

attributes. We now present two taxonomies: one which groups

URL and website features, and the other for emails.

A. Taxonomies

Building a taxonomy requires a comprehensive view of the

literature, an awareness of potential gaps/opportunities, and a

systematic and comprehensive approach. In a previous paper

[16], we surveyed more than 250 papers on phishing detection

research and user studies. The final taxonomy presented here

was achieved after several iterations in building taxonomies

and testing them by populating each class with examples. Care

was also taken to ensure that the classes on each level were

truly “orthogonal/independent” in scope and closely matched

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 5

conceptually or physically so that one could not be nested

inside the other. The two taxonomies, shown in Figures 1

and 2, have the main components of a webpage and email

respectively as the second levels (the root in each figure is

at level one). Each component is subsequently broken down

to the following groups: syntactic, semantics and pragmatics,

constituting the third level, which we explain below.

• Syntactic features are based directly on the format and

syntactic correctness of the vector whether an email,

URL, or website. For example, in a properly constructed

URL, the top-level domain or TLD (‘.com’) should only

appear once before the path of the URL. However, that

is not always the case in a malicious URL. This issue is

relevant to the syntax of URLs, thus we consider the TLD

position as a syntactic feature. While studying website

content, we may simply count all the tags, another

syntactic feature. An example of a syntactic email feature

would be the format of the body content, e.g., text/plain

and text/HTML which are common email formats.

• Semantic features focus on the meaning and interpreta-

tion of the textual content in emails, URLs, and websites.

One example of a semantic feature for websites can be the

meaning of HTML elements, e.g., the number of hidden

objects. Another example of a semantic feature is the

presence of a special character such as ‘@’ in a link. In

the context of a phishing email, some words can have

special meaning and induce urgency e.g., ‘act now’ or

‘click here’. Such words can be blacklisted. Therefore,

an attribute that uses blacklisted words for detection will

be categorized as a semantic feature.

• Pragmatic features are not directly concerned with the

syntax or semantics of the email, URL or website. This

class of features has been the least explored in phishing

detection literature. For example, disabling right clicks

in websites is a technique used by attackers to prevent

users from viewing and saving the source code. It does

not relate to the syntax of the HTML content nor its

semantics. Thus we categorize it as a pragmatic feature.

Other examples include the details of a website’s registra-

tion, the age of the website, etc. In emails, the readability

scores of the email body act as a pragmatic feature.

The Bottom Level. The bottom level in the taxonomies, which

is not shown in the taxonomy figures, consists of two-three

classes: Lexical, Network, and Script. These classes apply to

all the leaves in the figures, except for the three leaves in the

Header subtree, since scripts are not allowed in the header of

an email. We describe them with examples below.

B. URL and Website features

The two important “actors” in website phishing attacks are

the web browser and the victim. While building our taxonomy,

we consider how a web browser and the victim interpret a

URL or a website. Our taxonomy builds and improves upon

the categorizations in [19], [49].

We implement 51 URL and 32 website features in Phish-

Bench, which encompass all types of major URL and website

based attribute classes: Lexical, Network, and Script. For

the selection of the implemented features, we study previous

literature that uses URLs and websites for phishing detection

and reports high performance. We also consider features that

are ranked high by feature ranking methods like information

gain [47]. We provide examples of URL and website features

to make each of these categories easier to understand. For a

more comprehensive list of features, we refer the reader to

[16].

URL feature classes:

• Lexical: Longest token in the domain (syntactic), pres-

ence of the target brand (semantic), and presence of

blacklisted words, whitelisted words (pragmatic).

• Network: Syntactic category of features include the pres-

ence of port number, whether the domain name is an

IP address, etc. Under the semantic category, are features

such as whether there is a match between the port and the

protocol. Pragmatic category of network features include

attributes like AS number, WHOIS information, etc.

• Script: Features such as number of functions like escape,

eval, etc., in the script, are syntactic. Presence of different

file extensions like ‘.php’, ‘.js’, etc. in the URL path

(semantic), and time needed to load a script resource

(pragmatic).

Website features classes:

• Lexical: Term frequency-inverse document frequency

(TF-IDF) features from webpages (syntactic), presence of

brand names on the webpage (semantic), and attributes

like processing suspicious or blacklisted content (prag-

matic).

• Network: An example of a syntactic attribute is the

content length of the webpage (all features extracted

from HTTP protocol are considered network features).

Semantic network features include download time based

on the type of content (image, audio, video), while

examples of pragmatic features could be the Autonomous

System (AS) number.

• Script: Number of external scripts (syntactic), whether

a script is malicious or has specific behavior such as

creating popups (semantic), whether a script loads asyn-

chronously or is deferred, (pragmatic).

C. Email features

After a thorough study of the literature, we identified the

recurring features used for phishing email detection. We im-

plement the features that have been used in at least four papers

in the literature that report high performance or were highly

ranked by feature ranking methods. These criteria resulted in a

total of 143 email features in PhishBench. The breakdown of

these features is as follows, the total number of features in each

section has been added in the parentheses: Body (76), Header

(68), URL (24). At the next level, the totals are: Semantic (30),

Syntactic (79), and Pragmatic (34). One exemplar feature from

each class is given below.

Header feature class:

The header of an email, while often hidden from the user,

contains a lot of information including the route taken by

the email, sender and recipient servers, timestamps, content

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 6

Website Features

Link Based Webpage Based

Semantic Syntactic Pragmatic Semantic Syntactic Pragmatic

Fig. 1: URL and Website feature taxonomy. Each category at the bottom level is a subtree which consists of the finer feature

categories - Lexical, Network and Script further described in Section IV-B.

format, etc. Previous researchers have extensively used header

features for phishing detection. We demonstrate the impor-

tance of header features in Section VII, where we present

classification results with and without these features.

• Lexical: Presence of message ID field (syntactic), features

that detect lexical attributes such as detection of black-

listed words in the subject (semantic), and whether the

email has plain-text content (pragmatic).

• Network: Features that extract network-related infor-

mation, e.g. the comparison between the sender and

return-path domains (syntactic), mismatch of the IP ad-

dress between consecutive Received fields (semantic)

and DKIM (DomainKeys Identified Mail) authentication

results (pragmatic).

Body features class:

Email content can be in different formats (text, HTML, etc.)

and can also include URLs. Hence, we separate the Body class

into a Text subclass (includes text content and scripts from

HTML content) and a URL subclass.

Text feature classes

• Lexical: Such features can be extracted using text analysis

and Natural Language Processing, as well as from the

HTML content of the email. These include the presence

or count of tags such as “href” and “onmouseover” (syn-

tactic), presence of difficult words in the text (semantic),

presence of blacklisted words and action words, etc.

(pragmatic).

• Network: These features can be extracted when the email

body is an HTML document. We have given examples of

such features under the webpage taxonomy.

• Script: Old email clients would allow scripts in email.

However, with new clients, this class of features is rele-

vant only when the email body is an HTML document.

We have given examples of such features under the

website category.

Email URL feature class: URL features need to be ag-

gregated since emails do not have a fixed number of URLs,

otherwise, the feature vectors will be of incompatible lengths.

The “aggregated” feature extracts the targeted information

from all the links in the email and returns a value which

could be continuous or boolean. Examples of these features

are the number of URLs that use a secure connection, number

of URLs with different domains than the sender’s address,

number of URLs with an IP address, etc.

Email Attachments class: Emails have optional attachments.

Attachment analysis can be a huge topic in itself and is beyond

the scope of our taxonomy. From the email analysis point of

view, features can be the number and type(s) of attachments,

content disposition, and whether any of them are malicious

(e.g., contain malware).

V. PHISHBENCH

PhishBench is a benchmarking framework that can be used

by researchers to systematically test and compare their features

and classification results on common datasets. PhishBench

provides feature extraction code for over 200 features and over

30 classification algorithms. Next, we present the architecture

of PhishBench and describe its modules.

A. Architecture of PhishBench

PhishBench’s architecture stems from machine learning

based detection. It has five modules along with comprehensive

logging of events and time-tracking, which are distributed

throughout the modules, for debugging and comparison pur-

poses.

Input Module: It handles dataset specifications, the dataset

type (email, URL, etc.), location in the system, and evaluation

mode (training or testing).

Feature Extraction and Ranking Module: It determines,

extracts, ranks, and post-processes the features, e.g., using

Min-Max scaler.7

Classification Module: It provides several options: batch,

online, deep learning, and methods for imbalanced datasets.

Evaluation Module: It provides a set of 12 metrics (9 for

classification, and 3 for clustering) for performance evaluation

on balanced and imbalanced datasets.

PhishBench is modular and customizable. Based on the

user’s discretion, each of the existing modules can be kept

or dropped, and it allows easy addition of new methods to

the existing modules. The users only need to add the code for

their new methods in corresponding modules (features in the

7https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
MinMaxScaler.html

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 7

Email Features

Header Based* Body Based

Semantic Syntactic Pragmatic

Attachments#

Text Link$

Semantic Syntactic Pragmatic

Fig. 2: Email feature taxonomy. Each category at the bottom level is a subtree which consists of the finer feature categories -

Lexical, Network and Script further described in Section IV-C. * Script-based features cannot be extracted from email headers.

$ Please see the subtree on Link Based features under the Website taxonomy. # Attachment features have been described in

Section IV-C.

Feature module, classifier in the Classification module, etc.).

The users are offered an extensive list of parameters to select

from and customize, including features to be extracted, feature

selection and ranking methods, classifiers, and evaluation

metrics.

PhishBench can be run at different stages of phishing

detection experiments. A user/researcher can use it for feature

extraction and ranking. If features are already extracted, then

it is possible to run the classification and evaluation modules

with desired classifiers and evaluation metrics respectively.

PhishBench modules are discussed in depth below.

B. PhishBench Modules

The modules implemented in PhishBench are independent

and, provided the correct input, can run separately based on

the user’s needs. Figure 3 illustrates the different modules and

flow of the data between them.

1) Input module: This module handles loading the dataset

into memory and has the necessary preprocessing functions

implemented to extract features from different types of input.

It accepts two types of inputs: a list of URLs for phishing

websites/URLs detection, and a folder of email files for email

based detection. For URL datasets, if specified by the user,

the module parses the HTML content of the website linked to

each URL and downloads all the network meta-data available

such as WHOIS information and HTTP response time. For

email datasets, the module parses the emails to extracts all the

header fields and body contents. It handles content extraction

and decoding for different body types including text, HTML

and base64 encoded content. The parsed and decoded content

from websites and emails is then used to extract features in

the Feature Extraction module.

2) Feature Extraction: This module contains the necessary

functions to extract the features. The features implemented by

default come from an extensive study of phishing literature

as mentioned and described in Section IV. This module is

customizable as it allows the selection of the features to be

Fig. 3: Schema of proposed benchmarking framework and

system evaluation for phishing

extracted, and extensible as new features can be added to the

framework by implementing a function with required inputs

and outputs. The framework will be published with an attached

ReadMe file that explains the necessary steps to do so. The

flexibility provided by this module helps researchers compare

the results of their new features with already existing ones

in the literature. It also reports the time needed for feature

extraction.

3) Feature Processing & Ranking: The main functions of

this module are ranking and normalizing the features to use

them as input for classification. We used the Scikit-Learn

library to implement the ranking metrics/algorithms listed

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 8

below.

• Information Gain (IG): selection based on the decrease

in entropy after a dataset is split on an attribute [47].

• Gini Index (Gini): splits a feature into different classes

to indicate its effectiveness for classification [55].

• Chi-Square Metric (Chi-2): measures the independence

between the occurrence of a specific feature and a specific

class [42].

• Recursive Feature Elimination (RFE): The model is first

trained on all the features, and the importance score for

each feature is computed. Then the lowest ranked features

are removed after each iteration [27].

Normalization is done with the following methods: Max-

Absolute scaler (scale each feature by its maximum absolute

value), Min-Max scaler (subtracts the minimum value in the

feature and then divides by the range), Mean scaling (subtracts

the average value of the feature and then divides by the range),

and L2 normalization [32].

This module outputs a file containing a sorted list of features

based on the results of the ranking algorithm used, and a

sparse matrix of the best features returned by the algorithm.

The number of the best features is specified by the user.

4) Classifiers: This module implements the most used

classifiers in the phishing detection literature including both

supervised and unsupervised, weighted, balanced and imbal-

anced methods. We also integrate two Automated Machine

Learning (AutoML) libraries: (i) AutoSklearn [23] and (ii)

Tree-Based Pipeline Optimization Tool (TPOT) [46] into

PhishBench. AutoML frameworks provide methods and tools

for non-expert users [4]. Given a dataset of extracted features,

systems like AutoSKLearn and TPOT automate the entire

pipeline of selecting and evaluating a wide variety of machine

learning algorithms and subsequently outputting the decision.

While auto-sklearn uses meta-learning along with Bayesian

optimization to search the best algorithms from Python’s

Scikit-learn library; TPOT uses genetic programming to select

the best Scikit-learn pipeline [25].

For the supervised classification module, we implement the

following learning algorithms:

• Support Vector Machines (SVM)

• Random Forest (RF)

• Decision Tree (DT)

• Gaussian & Multinomial Naive Bayes (GNB & MNB)

• Logistic Regression (LR)

• K Nearest Neighbors (kNN)

• Boosting (AdaBoost)

• Bagging

• Online Learning (e.g., AROW, OGD, ECCW, Ada-

FOBOS, etc.) [63]

• Deep Neural Networks (DL) [36]

• Imbalanced learning (e.g., Balanced Bagging Classifier,

RUSBoost Classifier) [38]

• Hellinger Distance Decision Tree (HDDT) [13]

To handle imbalanced datasets, we also implement different

under and over sampling methods including Repeated Edited

Nearest Neighbor, ADASYN and SMOTE [38]. The user has

the option to choose which classifiers to run, weighted or not,

and with or without imbalanced methods. This module also

reports the running time for each classifier. It is also extensible,

as it is possible to add new classifiers by either implementing

new methods or importing existing libraries. The user can

choose which classifiers to run before each iteration.

5) Evaluation metrics: The selection of proper evaluation

metrics is of utmost importance. Class imbalance in the

evaluation dataset may result in base-rate fallacy wherein a

metric like Accuracy may not be the best choice to evaluate

classification performance. So we made sure to implement

multiple metrics for accurate result evaluation. PhishBench

reports all the metrics whose definitions are given in the

Preliminaries Section.

VI. DATASETS

Diverse and extensive datasets are essential for a complete

and thorough study of the features, otherwise, the feature im-

portance may be biased or inaccurate. Since email is a popular

attack vector for delivering phishing URLs or malware, our

goal is to not only study URLs and webpages but also emails.

Thus phishing emails and URLs are orthogonal dimensions of

the problem. So, we use two separate dataset types: URLs and

emails.

A. URL Dataset Collection

Legitimate Dataset: We use Alexa top websites as a basis

for the legitimate website. Instead of using Alexa directly,

since it just reports the top domains and removes the sub-

domains and URL path (if they exist), we use the top domains

list as a seed for our crawler to generate a more realistic

dataset.8 We also limit the crawler to crawl up to three

levels (it follows links within another website only to the

depth of three) and only collect up to 10 URLs from each

domain. Alexa categorizes domains based on 17 categories.9

To increase the diversity of legitimate websites, we retrieved

the top 40 websites from each category (on Sep 5, 2018).

We excluded Adult category from the list. We also removed

Regional and World since all the URLs in these two lists

appeared in other categories.

Phishing Dataset: For the phishing websites, we use three

different sources: PhishTank (Sep 5, 2018), APWG (Oct 30,

2018) and OpenPhish (Sep 5, 2018).

The feature extractor removes an instance if any of the URL,

network and website features are not available (if the website

is offline, it cannot retrieve the WHOIS info, etc.). After using

all of these datasets and ranking the features, we realized that

most of the top features are words from TFIDF features for

“Name of Languages” (e.g., “latvieu”, “kiswahili”, “slenska”,

etc.). To discover the reason for this, we searched the phishing

dataset for those words. We found that many phishing websites

present in our dataset try to mimic the login page of different

email providers, and these login pages have a drop-down list

for language options. Since these words do not exist in the

legitimate instances in our dataset, the classifiers can easily

8Many previous works that use Alexa seem to have missed this issue.
9https://www.alexa.com/topsites/category

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 9

TABLE III: Statistics of the URL/website dataset. Extracted

- number of URLs whose features are extracted, Domains -

number of unique domains, TLDs - number of unique TLDs,

Logins - number of login pages.

Source URLs Extracted Domains TLDs Logins

Alexa 31,163 29,173 9,554 285 2,056

Alexa Login 4,370 3,992 1,960 117 3,992

Legitimate 35,533 33,165 10,405 294 6,048
PhishTank 26,346 20,803 10,813 406 4,999

APWG 66,929 45,382 7,760 319 2,812

OpenPhish 2,249 1,336 710 94 326

Phishing 95,524 67,521 18,126 481 3,637

pick up on these features and consider all login pages as

phishing websites. To solve this bias in our dataset, we run

our crawler once more with the same seed. But instead of

collecting all the websites, we just collect the pages with a

login form. We use loginform 1.2.010 which is a Python library

to detect the pages with login forms. This resulted in 4,370

legitimate websites with login forms. Table III shows some

basic statistics of the different datasets that we collected. The

third column (Extracted) shows the number of URLs whose

features were successfully extracted. The next two columns

are the number of unique domains and TLDs, and the last

column shows the total number of login pages.

B. Email Dataset Collection

In collecting our email dataset, we made sure to increase

the diversity by including phishing and legitimate emails from

different sources.

Legitimate Dataset: We gathered 10,500 emails in total.

We downloaded 6,779 emails from archives published by

Wikileaks [62] (Hacking Team: 718, DNC: 3,098, GI files:

1,066, Sony: 1,120, National Socialist Movements: 678, Citi-

zens Commission On Human Rights: 88, Plum emails: 11).

We also downloaded 2,046 emails from randomly selected

inbox folders of the public Enron dataset [35], and 1,675

ham emails from SpamAssassin [53]. We note that Enron’s

email headers tend to be shorter and have been sanitized

to protect name/email information, and SpamAssassin email

headers have been “lightly sanitized.”

Phishing dataset: We collected 10,500 emails in total. We

downloaded 8,433 emails from the Nazario phishing email

dataset [43]. We also downloaded 1,048 emails from its

recently published 2015 to 2017 emails. We also added the

1,019 emails from SpamAssassin. Note that the SpamAssassin

dataset is made of old phishing emails, which are close to

spam. It was used several times in literature, so we increase

the diversity of our dataset by adding samples from it. We

also draw attention to the fact that it is harder to find phishing

email datasets. However, we conduct a diversity analysis to

make sure that the dataset is diversified.

C. Dataset Diversity

Using a diverse dataset is crucial for having a generalizable

trained model. We now evaluate the diversity of our dataset

10https://pypi.python.org/pypi/loginform

0 10 20 30 40 50
Number of Domains

0.0

0.1

0.2

0.3

0.4

0.5

Pe
rce

nta
ge

 of
 D

ata
se

t

Alexa
PhishTank
OpenPhish
APWG
phish
ALL

(a) CDF of top 50 Domains in each dataset

separately and all datasets combined

0 10 20 30 40 50
Number of Top TLDs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rce

nta
ge

 of
 D

ata
se

t
Alexa
PhishTank
OpenPhish
APWG
phish
ALL

(b) CDF of top 50 TLDs in each dataset

separately and all datasets combined

Fig. 4: Distributions of domains and TLDs in different dataset

sources. Phish: combined PhishTank, OpenPhish and APWG.

from different aspects, e.g., URL domains, Top Level Domain

(TLD), email content, etc.

URL: Although there is no widely-accepted method for

analyzing the diversity of a dataset, the following questions can

help in this regard: How many different domains exist in the

dataset? How many different TLDs are there? If many URLs

in the dataset are from the same domain, that means there

is a bias towards some specific websites. For the TLDs, the

situation is a little different since in the real world a uniform

distribution among different TLDs is unlikely. Some TLDs are

used more often, e.g., “.com” and “.org” and some are rarely

used,11 e.g., “.gw” and “.ax.” So, we do not expect our dataset

to have a uniform distribution of TLDs.

To illustrate the distribution of the domains and TLDs,

we calculated their frequency in our phishing and legitimate

datasets. Then, we counted the number of URLs whose domain

(TLD) is among the 50 most frequent domains (TLDs). Figure

4a shows the percentage of URLs which are from the top 50

domains. For the legitimate datasets, the percentage is almost

zero since we limited the number of URLs per domain to 10.

Among the phishing ones, Openphish and APWG are almost

11http://www.seobythesea.com/2006/01/googles-most-popular-and-least-
popular-top-level-domains/

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 10

TABLE IV: Percentage of email pairs with different ranges of

similarities in the dataset with/out header.

Dataset
Ranges of Similarities

[0-10] (10-20] (20-30] (30-40] (40-50] >50

WHa 85.44% 10.47% 2.60% 0.85% 0.29% 0.33%

NHb 84.29% 10.74% 3.92% 0.55% 0.18% 0.29%

a With Header
b No Header

similar but the Phishtank dataset is much more diverse. Figure

4b compares the percentage of URLs which are from the top

50 TLDs. It shows a huge gap between the phishing and

legitimate datasets which shows phishers mainly use certain

TLDs.

Emails: To analyze the diversity of our email dataset, we

compare their contents to see how much similarity exists

between them. We extract the text content of each email

(including the header) and remove all the HTML tags and

CSS. We also filter out the stop words. Then we extract the

TFIDF vector for each email.

We use the cosine similarity measure, which is the cosine

of the angle between two vectors (Equation (9)), to measure

the pairwise similarity between the TFIDF vectors extracted

from the dataset.

similarity(A,B) = cos θ =
A.B

||A|| ||B||
(9)

We show in Table IV the ranges of pairwise similarities

in both datasets (with/out header). Each column of the table

shows the percentage of the email pairs that fall within that

range of similarity. The table shows that about 85% of pairs

have 0-10% similarity which is a sign of diversity among the

emails.

VII. EXPERIMENTS AND RESULTS

We systematically evaluate the phishing URL and email

detection models with the implemented features. Classifiers are

trained and then tested on balanced datasets (equal number of

phishing and legitimate instances). The experiment is repeated

on imbalanced datasets with different ratios of phishing to

legitimate instances. We also run additional experiments on

the features we extracted, such as feature ranking, tracking

the feature extraction times, and testing robustness of features

on a more recent dataset. These experiments will help us

determine the best subset and categories of features in terms

of performance and time efficiency for our problem.

Before running the classifiers on different datasets, we

perform hyperparameter tuning using Randomized Parameter

Optimization [9] to optimize the classifiers. We randomly split

the dataset into training and testing sets (90:10) and ran the

randomized cross-validation (10 fold) search on the training set

with the maximum number of 100 iterations. For the SVM, we

only used a linear kernel since other kernels did not converge

after two days of running. We also use two existing AutoML

softwares, TPOT and AutoSklearn. Tables V and VI show the

best parameters for every classifier used for phishing website

and email detection respectively.

TABLE V: Best parameters obtained by running randomized

parameter optimization on website features.

Classifiers Best Parameters

RF
n_estimators: 80, max_depth: 90, min_samples_split: 10,
min_samples_leaf: 1 max_features: auto, bootstrap: False,

DT max_depth: 70, min_samples_split: 2, min_samples_leaf: 1

GNB var_smoothing: 1e-06

MNB Alpha: 0.1

LR solver: sag, C: 4

KNN K: 5

Bagg.
n_estimators: 90, max_features: 1.0, bootstrap: False,
bootstrap_features: True, base: DT

Boost. n_estimators: 100, learning_rate: 1.5, algorithm: SAMME, base: DT

SVM
penalty: L1, loss: hinge, dual: true, C: 100,
multi_class: crammer_singer

Ada-Fobos eta: 0.25, delta: 0.5

DL
dev_pct: 0.2, delimit_mode: 0, min_word_freq: 1, emb_mode: 5,
emb_dim: 128, filter_sizes: 3,4,5,6, nb_epochs: 5, batch_size: 50

TPOT classifier: LogisticRegression, C: 15.0, penalty: l2, dual:False

TABLE VI: Best parameters obtained by running randomized

parameter optimization on email features.

Classifiers Best Parameters

RF
n_estimators: 90, max_depth: None, min_samples_split: 2,
min_samples_leaf: 1 max_features: auto, bootstrap: False,

DT
max_depth: 110, min_samples_split: 3, min_samples_leaf: 1,
max_features: None

GNB var_smoothing: 1e-09

MNB Alpha: 0.1

LR solver: newton-cg, C: 1.0

KNN K: 3

Bagg.
n_estimators: 90, max_features: 1.0, bootstrap: True,
bootstrap_features: False, base: DT

Boost. n_estimators: 80, learning_rate: 1.0, algorithm: SAMME.R, base: DT

SVM penalty: L2, loss: squared_hinge, dual: true, C: 1.0, multi_class: ovr

AROW r: 32.0

DL
dev_pct: 0.2, delimit_mode: 0, min_word_freq: 1, emb_mode: 3,
emb_dim: 25, filter_sizes: 3,4,5,6, nb_epochs: 5, batch_size: 50

TPOT classifier: Logistic Regression, C: 0.5, penalty: l2, dual: True

We added to PhishBench the Library for Scalable Online

Learning (LIBSOL),12 which includes 17 different online

learning algorithms. Instead of reporting all these voluminous

results, we only report the best performing method. It is chosen

by computing the average ranking of each method in all

experiments (separately for emails and websites). AutoSklearn

automatically creates a weighted ensemble of several super-

vised learners, so we only report the results of the model. We

specify the specifications of the machines used in the following

section.

A. System Configuration

We used two different machines for running the experiments

in parallel. One for all URL/website experiments and a second

one for email experiments. For the website and URL, we

used a machine with 128GB RAM and Intel Xeon(R) W-

2123 (3.60GHz) processor running Ubuntu 18.04 (with Nvidia

Quadro P1000 for deep learning experiment). We ran the email

experiments on a machine with 512GB RAM and Intel(R)

Xeon(R) E5-2667 v4 (3.20GHz) processor running Linux Red

Hat Enterprise Server 7.6 (wit Nvidia Tesla M10 for deep

learning experiment).

B. Balanced vs Imbalanced Experiments

We use all 226 features (83 URL/website and 143 emails)

implemented in PhishBench in our experiments to evaluate the

12https://github.com/LIBOL/SOL

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 11

TABLE VII: Performance of classifiers on Openphish and

Alexa Login. DL: Deep Learning

Classifier Time(s) F1-score Acc. G-mean MCC BDR

RF 0.72 99.23 99.62 99.49 98.98 200.5
DT 0.24 95.78 97.93 97.32 94.41 66.0

GNB 0.04 50.78 52.63 61.08 35.63 150.0

MNB 0.01 92.36 96.05 96.60 89.95 96.0

LR 1.9 97.33 98.68 98.60 96.47 132.3

5NN 0.13 93.63 96.80 96.58 91.55 65.0

Bagg. 6.4 98.44 99.24 98.71 97.95 100.2

Boost. 0.34 95.09 97.55 97.34 93.49 78.6

SVM 0.4 98.46 99.24 98.98 97.96 133.3

DL 2077 94.48 97.38 95.59 92.80 36.1

Ada-Fobos 0.01 94.16 96.99 97.73 92.36 193.5

HDDT 1.37 23.30 61.65 41.97 -2.20 2.97

AutoSk 3595.8 98.07 99.06 98.07 97.45 42.33

TPOT 1818.6 98.83 99.44 98.84 98.47 127.0

TABLE VIII: Performance of classifiers on PhishTank and

Alexa. DL: Deep Learning

Classifier Time(s) F1-score Acc. G-mean MCC BDR

RF 30 96.22 96.87 96.95 93.58 52.8

DT 17.8 94.38 95.37 95.32 90.46 27.6

GNB 1.56 64.16 78.01 68.92 57.01 2.7

MNB 0.32 90.45 91.59 92.36 83.69 47.9

LR 60.56 95.98 96.67 96.73 93.16 45.9

5NN 13.89 94.64 95.53 95.67 90.86 37.9

Bagg. 216 97.07 97.59 97.59 95.04 57.6

Boost. 1508 97.12 97.61 97.72 95.14 82.0
SVM 1.7 96.07 96.75 96.79 93.32 46.0

DL 18364 95.45 96.29 96.23 92.33 34.1

Ada-Fobos 0.09 95.8 96.51 96.62 92.85 48.9

HDDT 86.16 41.31 51.62 49.36 0.16 1.44

AutoSk 5351.26 95.76 96.46 95.78 92.78 14.92

TPOT 1204.71 94.94 95.79 94.95 91.38 14.37

performance of the models and features in different scenarios.

1) Phishing URL Detection: We now evaluate classification

algorithms on various combinations of the URL datasets

mentioned in Table III.

Balanced Datasets: As mentioned earlier, the PhishTank

dataset is more diverse compared to Openphish and APWG,

so here we compare the performance of classifiers on each

of these sources separately to analyze its effect on classifier

performance. We tested on three different combinations that

were combined in a way to keep the legitimate and phishing

ratio equal: 1) Openphish and Alexa Login 2) PhishTank and

Alexa 3) Alexa, PhishTank, OpenPhish and a random subset of

10k URLs from APWG to ensure that the dataset is balanced.

In the rest of the paper, we refer to dataset three as “website

dataset.” Tables VII, VIII, and IX present the classification

results on each of these datasets.

There is a gap between the performance of classifiers on

the Openphish and Alexa versus Phishtank and Alexa. On the

Openphish and Alexa (Table VII), three classifiers reached

more than 98% F1-score but on the Phishtank and Alexa

(Table VIII), the best F1-score is 97.12%. The differences in

BDR metric values provided give an even better perspective of

classifiers’ performance in Tables VII and VIII. While seven

classifiers show a BDR greater than 100 in Table VII, the

highest BDR of 82 was recorded by Boosting in Table VIII.

This agrees with our discussion on the diversity of PhishTank

and Openphish.

For all datasets combined (Table IX), Bagging, Boosting

TABLE IX: Performance of classifiers on Alexa whole, Phish-

Tank, Openphish and APWG10K. DL: Deep Learning

Classifiers Time(s) F1 Acc. G-mean MCC BDR

RF 44.0 97.04 97.22 97.30 94.46 68.6

DT 22.0 95.27 95.59 95.63 91.15 28.7

GNB 2.1 59.88 72.99 65.45 51.21 2.0

MNB 0.4 92.26 92.41 92.65 85.41 47.4

LR 74.0 96.28 96.53 96.56 93.04 36.6

KNN 24.9 95.22 95.47 95.60 91.03 44.2

Bagg. 298.9 97.61 97.77 97.81 95.53 70.8
Boost. 2290.0 97.59 97.75 97.80 95.50 70.8

SVM 69.9 96.64 96.87 96.90 93.72 40.9

DL 25080.0 95.78 96.05 96.10 92.00 35.1

Ada-Fobos 0.1 96.15 96.39 96.47 92.79 45.6

HDDT 136.17 46.37 50.28 49.89 0.03 1.16

AutoSk 5441.8 97.47 97.63 99.16 95.26 25.64

TPOT 483.4 86.28 85.81 75.30 85.32 27.56

and the model chosen by AutoSklearn are the top performing

classifiers. Comparing their training times, Bagging is the

fastest and AutoSklearn is slowest. We describe in more detail

our observations regarding model training time in Section

VII-C.

Imbalanced Dataset: In the real world, the chance of a

URL being phishing is much lower than being legitimate

and this affects the performance of classifiers. We evaluate

our models on imbalanced datasets by varying the legitimate

to phishing ratio to have a more realistic evaluation of the

models’ performance. We fix the total number of legitimate

and phishing URLs to 36,457 by randomly sub-sampling

from the balanced dataset (the allowable maximum size for

the 1:10 experiment) and change the legitimate to phishing

ratio from 1:1 to 1:10. Figure 5 demonstrates classifiers’

performance using the F1-score on the different dataset ratios.

We report the F1-score instead of accuracy since it is a metric

appropriate for classification tasks on imbalanced datasets [6].

Other proper metrics for imbalanced datasets (G-mean, MCC,

BDR) revealed a similar trend, hence they were omitted. We

were not able to run HDDT on the feature set including TFIDF

features since our machines ran out of memory.

A common observation across all classifiers is the down-

trend in the F1-score with the class imbalance ratio. GNB has

the most decline in performance (from 89% to 47%) while

AutoSklearn and Bagging have the least decline, 5.5%, and

5.9% respectively. Boosting, which had a similar performance

to Bagging in 1:1 ratio, has a three times bigger decline than

Bagging (15.3%), which makes it a bad choice for the real-

world scenario. We also tested various re-sampling techniques

(e.g., ADASYN, AllKNN, SMOTE, NearMiss, etc.) but, un-

fortunately, none of them notably improved the results.

2) Phishing Email Detection: Next, we perform the above

experiments on email datasets.

Balanced Datasets: Tables X and XI show the performance

of classifiers on different sets of features. Depending on

whether header features were extracted or not, we refer to these

tables as With Header and No Header respectively. The model

created by Auto-Sklearn performed the best in both With

Header and No Header experiments. The highest F1-score for

With header emails was achieved by LR, SVM, and Auto-

Sklearn (99.95%). For the case of No header features, Auto-

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 12

Fig. 5: Changes in F1-score Performance with varying ratios

between legitimate and phishing URLs.

TABLE X: Email Dataset Results: With Header

Classifiers Time (s) F1-score Acc. G-mean MCC BDR

RF 8.64 99.90 99.90 99.90 99.80 349.0

DT 7.21 99.76 99.76 99.76 99.52 521.5

GNB 12.49 97.91 97.95 97.94 95.97 33.64

MNB 0.05 98.36 98.38 98.37 96.79 24.88

LR 4.63 99.95 99.95 99.95 99.90 1046.0
KNN 0.01 97.40 97.33 97.29 94.76 199.0

Bagg. 421.00 99.85 99.85 99.85 99.71 348.6

Boost. 7.48 99.85 99.85 99.85 99.71 522.5

SVM 0.28 99.95 99.95 99.95 99.90 1046.0
DL 128.16 99.85 99.85 98.56 99.90 1044.0

AROW 0.43 98.18 98.19 98.19 96.00 43.0

HDDT 8.16 49.11 49.38 49.38 -1.2 0.9

AutoSk 3595.96 99.95 99.95 99.95 99.90 1046.0
TPOT 3156.04 99.95 99.95 99.95 99.90 1046.0

TABLE XI: Email Dataset Results: No Header

Classifiers Time (s) F1-score Acc. G-mean MCC BDR

RF 13.828 98.61 98.61 98.61 97.25 43.37

DT 15.650 97.24 97.23 97.23 94.47 35.06

GNB 9.690 94.36 94.52 94.48 89.22 17.35

MNB 0.022 96.08 96.14 96.13 92.33 11.23

LR 3.422 98.52 98.52 98.52 97.04 57.38

KNN 0.008 89.14 88.14 87.66 77.51 25.90

Bagg. 833.797 98.05 98.04 98.04 96.09 48.85

Boost. 325.433 98.80 98.80 98.80 97.62 57.72

SVM 0.583 98.72 98.71 98.71 97.42 85.91

DL 126.207 97.89 97.86 97.84 95.74 63.43

AROW 0.254 96.61 96.66 96.65 93.38 19.07

HDDT 7.38 49.11 49.09 49.09 -1.88 0.95

AutoSk 3595.69 99.09 99.09 99.09 98.19 115.11
TPOT 629.66 94.57 94.52 94.51 89.05 18.90

Sklearn and RF achieved the highest F1-score: 99.09%. The

difference in performance for the two cases can be explained

by the fact that email headers contain important information,

which can be used to discriminate between legitimate and

phishing samples. The fastest classifier in both cases was

KNN, and the slowest were Bagging and Auto-Sklearn.

Imbalanced Dataset: We repeat the classification experi-

ment but with different phishing to legitimate ratios to simulate

real-world scenarios. The setup was similar to the URL

experiment, we used random sub-sampling to reduce the size

of the dataset to 11,550 emails (which is the maximum size

(a) With Header Features

(b) No Header Features

Fig. 6: Changes in F1-score with varying ratios and varying

ratios between legitimate and phishing emails.

that we could use to obtain the 1:10 ratio) and we test on a

range of different ratios from 1:1 to 1:10. Figure 6 shows the

results of this experiment. Same as the URL experiment, we

see a decreasing trend in F1-score as we increase the ratio of

legitimate to phishing emails. The classifiers with the steepest

decline are KNN (18% in 6a and 23.8% in 6b). We observe

a higher drop in performance for most of the classifiers when

tested on emails without header information in comparison

to when header information is available. This suggests the

importance of the header in phishing email detection. The

classifiers with the highest F1-scores at 1:10 ratio are Boosting

and DT (99.507%) in 6a with AutoSk and TPOT as close

seconds (99.502%), and RF (91.66%) in 6b.

3) Key takeaways: We learned from these experiments on

Websites and emails the following:

• For the URL experiments, we observed a relationship

between the diversity of the dataset and classifier per-

formance. Classifiers performed worse on the PhishTank

dataset compared to OpenPhish which was less diverse

in terms of the number of domains.

• Evaluating classifiers on a balanced dataset for an imbal-

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 13

(a) F1-scores and Time comparison for ratio 1 to 10

(b) F1-scores and Time comparison for ratio 1 to 5

(c) F1-scores and Time comparison for ratio 1 to 1

Fig. 7: Scaling performance of top classifiers on websites on three ratios 1:1, 1:5, and 1:10

anced problem can result in base-rate fallacy. The least

decline in F1_Score observed – RF for emails (7%) and

AutoSklearn and Bagging for websites (6%).

• Classifier performance decreases as the dataset becomes

more imbalanced.

• Not a single classifier could be singled out as the best

performing model even for the same problem in all

different scenarios. Security professionals and researchers

need to test and select the best suited classifier for their

dataset and features. Thus we can say that there is no one

size fits all solution.

• The existing methods to tackle imbalanced datasets such

as over-sampling and under-sampling did not create any

difference in classifier performance on both website and

email experiments.

C. Scaling Experiments

The size of the training dataset also affects the performance

of classifiers. On one hand, having more phishing and le-

gitimate samples can help classifiers build a more general

model. On the other hand, it can make the training more time-

consuming and complex by mixing the phishing and legitimate

instances in the feature space, hence leading to a weaker

model. In this experiment, we train and test the classifiers

on different sizes of the same dataset. We fix the ratio of

legitimate to phishing samples, and gradually decrease the

number of samples from 100% to 25%, with a step of 25%.

The smaller datasets are created by randomly removing some

instances from the larger ones. So, the larger dataset always

contains all the samples from the smaller dataset.

Through this experiment, we analyze how classifiers’ per-

formance and training time change depending on the size of

the dataset. We reduce the size of both website and email

dataset to 75%, 50%, and 25% of the original size. We repeat

this process for three different ratios, 1:1, 1:5 and 1:10, to test

how the effect of having imbalanced samples manifests with

different dataset sizes. Then we train/test all our classifiers on

the reduced datasets. Figures 7, 8, and 9 show the performance

of the top three classifiers on the reduced datasets as well as

on the original size dataset. To make the comparison easier,

we chose the top three classifiers from the balanced dataset

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 14

(a) F1-scores and Time comparison for ratio 1 to 10

(b) F1-scores and Time comparison for ratio 1 to 5

(c) F1-scores and Time comparison for ratio 1 to 1

Fig. 8: Scaling performance of top classifiers on emails with header on three ratios 1:1, 1:5, and 1:10

and kept them constant for the ratios 1:5 and 1:10.

In the website experiment, we see an upward trend in the

F1-score as we increase the size of the dataset for the 1:1

and 1:5 ratios. However, the classifiers are less stable for

the 1:10 ratio. In the email experiment, we notice a general

increase in performance relative to the size of the dataset

for 1:1 ratio. That increase, however, is less stable in the

1:5 ratio case. For 1:10 ratio, no specific pattern can be

discerned for the performance of the models. We can conclude

from this experiment that with highly imbalanced datasets, the

performance is hard to predict based on the size of the dataset.

This can be caused by the variation of the difference between

the number of legitimate and phishing samples. Even with a

fixed ratio, an increase in size leads to a bigger difference.

The training time, as expected, increases in all the cases with

the size of the dataset.

We did a regression analysis on the top models to test the

effect of dataset size and ratio on the classifier performance

(Table XII). The regression results showed that the dataset ratio

has an inverse relationship with the F1-score (performance

TABLE XII: Regression results for classifiers’ F1-score (stan-

dard deviations).

Variable Website Email WH Email NH

(Intercept) 95.24†(1.54) 98.41†(1.32) 93.87†(3.24)

Ratio -0.66†(0.14) -0.08 (0.12) -0.67*(0.30)
Size 0.02 (0.01) 0.01 (0.01) 0.04 (0.04)

Adjusted R
2 0.65 -0.02 0.27

*, † indicates significance at the 90% and 99% level respec-
tively.

drops as the dataset gets more imbalanced) and it is significant

for websites and emails the without header. Interestingly, the

ratio can explain by almost two-thirds (Adjusted R
2 of 0.65)

the variance in performance for website detection. The dataset

size is not a significant predictor of classifier performance.

On emails with headers, the classifier performance is immune

to changes in the aforementioned attributes which requires a

deeper study.

1) Key takeways: We learned the following from our scal-

ing experiment:

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 15

(a) F1-scores and Time comparison for ratio 1 to 10

(b) F1-scores and Time comparison for ratio 1 to 5

(c) F1-scores and Time comparison for ratio 1 to 1

Fig. 9: Scaling performance of top classifiers on emails with no header on three ratios 1:1, 1:5, and 1:10

• As shown with regression analysis, dataset imbalanceness

has an opposite effect on classifier performance (Table

XII) and it can be a significant factor in classifier perfor-

mance on some datasets. F1-score declines as the dataset

gets more imbalanced.

• When the dataset is balanced, there is a general increase

in performance with larger datasets for both URLs and

emails. But the relationship between performance and

larger dataset size becomes unclear with the effect of

class imbalance. The regression analysis did not find

any significant relationship between dataset size and

classifiers’ F1-score.

D. Feature Importance

We now analyze the importance of each feature via four

feature ranking methods. Then, we compare the performance

of the model trained only on the top features with the model

trained on all the features. In the end, we report the extraction

time of the features that affect models’ response time regard-

less of their speed in making the inference.

1) Feature Ranking: It is important to ascertain the main

features that contribute to the detection process. We use mul-

tiple feature ranking techniques in the feature-ranking module

of PhishBench: Information Gain (IG), Gini Index (Gini),

Chi-Square Metric (Chi-2), and Recursive Feature Elimination

(RFE). Here, we report the top 20 features ranked by these four

methods.

Website/URL: Table XIII shows the top 20 features extracted

from the phishing and legitimate websites. In the list of top

features, we see features from different categories described in

Section IV (except RFE, which mostly has TFIDF features),

which shows each of those aspects contributes to better per-

formance. Features like the number of anchor tags, number

of suspicious script functions, fall under the HTML-based

semantic category for website content. The semantic URL

feature which appears among the top 20 is the character

distance which belongs to the lexical-based subcategory. The

common syntactic URL features (TLDs like edu, org, etc. and

has https) ranked among the top 20 belong to the lexical

sub-category. The top pragmatic features belong to the sub-

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 16

TABLE XIII: Top 20 extracted features from legitimate and

phishing URLs and websites. Features between the quotations

are TFIDF features. url_char_distance_char - Difference be-

tween the distribution of the character ‘char‘ in English text

and their distribution in URL.

Rank IG Gini Chi-2 RFE

1 url_char_distance_w inbound_href_count as_number=16509 “posta”

2 inbound_href_count url_char_distance_w more than 3 dots “phisher”

3 dns_ttl dns_ttl url_char_distance_w “organisms”

4 creation_date creation_date as_number=15169 “nomination”

5 # of anchor has_https URL is redirect “grassroots”

6 # of dashes Website_content_type as_number=46606 “divisions”

7 has_https expiration_date # of “search” “curse”

8 “provider” outbound_href_count # of suspicious JS func. “criticism”

9 Website_content_type # of slashes # of iframes in script “bylaws”

10 # of slashes # of dashes Brand in URL “attendee”

11 expiration_date # of name server url_char_distance_c “ambitious”

12 TLD=org url_length # of exec “accelerated”

13 outbound_count # of tags url_char_distance_k “abstract”

14 # of tags domain_length # of iframes # of titles

15 outbound_href_count outbound_count “hotmail” # of slashes

16
Average domain
token length

TLD=edu “gmail” # of scripts

17 url_char_distance_r TLD=org url_char_distance_n # of iframes

18 url_length URL_Is_Redirect “aol” # of digits

19 url_char_distance_s digit_letter_ratio url_char_distance_d # of punctuation

20 # of digits content_length # of name server
inbound_href
_count

category of network features like AS Number, DNS total time

to live, expiration date. Among the top features, attributes from

the syntactic category appear the most when compared to the

semantic and pragmatic categories.

Email: For emails, we conducted two sets of experiments, with

and without header features. Tables XIV and XV report the top

20 features, including TFIDF, with and without header features

respectively. We notice that in Table XIV, the top 20 features

are mostly TFIDF features. This makes sense since email

headers belonging to one source (same company or institution)

tend to have more similarities. The feature “zzzzason” was

ranked as the fourth important feature by the Gini Index,

primarily because it was used as a normalization method to

hide usernames in the SpamAssassin dataset. However, this

could lead to a lack of generalization if the classifiers are

trained on one dataset and tested on another. This issue was

not pointed out in the literature since researchers often use

the same dataset for training and testing [28], [29], [65]. We

also notice the presence of non-English words like “que” or

“eire” in Tables XIV and XV, due to communications between

foreign individuals in some of the datasets that we used (e.g.,

Hacking Team and Sony datasets). Unlike website features, we

observe that most of the higher ranked email features belong

to one category (lexical). This means that lexical features

from email body and header are more important and the other

subcategories from our email taxonomy are largely under-

utilized.

Description of features: Here we give a brief description of

recurrent features in the tables that need clarification. Features

placed under quotes are tokens extracted with TFIDF.

• Received_count: Number of Received header field.

• Plain_Text: A binary feature that is equal to 1 if the email

is in plain text format.

• Proportion_Words_No_Vowels: Ratio of words with no

vowels to the total number of words in the email body.

• Binary_Img_Links: A binary feature that is equal to 1 if

there is an tag in the email body.

• Binary_Differ_Display_Link: A binary feature that equals

TABLE XIV: Top 20 extracted features from Emails with

header features. Features between the quotations are TFIDF

features.

Rank IG Gini Chi-2 RFE

1 “keywords” “keywords” return_path “keywords”

2 “fetchmail” “fetchmail” binary_re “iamunique”

3 Received_count Received_count
Added_Suffix_
Prefix_Binary

“autolearn”

4 “delivered” “zzzzason” “login” “2014”

5 return_path “netnoteinc” “keywords” “webnote”

6 “authas” “slashnull” X_virus_scanned “login”

7 “oct” “oct” Binary_table_tag “qqqqqqqqqq”

8 “iamunique” “eire” “postfix” return_path

9 “alert” “delivered” X_mailer “eire”

10 “spamtraps” “pop3” Plain_Text “wrote”

11
“account”_
count_in_body

“alert” “uid” “000”

12 “date” “cdo”
Proportion_Words
_No_Vowels_Body

“group”

13 “values” “internal” Binary_Img_Links “3d”

14 “grp” “0102” “esmtp” “javamail”

15 “linux” “3d” “delivered” “hackingteam”

16 “afree” “attained” X-Priority “libpst”

17
number_of_unique
_words_body

“organization” IP_Address_binary “organization”

18 “path” return_path
From_To_
Strings_in_Body

“sony”

19 “postfix” “efi”
double_slashes_
average_count

Received_count

20 “abe” “assures” “monkey”
“your account”
_count_in_body

TABLE XV: Top 20 extracted features from Emails with no

header features. Features between the quotations are TFIDF

features.

Rank IG Gini Chi-2 RFE

1 “account” “account”
Added_Suffix_
Prefix_Binary

“jpg”

2
DNS_Info_
Exists_Binary

DNS_Info_
Exists_Binary

Binary_table_tag “wrote”

3
number_of_html_
comment_tags

Binary_table_tag Binary_Img_Links “itinerary”

4 “pm” “click”
Proportion_Words_
No_Vowels_Body

“webmail”

5 Body_Size
number_of_
words_body

IP_Address_binary “wir”

6 “click”
outbound_href_
count_average

From_To_
Strings_in_Body

gunning_fog

7 “enron” number_of_color “account” “lose”

8 “receive” “que”
double_slashes_
average_count

“enron”

9 “wrote” “enron” recipient_name_body “dear”

10 “que” “pm” Binary_HTML_Links “nsm”

11 “ebay” “dear”
Binary_Differ_
Displayed_Link

“mailbox”

12
automated_
readability_index

“remove”
Anchor_differ_
Displayed_Link

“para”

13 “contribution” “contribution” Binary_3_Dots end_tag_count

14 “mailbox” “dnc”
Binary_URL_
BagofWords

“dnc”

15 count_href_tag
number_of_special
_characters_body

“account”_count_
in_body

“paypal”_count
_in_body

16
“bank”_
count_in_body

number_of_html_
comment_tags

“your account”_
count_in_body

Number_URL

17 “dnc” “receive” hidden_text “ebay”

18
“outbound”_
count_average

“bitte” “paypal”
dale_chale
_readability_index

19 table_tag_count Body_Size “ebay” “account”

20 “unsubscribe” “wrote” “protect” “privately”

1 if a link displayed in the email body is different than

the redirected website.

• Binary_URL_Bag_of_Words: A binary features that

equals 1 if one or more of the following words ‘click’,

‘here’, ‘login’, or ’update’ are in a URL in the email

body [2].

• Protocol_Port_Match_Binary: A binary feature that

equals 1 if a URL in the email body does not have a

matching protocol and port e.g., HTTP with a different

port than 8080.

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 17

TABLE XVI: Spearman rho correlations between different

ranking methods on website dataset.

Ranking Gini Chi-2 RFE

IG 0.845 0.299 0.078
Gini 0.296 0.197
Chi-2 0.158

TABLE XVII: Spearman rho correlation between different

ranking methods on all Email datasets combined (With

Header).

Ranking Gini Chi-2 RFE

IG 0.56 0.14 0.37
Gini 0.27 0.47

Chi-2 0.47

TABLE XVIII: Spearman rho correlation between different

ranking methods on all Email datasets combined (No Header).

Ranking Gini Chi-2 RFE

IG 0.82 0.14 0.54
Gini 0.18 0.63

Chi-2 0.39

In both website and email experiments, rankings obtained

from IG and Gini are close to each other but has lower

correlation from Chi-2. RFE’s ranking is different from the

other three methods. Instead of using rank aggregation meth-

ods for combining the different rankings, we first study the

correlation between these rankings for all the features as

suggested in [59]. Tables XVI, XVII, and XVIII show the

pairwise Spearman rho’s correlation of ranks for all website

and email features. We observe a strong correlation between

IG and Gini in both website and email features. Chi-2 has

a low correlation with other ranking methods. RFE shows

different correlations for website and email features. There

is a weak correlation for website features, but moderate-high

correlation for email features. Because of these disagreements

between different ranking methods, instead of using rank

aggregation methods, we report the performance of models

trained on each of the top 20 features.

2) Feature Evaluation: We conduct a set of evaluation

experiments to further investigate the effect of using the top

20 features on system performance and time. We compare the

performance of the models by training them on the set of all

features versus using the top 20 features obtained from the

four ranking methods mentioned above. Such an evaluation

also requires observing whether there are any improvements

in training time. For features extracted from the URL datasets,

Figure 10 shows the performance of the top classifier on the

top 20 features from IG, Gini, Chi-2, and RFE respectively,

as well as on all the features. We notice a slight drop in per-

formance with a smaller set of features in all the experiments,

but a huge decrease in running time (from 300 seconds to less

than 20 seconds).

Figures 11 and 12 show the feature evaluation for features

extracted from emails. We report in these figures the classifier

that achieved the highest F1_score using all features and

its training time. Same as the URL dataset, we observe a

noticeable decrease in training time with a small drop in

performance when using the top 20 features.

(a) F1-score (b) Training time

Fig. 10: Comparison of performance of top classifier with all

features vs top 20 features for websites

(a) F1-score (b) Training time

Fig. 11: Comparison of performance of top classifier with all

features vs top 20 features for Emails - with header features.

Models trained on top features selected by Chi-2 performed

worse compared to Information Gain in both website and email

detection. We converted all the features into binary using one-

hot encoding after extracting the features. This could be the

reason for Chi-2’s poor performance since it is sensitive to

small frequencies in cells of the contingency table (which

happens as a result of one-hot encoding and having sparse

feature space). On the other hand, it ameliorates the limitation

of Information Gain, viz., choosing features that take a large

range of values.

The conclusion is that the trade-off between time and

performance should be considered by the users and researchers

when deploying their detection methods.

3) Feature Extraction Time: When a user wants to open a

website or click on a link in an email, a detection system is

expected to detect malicious contents before they can cause

any harm to the user. So, real-time detection of phishing

websites/emails is a critical part of detection systems. The

inference speed of the model used for detection is one aspect

of having a real-time detection system. On the other hand,

extracting the features from emails and URLs is something

that the system needs to do for every instance. Table XIX

shows the extraction time for some of the website features. It

only contains a subset of the features that take the most amount

of time. We do not report extraction time for email features

since they are based on text analysis, which is very fast (on

the order of milliseconds and microseconds). As seen in Table

XIX, the extraction of URL features is much faster than that of

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 18

(a) F1-score Comparison (b) Training time

Fig. 12: Comparison of performance of top classifier with

all features vs top 20 features for Emails - without header

features.

TABLE XIX: Avgerage extraction time for a subset of website

features (ms). Gray cells are subset of the features on top of

them in white cells (e.g., dns ttl is subset of DNS lookup.

URL Lexical Network

Feature Time Feature Time Feature Time

url length 0.0003 ▽HTML GET 2.393s ▽whois 2.49s

domain length 0.0115 # of head 0.178 creation date 0.0073

Kolmogorov
Shmirnov

0.2639 # of tags 0.256 expiration data 0.0019

url character
distance

0.16 # of html 0.2 updated date 0.0019

digit-letter ratio 0.0115 # of body 0.2 AS number 0.0005

top level
domain

0.013 # suspicious content 48 ▽DNS lookup 618.0

average path
token length

0.0146 # of iframes 0.2 # of name server 0.0006

longest domain
token

0.0097 # of input 0.2 dns_ttl 262.27

of punctuation 0.0077 # of img 0.2 DNS info Exists 18.7

has more than
3 dots

0.0010 inbound count 9.9661 ipwhois 270.01

Kullback Leibler
divergence

0.0756 outbound count 9.9237

has at symbol 0.0003 rightclick disabled 0.4

Total 0.721s Total 2.464s Total 3.66s

lexical (all types syntactic, semantic and pragmatic) features.

Network features take the most time for extraction. Adding

network and lexical features increases the performance of the

model, but it adds a time overhead for feature extraction. There

is a trade-off between adding expensive features and model

performance, which is generally ignored.

To get a better understanding of the trade-off between the

features and the performance of the model, we extract features

from different classes: lexical (all types syntactic, semantic

and pragmatic), URL, and network, and evaluate the classifier

performance on each of these categories separately. This

experiment also helps us gain insights regarding influential

feature classes that contribute to the classifier performance

and which features lead to a faster classification. For email

features, the extraction time is very low (on the order of

milliseconds and microseconds) so they do not affect the

classification time.

Figures 13 and 14 show the F1-score and training time

of top classifier trained on each category of website and

email features. For website features, considering both F1-

score and training time, lexical (HTML) features give the

best performance. It reduces the training time by a factor

of 18 and only loses 0.3% of F1-score. The problem with

lexical features, as reported in Table XIX, is their extraction

(a) F1-score (b) Time

Fig. 13: Comparison of the performance of top classifier with

all features vs features from each category of websites features.

(a) F1-score (b) Time

Fig. 14: Comparison of the performance of top classifier with

all features vs features from each category of email features.

time, which slows down the overall detection time. For email

features, using only the header features gives almost the same

performance compared to using all features. It also reduces

the training time and unlike websites’ lexical features, it does

not require huge extraction time.

4) Key takeways: We learned from the feature ranking and

evaluation experiment:

• We found a strong correlation between feature rankings

obtained by the IG and Gini methods. On the other hand,

correlations of Chi-2’s rankings with rankings of other

methods were very low.

• For websites, features from all top three categories, syn-

tactic, semantic and pragmatic, described in our proposed

taxonomy contribute to the classifier performance. On

the other hand, for email, TFIDF features contributed the

most to the performance of classifiers.

• Training models on a subset of top features is 20 times

faster compared to using all features with almost the same

classification performance (0.5% reduction).

• Feature extraction time is an important aspect of having

a real-time detection system for websites. Extracting

network and HTML features increases extraction time by

six seconds on average and delays the final classification.

E. Comparing with Previous Work

In the following experiments, we replicate the methods in

selected research from the literature on phishing detection and

compare them on the same datasets using PhishBench. The

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 19

goal of this experiment is two-fold: (i) Do a proper comparison

with previous works i.e., same classifier parameters, same

dataset, and one set of evaluation metrics. (ii) Identify how

methods developed in the past perform on a different and

imbalanced dataset.

The papers were selected based on how well the security

challenges were addressed, reproducibility of the system, and

the rank of the conference or the journal that published the

paper (venues with h5-index higher than 20).

We selected a total of nine systems for our comparison

experiment: three each on URL detection [10], [36], [57],

website detection [41], [61], [66], and email detection [31],

[34], [65]. The datasets used for testing the detection systems

have different legitimate to phishing ratios (1:1, 1:5, and 1:10),

and were used previously in Sections VII-B1 and VII-B2 in the

ratio experiment for URLs/Websites and emails respectively.

For emails, we use the With Header dataset. Before reporting

results, we explain the selected research and features that were

extracted to reproduce these systems.

1) Phishing URL/Website Detection: The model proposed

in [61] used Google’s PageRank and Gmail domain reputation

which is not public, so we trained and tested their model

without those features. Researchers in [41] just studied several

features on phishing and legitimate websites without introduc-

ing any model. We train all the classifiers in PhishBench with

those features and report the best result. Authors in [66] used

the Extreme Learning Machine (ELM) classifier that we did

not have in PhishBench, so we added ELM to PhishBench to

evaluate their method. We used an existing Python library for

the ELM classifier.13

Researchers in [36] use character and word based n-grams

as features to train a deep convolutional neural network. Au-

thors in [10] use bag-of-words based lexical features extracted

from URLs, which are used as input to a confidence-weighted

online learning algorithm for classification. In [57], authors

use a different set of attributes, viz., distance-based features

(K-L Divergence, Euclidean distance, character frequencies),

as well as URL length ratio, presence of suspicious words,

frequency of target words, punctuation symbols, etc.

2) Phishing Email Detection: Abawajy et al. [34] devel-

oped a multi-tier classifier to detect phishing emails. Their

system relies on a majority vote between three classifiers. They

extracted 21 features in total from each email: six from the

subject, two from the priority and content-type headers, and

12 from the message body.

Masoumeh et al. [65] used different feature ranking and

feature selection methods to shorten the feature vector and

increase the accuracy of their Bagging classifier. The authors

extracted 20 features previously used in [2]. The length of

the extracted feature vector also suggests the use of a Term

Frequency method, which builds a matrix of all the words in

the corpus and respective frequency in each document.

Ganesh et al. [31] used FastText [11] which is a library for

text classification and representation learning. It transforms

the text into continuous vectors that can be used in language-

13https://pypi.org/project/elm/

TABLE XX: F1-score of previous works and our model on

URLs, website and email detection.

Type Paper
Reported

Performance
PhishBench Results

Balanced 1to5 1to10

URLs
[57] 92.7% 89.3% 81.4% 75.6%
[36] 93.6% 94.7% 89.5% 76.1%
[10] 88.7% 83.4% 78.5% 71.8%

Websites
[61] 96.2% 95.9% 87.7% 71.9%
[66] 99.2% 69.3% 26.2% 4.7%
[41] NA 95.2% 88.1% 76.3%

Emails
[34] 97.0% 90.2% 92.46% 96.53%
[65] 97.7% 99.0% 98.0% 98.0%
[31] 99.0% 99.0% 98.0% 89.0%

related tasks. The authors were able to achieve high results in

the IWSPA-AP 2018 phishing pilot [1].

3) Results: Using PhishBench, we replicated the features

used in these papers and adjusted the classification methods

according to the methods they described. We implemented and

ran these methods with hyper-parameter tuning, even if some

of the works did not report using it. The main issue that we

encountered during this experiment is the reproduction of the

methods implemented by previous research. We found that a

majority of the detection literature lacks sufficient details or

clear explanations, thus hurting their reproducibility. However,

we take care to be as faithful as possible, erring on the side

of generosity when details are missing, and do our best to

replicate the work described.

Table XX shows the performance reported by the previ-

ous works and their PhishBench implementations on each

detection category (URL, website, and email). We tested them

on three datasets with different ratios (1:1, 1:5, and 1:10),

which we used in the ratio experiment in Section VII-B. For

emails, we only used the “with header” dataset to make the

comparison fair.

As we can see, in most of the cases the reported perfor-

mance by the previous works is only slightly lower than their

performance on our balanced dataset except for [34], [66]. We

suspect the main cause for lower comparative performance of

[34] is the use of term frequency features and word embedding

(FastText) by [65] and [31] respectively. The difference is

much bigger for [66] and we believe the inferior performance

of the ELM classifier is the main reason for this observation

(it gave the same performance even when trained using all

the features). We also notice a decline in performance as the

datasets are more imbalanced, except for [34]. This shows

that their implementation of majority voting between three

classifiers works well with imbalanced datasets. We see from

this experiment that text analysis methods like TFIDF and

word embedding capture the inherent differences between

legitimate and phishing samples, and as long as the model

is retrained, it should scale well with new and bigger datasets.

4) Key takeways: We learned from this experiment the

following:

• Phishing attacks are evolving every day and training the

existing defense mechanism on newer attack samples is

not enough to detect new attacks.

• We observed a decrease in previous works’ reported

performance when we tested their methods on a recent

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 20

dataset even with retraining. This shows the importance

of having a robust set of features that go beyond current

attacks and selecting a diverse and high-quality dataset

for model building.

• Seven out of nine of the previous works do not perform

well in an imbalanced scenario.

F. Future attacks

Phishing attacks are constantly evolving with time. it is then

necessary to test the robustness of detection systems. One way

to do that is to train classification methods on one dataset and

then test on a different one. We do this experiment on URLs

and emails using PhishBench.

URLs: We collected 2,000 new URLs from PhishTank and

Alexa (1,000 each) in July 2019 which resulted in 718 and

887 valid URLs respectively (valid URLs are those for which

all the features are successfully extracted). We used the top

three classification models trained on the balanced experiment

in Section VII-B1 without any retraining (Bagging, Boost-

ing and AutoSklearn). These models were able to achieve

57.11%, 74.67% and 79.95% F1-score respectively using all

the features. We see a huge drop comparing to the results that

we got in Section VII-B (Bagging: 97.61%, Boosting 97.59,

AutoSklearn: 97.47%). To examine the effect of retraining on

the performance, we split the 1,605 newly collected URLs

into train and test sets and retrain the top three classifiers

with the old dataset plus the new training set. It improved

the performance of two classifiers (Bagging: 70.41%, Au-

toSklearn: 81.53%) and decreased Boosting’s performance to

62.9%. Despite the improvement, it is still far from a perfect

detection system. It shows that phishing attacks are evolving

so rapidly that simple retraining is not enough to keep up with

them.

Emails: We collected 197 phishing emails that were not

detected by our university mailing system from 2013-2018

and built a test set. We used the classifiers as trained in

the balanced experiment in Section VII-E2. We ran the best

models for the “with header” dataset, which were LR, SVM,

AutoSK, and TPOT (Table X). In terms of accuracy, the

models achieved 97.96%, 96.44%, 97.46%, and 98.47% re-

spectively. We notice a slight decline in performance compared

to the previous experiment, however, we can argue that these

are good results considering these emails were not used in the

training set.

We also evaluated our top models on the publicly avail-

able Employment Scam Aegean Dataset,14 which contains

866 fraudulent job advertisements and 17,014 legitimate ones

published between 2012 and 2014. These emails do not have

headers, thus we used the top 3 models for no header emails,

which are AutoSk, Boosting, SVM in that order (Table XI).

We conducted this evaluation in two ways. i) we use the

whole Jobscam dataset as the testing set and the models

trained on the balanced dataset in Section VII-B without

retraining. The model performance was quite low. The SVM

classifier achieved the highest F1-score of 19.01%. Boosting

and AutoSklearn come in second and third with F1-scores of

14http://emscad.samos.aegean.gr/, Accessed: July 18, 2019

9.61% and 4.36% respectively. ii) In the second experiment,

to examine the retraining effect, we included 90% of the

emails from the Aegean Dataset in the training set and the

remaining 10% was used for testing. The testing set did not

include any emails from the other datasets. Similar to the URL

experiment, we observed that retraining improved the results

but the classifier performance is still low. The SVM classifier

achieved the best result with 86.15% F1-score. AutoSklearn

did better than Boosting with 59.87% F1-score. The Boosting

classifier achieved the lowest results with 18.94% F1-score.

This experiment emphasizes the importance of verifying the

robustness of classification models and the need for regular

retraining with newer types of attacks as well as revising the

feature sets to cope with ever evolving attacks.

Key takeways: Attackers always change their attack tech-

niques to bypass defense mechanism. Retraining using a more

recent dataset slightly helps existing models to detect newer

attacks but, as we mentioned in the previous section, retraining

alone will not be enough to deal with new attacks.

VIII. CONCLUSIONS AND FUTURE WORKS

In this paper, we introduced a novel taxonomy of features

for phishing emails, websites and URL detection based on

their structure and how the attributes are processed by the

web and email servers. Then, we proposed PhishBench –

a novel phishing detection framework intended to act as a

ready-to-use platform for security researchers to compare their

work with proposed state-of-the-art phishing detection meth-

ods using proper evaluation metrics and different classification

algorithms.

Through a variety of experiments, we evaluated several

dimensions of the phishing problem including scaling and

ratio of phishing to legitimate class. Using PhishBench, we

conducted a benchmarking study to evaluate phishing detec-

tion features used in previous literature and their performance

using different classification methods on balanced and imbal-

anced datasets. The experiments showed that the classification

performance dropped when the ratio between phishing and

legitimate decreased towards 1 to 10. The decline in perfor-

mance ranged from 5.9% to 42% in F1-score. Additionally,

PhishBench was also used to test previous methods on our

new and diverse datasets – these experiments proved that term

frequency features like TFIDF and word embedding methods

are robust as long as they are retrained on newer datasets.

There are many directions for future work. For example,

more features could be extracted from the phishing datasets.

Another possibility for future improvement is including real-

time retraining and evaluation capability.

ACKNOWLEDGMENTS

Thanks to NSF for partial support under grants CNS

1319212, DGE 1433817,and DUE 1356705. This material is

also based upon work supported in part by the U. S. Army

Research Laboratory and the U.S. Army Research Office under

contract/grant number W911NF-16-1-0422.

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 21

REFERENCES

[1] A. E. Aassal, L. Moraes, S. Baki, A. Das, and R. Verma, “Anti-phishing
pilot at ACM IWSPA 2018: Evaluating performance with new metrics
for unbalanced datasets,” in Proc. of IWSPA-AP: Anti-Phishing Shared

Task Pilot at the 4th ACM IWSPA, 2018, pp. 2–10. [Online]. Available:
http://ceur-ws.org/Vol-2124/#anti-phishing-pilot

[2] D. Almomani, T.-C. Wan, A. Manasrah, A. Taha, M. Baklizi, and S. Ra-
madass, “An enhanced online phishing e-mail detection framework based
on evolving connectionist system,” International journal of innovative

computing information and control (IJICIC), 2012.

[3] Anti-Phishing Working Group, “Phishing Activity Trends Report - 1st
Quarter 2019,” https://docs.apwg.org/reports/apwg_trends_report_q1\
_2019.pdf, 2019, online.

[4] A. Balaji and A. Allen, “Benchmarking automatic machine learning
frameworks,” arXiv preprint arXiv:1808.06492, 2018.

[5] S. Baskaran. (2018) phishing URL classification. [Online]. Available:
https://github.com/srirambaskaran/phishing-url-classification

[6] M. Bekkar, H. K. Djemaa, and T. A. Alitouche, “Evaluation measures
for models assessment over imbalanced datasets,” Journal of Information

Engineering and Applications, vol. 3, no. 10, 2013.

[7] A. Bergholz, J. Chang, G. Paaß, F. Reichartz, and S. Strobel, “Improved
phishing detection using model-based features,” in Proc. (CEAS), 2008.

[8] A. Bergholz, J. D. Beer, S. Glahn, M.-F. Moens, G. Paass, and S. Strobel,
“New filtering approaches for phishing email,” Journal of Computer

Security, vol. 18, pp. 7–35, 2010.

[9] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” Journal of Machine Learning Research, vol. 13, no. Feb, pp.
281–305, 2012.

[10] A. Blum, B. Wardman, T. Solorio, and G. Warner, “Lexical feature based
phishing URL detection using online learning,” in AISec, 2010, pp. 54–
60.

[11] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” arXiv preprint arXiv:1607.04606,
2016.

[12] K. L. Chiew, K. S. C. Yong, and C. L. Tan, “A survey of phishing
attacks: Their types, vectors and technical approaches,” Expert Systems

with Applications, vol. 106, pp. 1–20, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957417418302070

[13] D. A. Cieslak, T. R. Hoens, N. V. Chawla, and W. P. Kegelmeyer,
“Hellinger distance decision trees are robust and skew-insensitive,”
Data Mining and Knowledge Discovery, vol. 24, no. 1, pp. 136–158, Jan
2012. [Online]. Available: https://doi.org/10.1007/s10618-011-0222-1

[14] A. Cohen, N. Nissim, and Y. Elovici, “Novel set of general descriptive
features for enhanced detection of malicious emails using machine
learning methods,” Expert Systems with Applications, vol. 110, 05 2018.

[15] M. Darling, G. Heileman, G. Gressel, A. Ashok, and P. Poornachan-
dran, “A lexical approach for classifying malicious URLs,” in 2015

International Conference on High Performance Computing & Simulation

(HPCS). IEEE, 2015, pp. 195–202.

[16] A. Das, S. Baki, A. El Aassal, R. Verma, and A. Dunbar, “Sok: A
comprehensive reexamination of phishing research from the security
perspective,” IEEE Communications Surveys Tutorials, pp. 1–1, 2019.

[17] P. Dewan and P. Kumaraguru, “Towards automatic real time identifica-
tion of malicious posts on Facebook,” in 13th Annual Conference on

Privacy, Security and Trust (PST), July 2015, pp. 85–92.

[18] P. Dewan and P. Kumaraguru, “Facebook inspector (FbI): Towards
automatic real-time detection of malicious content on Facebook,” Social

Network Analysis and Mining, vol. 7, no. 1, p. 15, 2017.

[19] Z. Dou, I. Khalil, A. Khreishah, A. Al-Fuqaha, and M. Guizani, “Sys-
tematization of knowledge (SoK): A systematic review of software-based
web phishing detection,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 4, pp. 2797–2819, 2017.

[20] B. Eshete and V. Venkatakrishnan, “Webwinnow: Leveraging exploit kit
workflows to detect malicious URLs,” in Proceedings of the 4th ACM

conference on Data and application security and privacy. ACM, 2014,
pp. 305–312.

[21] T. Fawcett, “An introduction to ROC analysis,” Pattern recognition

letters, vol. 27, no. 8, pp. 861–874, 2006.

[22] M. N. Feroz and S. Mengel, “Examination of data, rule generation and
detection of phishing URLs using online logistic regression,” in 2014

IEEE International Conference on Big Data (Big Data). IEEE, 2014,
pp. 241–250.

[23] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum,
and F. Hutter, “Efficient and robust automated machine learning,” in
Advances in Neural Information Processing Systems 28, C. Cortes, N. D.

Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran
Associates, Inc., 2015, pp. 2962–2970.

[24] S. Garera, N. Provos, M. Chew, and A. Rubin, “A framework for
detection and measurement of phishing attacks,” in Proc. 2007 ACM

workshop on Recurring malcode, 2007, pp. 1–8.

[25] P. J. A. Gijsbers, E. LeDell, J. Thomas, S. Poirier, B. Bischl, and
J. Vanschoren, “An open source AutoML benchmark,” ArXiv, vol.
abs/1907.00909, 2019.

[26] N. Gupta, A. Aggarwal, and P. Kumaraguru, “bit.ly/malicious: Deep dive
into short URL based e-crime detection,” in 2014 APWG Symposium on

Electronic Crime Research (eCrime), Sep. 2014, pp. 14–24.

[27] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for
cancer classification using support vector machines,” Machine learning,
vol. 46, no. 1-3, pp. 389–422, 2002.

[28] I. R. A. Hamid and J. Abawajy, “Phishing email feature selection
approach,” in IEEE 10th International Conference on Trust, Security

and Privacy in Computing and Communications, Nov 2011, pp. 916–
921.

[29] I. R. A. Hamid and J. H. Abawajy, “Profiling phishing email based on
clustering approach,” in 2013 12th IEEE International Conference on

Trust, Security and Privacy in Computing and Communications, July
2013, pp. 628–635.

[30] D. Hassan, “On determining the most effective subset of features
for detecting phishing websites,” International Journal of Computer

Applications, vol. 122, no. 20, pp. 1–7, 2015.

[31] B. G. Hb, V. R, M. Kumar, and S. Kp, “Distributed representation using
target classes: Bag of tricks for security and privacy analytics Amrita-
NLP@IWSPA 2018,” in IWSPA ’18 Proceedings of the Fourth ACM

International Workshop on Security and Privacy Analytics, 03 2018.

[32] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university
press, 2012.

[33] C. Huang, S. Hao, L. Invernizzi, J. Liu, Y. Fang, C. Kruegel, and
G. Vigna, “Gossip: Automatically identifying malicious domains from
mailing list discussions,” in Proceedings of the ACM on Asia Conference

on Computer and Communications Security. ACM, 2017, pp. 494–505.

[34] R. Islam and J. Abawajy, “A multi-tier phishing detection and filtering
approach,” J. Netw. Comput. Appl., vol. 36, no. 1, pp. 324–335, Jan.
2013. [Online]. Available: http://dx.doi.org/10.1016/j.jnca.2012.05.009

[35] B. Klimt and Y. Yang, “The Enron corpus: A new dataset for email
classification research,” in European Conference on Machine Learning.
Springer, 2004, pp. 217–226.

[36] H. Le, Q. Pham, D. Sahoo, and S. C. H. Hoi, “URLNet:
Learning a URL representation with deep learning for malicious
URL detection,” CoRR, vol. abs/1802.03162, 2018. [Online]. Available:
http://arxiv.org/abs/1802.03162

[37] S. Lee and J. Kim, “WarningBird: A near real-time detection system for
suspicious URLs in Twitter stream,” IEEE Transactions on Dependable

and Secure Computing, vol. 10, no. 3, pp. 183–195, May 2013.

[38] G. Lemaître, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A
python toolbox to tackle the curse of imbalanced datasets in machine
learning,” Journal of Machine Learning Research, vol. 18, no. 17, pp.
1–5, 2017. [Online]. Available: http://jmlr.org/papers/v18/16-365

[39] J. Ma. (2009) Detecting malicious URLs. [Online]. Available:
http://www.sysnet.ucsd.edu/projects/url/

[40] M. S. I. Mamun, M. A. Rathore, A. H. Lashkari, N. Stakhanova, and
A. A. Ghorbani, “Detecting malicious URLs using lexical analysis,” in
International Conference on Network and System Security. Springer,
2016, pp. 467–482.

[41] D. K. McGrath and M. Gupta, “Behind phishing: An examination of
phisher modi operandi,” in LEET, 2008.

[42] P. Meesad, P. Boonrawd, and V. Nuipian, “A Chi-Square-Test for
word importance differentiation in text classification,” Proceedings of

Computer Science and Information Technology, vol. 6, 01 2011.

[43] J. Nazario, “The online phishing corpus,” https://monkey.org/~jose/
phishing/, 2004.

[44] A. Niakanlahiji, B.-T. Chu, and E. Al-Shaer, “PhishMon: A machine
learning framework for detecting phishing webpages,” in 2018 IEEE

International Conference on Intelligence and Security Informatics (ISI).
IEEE, 2018, pp. 220–225.

[45] P. Nohe, “HTTPS Phishing: 49% of Phishing Websites now
sport the green padlock,” https://www.thesslstore.com/blog/
https-phishing-green-padlock/, 2018, online.

[46] R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore, “Evaluation
of a tree-based pipeline optimization tool for automating data science,” in
Proceedings of the Genetic and Evolutionary Computation Conference

2016, ser. GECCO ’16, 2016.

EL AASSAL ET AL.: AN IN-DEPTH BENCHMARKING OF PHISHING DETECTION RESEARCH 22

[47] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1,
no. 1, pp. 81–106, 1986.

[48] K. D. Rajab, “New hybrid features selection method: A case study on
websites phishing,” Security and Communication Networks, vol. 2017,
2017.

[49] D. Sahoo, C. Liu, and S. C. Hoi, “Malicious URL detection using
machine learning: A survey,” arXiv preprint arXiv:1701.07179, 2017.

[50] G. Salton and M. McGill, Introduction to Modern Information Retrieval.
McGraw-Hill, Inc., 1986.

[51] R. Shukla. (2015) Identifies phishing websites using a treebag model.
[Online]. Available: https://github.com/rishy/phishing-websites

[52] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in 31st IEEE Symposium on

Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland,

California, USA, 2010, pp. 305–316.
[53] SpamAssassin, “SpamAssassin,” http://www.csmining.org/index.php/

spam-assassin-datasets.html, 2018, online.
[54] T. H. team, h2o: Python Interface for H2O, 2015, python package

version 3.1.0.99999. [Online]. Available: http://www.h2o.ai
[55] E. Test, L. Zigic, and V. Kecman, “Feature ranking using Gini index,

scatter ratios, and nonlinear SVM RFE,” in 2013 Proceedings of IEEE

Southeastcon, April 2013, pp. 1–5.
[56] F. Toolan and J. Carthy, “Feature selection for spam and phishing

detection,” eCrime Researchers Summit (eCrime), 2010, pp. 1–12, 2010.
[57] R. Verma and K. Dyer, “On the character of phishing URLs: Accurate

and robust statistical learning classifiers,” in Proceedings of the 5th ACM

Conference on Data and Application Security and Privacy, 2015, pp.
111–122.

[58] R. Verma, M. Kantarcioglu, D. Marchette, E. Leiss, and T. Solorio,
“Security analytics: Essential data analytics knowledge for cybersecurity
professionals and students,” IEEE Security & Privacy, vol. 13, no. 6,
pp. 60–65, 2015.

[59] R. M. Verma and M. Fastovets, “Meta-searching: Should search engine
rankings be aggregated,” University of Houston, Tech. Rep. UH-CS-10-
09, 2010.

[60] E. Volkman, “The 2018 Phishing Trends & Intelligence
Report Now Available,” https://info.phishlabs.com/blog/
2018-phishing-trends-intelligence-report-released, 2018, online.

[61] C. Whittaker, B. Ryner, and M. Nazif, “Large-scale automatic classifi-
cation of phishing pages,” Proc. of 17th NDSS, 2010.

[62] WikiLeaks, “WikiLeaks,” www.wikileaks.org, 2018, online.
[63] Y. Wu, S. C. Hoi, C. Liu, J. Lu, D. Sahoo, and N. Yu, “SOL: A library

for scalable online learning algorithms,” Neurocomputing, vol. 260, pp.
9–12, 2017. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0925231217306239

[64] A. Yasin and A. Abuhasan, “An intelligent classification model for
phishing email detection,” CoRR, vol. abs/1608.02196, 2016. [Online].
Available: http://arxiv.org/abs/1608.02196

[65] M. Zareapoor and Seeja K.R., “Feature extraction or feature selection
for text classification: A case study on phishing email detections,” in
Engg. and Electronic Business, 2015.

[66] W. Zhang, Q. Jiang, L. Chen, and C. Li, “Two-stage ELM for phishing
web pages detection using hybrid features,” World Wide Web, vol. 20,
no. 4, pp. 797–813, 2017.

