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Abstract—Globally, lung cancer is responsible for nearly one
in five cancer deaths. The National Lung Screening Trial (NLST)
demonstrated the efficacy of low-dose computed tomography
(LDCT) to identify early-stage disease, setting the basis for
widespread implementation of lung cancer screening programs.
However, the specificity of LDCT lung cancer screening is
suboptimal, with a significant false positive rate. Representing
this imaging-based screening process as a sequential decision
making problem, we combined multiple machine learning-based
methods to learn a partially-observable Markov decision process
that simultaneously optimizes lung cancer detection while en-
hancing test specificity. Using NLST data, we trained a dynamic
Bayesian network as an observational model and used inverse
reinforcement learning to discover a rewards function based on
experts’ decisions. Our resultant predictive model decreased the
false positive rate while maintaining a high true positive rate at
a level comparable to human experts. Our model also detected
a number of lung cancers earlier.

Index Terms—Early disease prediction, Dynamic Bayesian
networks, Lung cancer screening, Partially observable Markov
decision processes, QMDP algorithm

I. INTRODUCTION

Lung cancer is the leading cause of cancer-related mortality,

estimated to be responsible for 2.1 million deaths worldwide

in 2018. Although the five-year survival rate for this disease

improves when discovered in its nascent stages [1], only 15%

of all lung cancers are detected early as symptoms often

do not appear until the disease has advanced to a late or

terminal stage. The findings of the National Lung Screening

Trial (NLST) and more recent NELSON study [2], [3] support

the implementation of lung cancer screening programs to

identify individuals at high-risk for developing this disease,

using low-dose computed tomography (LDCT) imaging to

maximize initial detection [2], [4]. Lung cancer screening

guidelines consider the high-risk population as a whole, bal-

ancing the benefit of longitudinal observation of pulmonary

nodules against pragmatic issues including test sensitivity and

specificity. Of current concern is the disproportionately high

false positive (FP) rate for LDCT screening: in the NLST,

the overall positive screen rate with LDCT was 24%, yet the

positive predictive value of a positive screen was less than

4% [5]. Of the total number of lung nodules diagnosed in

the NLST, only 3-6% were found to be malignant, depending

on nodule size. The negative consequences of overdetection

are significant, increasing the use of unnecessary diagnostic

procedures results in complications and patient duress [6]. As

such, in this work we present a novel approach that reduces

the FP rate associated with LDCT lung cancer screening while

maintaining a high true lung cancer detection rate.

Applying computational methods on the growing amount

of data available from electronic health records (EHRs) and

imaging in this domain, we can address such issues and begin

to ask the more precise question of how to optimize lung

cancer screening for each person, discovering better ways to

risk-stratify as an individual’s disease trajectory unfolds. But

individually-tailoring this process is not straightforward: the

obvious next “best” action may not be ideal in the long run

given a patient’s evolving risk factors, potential future obser-

vations, and changing benefit of decisions as time progresses.

Sequential decision making, a class of algorithms used in

artificial intelligence (AI) for selecting the series of actions

optimizing the likelihood of achieving a goal in dynamic

environments, provides one way to overcome this difficulty.

Known as the temporal credit assignment problem [7], we pose

lung cancer screening in terms of finding the series of actions,

given various observations over time, which maximizes early

disease detection while minimizing false positives.

We developed a predictive model informing personalized

lung cancer screening policies using machine learning and se-

quential decision making methods. Specifically, we established

a framework for learning a partially-observable Markov deci-

sion process (POMDP), progressively optimizing the choice

of screening actions given prior observations. POMDPs, a

generalization of Markov decision processes, are useful when

serial observations of a disease are indirect and/or subject

to interpretation. Demonstrated in other settings [8]–[11], the

implementation of POMDPs to guide clinical decision making

is challenging given the need to derive required probability

distributions and reward functions. We leveraged different

techniques to learn a POMDP from NLST data: we integrated

a dynamic Bayesian network (DBN) into the POMDP to

predict the chance of developing lung cancer and to determine

the POMDP’s observation and transition probabilities, and we

applied inverse reinforcement learning (IRL) to formulate a

rewards model [12], mimicking experts’ decisions.

We trained and tested our POMDP using a dataset of 5,402

single nodule unique trajectories of lung cancer screening

patients from the NLST LDCT trial arm. We compared our

model’s decisions with experts’ decisions over time, and

found that: 1) our POMDP lowered the false positive rate for

most screenings in the NLST, while maintaining true positive

detection rates; and 2) our POMDP improves early prediction

of cancer cases with indeterminate pulmonary nodules (IPNs,

nodules having some risk of developing into cancer [13]) as
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Fig. 1: Histogram of nodule counts per NLST subject.

compared to radiologists’ interpretation.

II. METHODS

A. NLST dataset

The NLST was a multi-site randomized controlled trial

examining the impact of two imaging modalities, LDCT and

chest x-ray, for early detection of lung cancer in asymp-

tomatic, high-risk individuals. Over 53,000 participants under-

went three annual screenings with follow-up to assess cancer

outcomes. Participants suspected of cancer were referred for

diagnostic procedures (e.g., biopsy) and removed from the

study for treatment if lung cancer was confirmed. In this

work, we used data gathered from NLST’s LDCT arm. The

dataset comprises over 25,000 participants with information on

demographic, clinical, and imaging data. Of this population,

only 10,231 cases had one or more solitary IPNs over the study

period. Figure 1 shows the number of patients and total number

of nodules reported. Unfortunately, NLST annotation data

did not uniquely identify individual nodules in participants

with multiple nodules, making linking observations over serial

scans difficult. As such, we further constrained our data to

individuals with only one IPN reported in the same anatomical

lung lobe during the study, assuming that the same nodule was

observed over time. This selection criteria and preprocessing

to remove inconsistent cases (see below) resulted in a total

of 5,402 cases, which we used to train and test our POMDP

model.

To perform a five-fold stratified cross validation (80 : 20%
training:test ratio) with this data, we randomly generated each

fold while maintaining the relative proportion of cancer to non-

cancer cases seen at each screening time point of the NLST

study.

B. Data preprocessing

Table I summarizes the NLST variables used in our analysis.

We considered the same demographic and clinical variables

selected in the Tammemägi model [14] and replicated its

preprocessing steps. We converted two variables into binary

representations: family history of lung cancer (if any first

degree relative had a history of lung cancer) and personal

lung cancer history (if the individual had any prior history

of lung cancer). Missing values for the variables used with

the Tammemägi model were imputed using a variation of

a multiple clustering imputation approach [15]. In addition

to the radiologist’s overall interpretation of the LDCT scan,

we employed several imaging features describing the nodule,

discretizing continuous variables: location, nodule size (Bin 1:

≥ 0 mm and 6 3 mm; Bins 2-9: 1 mm bins from 3−11 mm;

Bin 10: > 11 mm and 6 27 mm; and Bin 11: > 27 mm),

predominant attenuation, and margins. Given the sparsity of

cases with nodules of size > 11 mm, we created larger bins by

identifying discretizations maximizing POMDP performance

using the training data. We removed inconsistent cases with a

perpendicular measurement greater than the reported longest

nodule diameter and any cases with missing measurements.

Cases without screening abnormalities at an annual screening

for reasons other than death, cancer, or missed screening, a

nodule size between 0-3 mm was assumed. Cases without

nodule size abnormalities across the three annual screenings

were excluded from the analysis. Nodule size was then in-

terpolated between annual screenings using the average value

between time points, with nodule consistency, margins, and

follow-up decisions unchanged relative to the earlier annual

observation. This interpolation, used only when training (learn-

ing the model’s parameters), augmented temporal data points

every six month intervals for the training data and improved

the overall performance of our POMDP model when testing.

Other variables used in the model include the total number of

screening days, occurrence of diagnostic procedures (biopsy,

thoracotomy, diagnostic CT exam), and confirmed diagnoses

of lung cancer.

C. Defining and learning the POMDP components

1) States (s) and actions (a): Figure 2(a) illustrates the

lung cancer screening POMDP state space, observations, and

potential state transitions. We adopted a state space used in

our earlier work [16]. This state space consists of three states

defined around the true cancer state of each subject after each

screening. No-cancer (NC) is the state in which the individual

has no remarkable findings for lung cancer (e.g., nodules < 4
mm). The Uncertain (U) state is an intermediate state in which

an individual exhibits suspicious abnormalities (e.g., lung

nodules ≥ 4 mm) but no confirmed diagnosis of lung cancer.

The Lung Cancer (LC) state represents any case with a

confirmed lung cancer diagnosis through the use of additional

procedures. LC is a terminal state in which an individual

enters and simultaneously leaves the screening process (as

NLST participants diagnosed with lung cancer were removed

from the clinical trial for treatment). We simplified the set of

possible actions into two types, embodying the core decisions

made by experts: to continue screening with a follow-up

LDCT or to recommend an intervention (i.e., any procedure

performed in relation to diagnosing lung cancer).

2) Observations (z): Following from the NLST’s screening

paradigm, two types of observations are possible: those com-

ing from annual screens (LDCT findings) and interpretation

and those arising from a diagnostic intervention. To capture
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Demographic, clinical, outcome variables (% missing) Variable type Value Mean (SD)/Category proportions (%)

Age (0%) Continuous 61.64 (5.05) years

Education (0.31%) Categorical

8th grade or less 1.34%

9 − 11
th grade 4.66%

High school graduate/GED 24.29%

Post-high school training, excluding college 13.72%

Associate degree/some college 23.53%

Bachelors degree 16.47%

Graduate/professional school 14.09%

Other 1.89%

Race (1.48%) Categorical

White 93%

Black 4.28%

Asian 2.05%

American Indian or Alaskan Native 0.23%

Native Hawaiian or Other Pacific Islander 0.26%

Body mass index (0.03%) Continuous 27.61 (4.92)

Chronic obstructive pulmonary disease (COPD) (0.26%) Binary
No 94.38%

Yes 5.62%

Family history of lung cancer (0%) Binary
No 77.32%

Yes 22.68%

Personal history of lung cancer (0%) Binary
No 95.59%

Yes 4.41%

Smoking status (0%) Binary
No 50.19%

Yes 49.81%

Smoking intensity (0%) Continuous 28.71 (11.43)

Duration of smoking (0%) Continuous 40.2 (7.27) years

Smoking quit time (0.48%) Continuous 3.67 (4.95) years

Confirmed lung cancer diagnosis (0%) Binary
No 91.65%

Yes 8.35%

Study variable Variable type Value t0 t1 t2

Screening outcome (radiologist interpretation) Categorical

Negative screen, no significant abnormalities 8.83% 4.59% 4.15%

Negative screen, minor abnormalities not suspicious for lung cancer 24.07% 25.84% 49.09%

Negative screen, significant abnormalities not suspicious for lung cancer 6.42% 3.74% 4.41%

Positive, change unspecified, nodule(s) ≥ 4 mm or enlarging nodule(s) 60.16% 7.09% 0%

Positive, no significant change, stable abnormalities 0% 36.82% 17.66%

Positive, other 0% 13.44% 13.35%

Not compliant, left study 0% 0.39% 0.68%

Not compliant, refused a screen 0.35% 4.46% 4.92%

Not compliant, wrong screen 0.15% 0% 0.02%

Not compliant, erroneous report of lung cancer before screen (LSS only) 0% 0% 0.04%

Not compliant, form not submitted, window closed 0% 0.07% 0.11%

Not expected, cancer before screening window 0% 2.78% 4.09%

Not expected, cancer in screening window 0% 0.04% 0.15%

Not expected, death before screening window 0% 0.46% 1.07%

Not expected, death in screening window 0% 0.28% 0.26%

Nodule variables (% missing) Variable type Value t0 t1 t2

Location (t0 =40.00%,t1 =41.58%,t2 =40.93%) Categorical

Right upper lobe 24.44% 23.92% 22.78%

Right middle lobe 13.21% 13.97% 13.22%

Right lower lobe 23.60% 23.89% 24.16%

Left upper lobe 13.79% 12.77% 13.51%

Lingula 4.01% 3.64% 3.79%

Left lower lobe 20.58% 21.1% 21.53%

Other 0.37% 0.70% 1.00%

Margins (t0 =40.00%,t1 =40.30%,t2 =40.93%) Categorical

Spiculated (stellate) 12.5% 9.05% 7.62%

Smooth 62.97% 67.97% 70.79%

Poorly defined 18.54% 19.01% 18.8%

Unable to determine 5.99% 3.97% 2.79%

Longest diameter (t0 =40.00%,t1 =41.58%,t2 =40.93%) Continuous 7.97 (7.00) mm 7.23 (5.19) mm 7.07 (5.50) mm

Diagnostic intervention variables Variable type Value t0 t1 t2

Biopsy Binary
No 95.17% 97.6% 97.28%

Yes 4.83% 2.37% 2.72%

Invasive procedure Binary
No 94.95% 97.57% 97.17%

Yes 5.05% 2.43% 2.83%

Non-invasive procedure Binary
No 46.91% 68.72% 80.91%

Yes 53.09% 31.28% 19.09%

TABLE I: Variables used for the development and evaluation of the lung cancer screening POMDP model. After applying selection criteria
and removing subjects with inconsistent values, a total of 5,402 LDCT screening cases were used from the NLST. Percentages of missing
data are provided, alongside categorical breakdowns and mean values.
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(a) Lung cancer screening POMDP.

(b) DBN-based observation model.

(c) Transition model.

Fig. 2: (a) NC represents a non-cancer state, U is an intermediate
uncertain cancer state, and LC is the lung cancer state. Arrows
indicate allowed transitions between states. LDCT and intervention
observations represent the possible observations of the model in each
state. (b) The nodule size node represents the possible categories of
nodule size. The consistency node represents the categories of nodule
consistency and the margin node the categories of nodule margins.
The Cancer node represents the categories of cancer or no cancer.
t0 represents the intra-slice structure of the model. Solid line arrows
represent the intra-slice interactions between nodes. The inter-slice
structure is depicted between the t0 and t1 time slices. Dashed arrows
represent inter-slice interactions between variables over time. This
DBN is recurring for 5-time steps (x = 4). (c) The LDCT probability
observations represent the 100 bins of probabilities as categories.
The Intervention observations node consists of two categories the
observation of cancer or not, from diagnostic procedures. The Cancer
node consists of three states the NC, U and LC cancer states.

the interactions between the nodule size, consistency, and

margins we used a model to combine the observations into

a single representation as a probability. Specifically, we used

a DBN to infer the probability of cancer over time from these

observations. Alternative models were considered, including

logistic regression, and an exhaustive search of all combi-

nations of observations, with the DBN and the exhaustive

search demonstrating the best performance in conjunction with

the POMDP (see Appendix Table XVII). The DBN topology

was learned from the data: we learned the intra-slice structure

of the DBN (i.e., conditional dependencies between variables

in the same time step) using t0 observations from the K2

algorithm in the Bayes Net Toolbox (BNT) [17]; and inter-

slice structure (i.e., dependencies over time) was learned using

cases that had a complete trajectory of screening over the

NLST screening period (i.e., no missing observations) using

the batch Expectation-Maximization (EM) algorithm also in

BNT. Figure 2(b) shows the intra- and inter-slice structure of

the learned model, which we then parameterized using training

data. In the POMDP, we then used this DBN with observations

of a given patient to infer a probability of cancer over time

as our new observation. These probabilistic observations were

discretized in 100 equal sized bins, from 0-1. For intervention

observations, we determined if an individual undergo an

intervention and was diagnosed with cancer or did not undergo

an intervention.

3) Transition and observation probabilities: Transition and

observation probabilities were computed using a dynamic

Bayesian network, per Figure 2(c): the LDCT node represents

a conditional probability table (CPT) of 100 categories cor-

responding to each discretized probability; the Intervention

node represents a CPT table of two observations, cancer

after an intervention or no cancer with or without an in-

tervention; and the Cancer node represents a CPT table of

three categories per our state model. Usually, the transition

probabilities of a POMDP are different based on the choice

of action in a given state (T (sj , si, a)). The transition matrix

used for the lung cancer POMDP model is assumed to be

invariant of action. But the observation matrix (O(z, s, a))
is state and action dependent. We modeled the observations

of Intervention as being impossible (i.e., probability of zero)

when the action of LDCT is performed and the observation

of an LDCT as impossible when the action of Intervention is

performed. An important implementation note is in regards to

sparsity, as some LDCT probabilities will be calculated as zero

given no instances in the dataset (although they are feasible in

real-world settings). Thus, to deal with sparsity we replaced

all zero probabilities with a very small probability (0.0001)

and normalized over the matrix to improve overall inference

[18].

4) Rewards: A POMDP’s reward function defines the be-

havior of the agent as it aims to optimize based on returned

values. In our POMDP, we define rewards in terms of a state-

action pair (R(s,a)). We learned a reward function using the

recommendations of experts from the NLST dataset. Using

inverse reinforcement learning (IRL), we learned state and ac-

tion rewards via an adaptive maximum entropy IRL algorithm

[12]. A multiplicative model was then employed to learn each
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combination of state-action pair rewards.

5) Initial beliefs: In a POMDP, the belief state is a proba-

bility distribution over the states of the process. The initial

belief is the initial probability distribution over the states

at time t0. To generate initial beliefs for each individual

we used the PLCOM2012 model [14] with demographic and

clinical features at baseline to predict the risk of cancer.

Tammemägi et al. [19] used the Prostate, Lung, Colorectal

and Ovarian Cancer (PLCO) Screening Trial to develop 6-

year lung cancer risk models. The models achieved high

discrimination and calibration performance. The PLCOM2012 is

an updated version of the original model trained and validated

on the PLCO dataset and externally validated on the NLST

cohort. The variables and weights of the logistic regression

model used are the same as reported in the PLCOM2012 model

[14]. Demographic features include age, education, race, and

body mass index (BMI). Clinical features encompassed the

presence of chronic obstructive pulmonary disease (COPD),

family history of lung cancer, personal history of cancer,

smoking status, smoking intensity, and duration of smoking.

To generate an initial belief of cancer over the three states of

our state space, we used the following rule: the probability of

the LC state is the risk of cancer times two computed by the

PLCOM2012 model; the probability of the U state is assumed to

be zero and the probability of the NC state is the complement

of LC. To update beliefs we follow the basic recursive filtering

rule [20], given by Equation 1 where α is a normalization

constant such that α = 1∑
sj

P (o|sj)
∑

si
P (sj |si,a)b(si)

.

b′(sj) = α · P (o|sj)
∑

sj

P (sj |si, a)b(si) (1)

D. Solving the POMDP model

POMDP models can be solved through the value iteration

(VI) algorithm. However, the number of possibilities to be

considered is exponential in terms of the number of states,

actions, and observations modeled. At each time step, the VI

algorithm enumerates kΩ new policies trees, where k is the

previous time step number of policy trees and Ω is the number

of observations. Each policy tree represents a linear function.

For an infinite horizon process the value function will have

infinite linear functions, a key reason why POMDPs are often

considered impractical. To solve infinite horizon problems,

we can use approximation algorithms [20]–[23], providing

significant speed-up. Markedly, our proposed POMDP model

has three states, two actions and 102 observations. We opted to

use the QMDP approximation algorithm, shown in Algorithm

1 in the Appendix. QMDP solves the POMDP problem as

an MDP and then generalizes the value function into a

POMDP. More specifically, the QMDP algorithm estimates

the value function for the equivalent MDP while ignoring the

observation model. The MDP value function is used to define

a linear function (i.e., a policy tree) for each action. The main

disadvantage of the QMDP algorithm is that it dismisses the

state uncertainty described in POMDPs but solves the POMDP

with MDP computational time complexity. To select optimal

actions that maximize expected utility we use Algorithm 2 in

the Appendix, which given a belief and the Q matrix computes

(a) NLST timeline.

(b) Definition of evaluation metrics.

Fig. 3: (a) Screenings represent annual LDCT imaging observations
with information about the subject’s cancer status. In contrast,
our POMDP model suggests screening recommendations every six
months. (b) Illustration depicting true positive/negative and false
positive/negative cases for the POMDP’s performance over time.
The colored bars indicate truth based on the NLST observations
and subjects’ known outcomes. We also demonstrate how early true
positives are defined in this study.

their dot product to compute the utility of each action when

being in a belief (b).

III. RESULTS

NLST participants underwent three annual screenings with

follow-up over six years to identify subsequent lung cancers.

At each screening time point (t0, t1, t2), a radiologist read

the imaging study and made a decision to refer patients for

a diagnostic procedure (e.g., early repeat LDCT, diagnostic

CT, PET-CT, or biopsy/tissue sampling) or to continue annual

LDCT screening. Our POMDP suggests actions at these

three screening time points as well as between the screenings

using imputation, resulting in five recommendations in

6-month intervals (Figure 3(a)). Observations used by

the POMDP include imaging features about nodule size,

margins, location, and consistency. Our evaluation examines

the POMDP’s recommended actions over all five points

(aPOMDP0
, aPOMDP0.5

, aPOMDP1
, aPOMDP1.5

, aPOMDP2
)

and directly compares against the physicians’ performance at

the annual screenings.

A. POMDP versus physician performance

To compare the performance of the POMDP model against

physicians we calculated the precision (positive predictive

value, PPV), recall/true positive (TP) rate (sensitivity), and true

negative (TN) rate (specificity) for recommended actions at

each screening point. We used the following criteria to assess
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our model: if the POMDP suggests a diagnostic intervention

and the individual is subsequently diagnosed with cancer in

the following time period, it is counted as a true positive,

otherwise it is considered a false positive; if the POMDP

suggests no diagnostic intervention, but an annual LDCT

screen, and the individual is diagnosed with cancer in the

following screen, it is a false negative (FN), otherwise it is

a true negative (Figure 3(b)).

We assessed our POMDP’s performance based on a five-

fold cross validation design. To match physicians’ TP rates

(who had a lower threshold for positive screens) and obtain

comparable results, we adjusted the POMDP rewards function

(using the training data) to be more conservative. We then

evaluated this updated POMDP on our testing data. Table II

shows the results of the POMDP model with tuned rewards

against physicians’ performance. Our model reduces the FP

rate in most screenings (t1, t2, and post-screening) compared

to the experts while maintaining a high TP rate for screening:

at t0, TN and TP rates are 2% lower and 3% lower than

the physicians’; at t1, TN and TP rate are 1% higher and

3% higher; at t2, TN and TP rate are 4% higher and 4%

lower; and in the post-screening period the POMDP’s TN

and TP rate are 3% higher and 8% higher than the experts’,

respectively. We also analyzed the performance of the POMDP

model for earlier cancer detection (i.e., detection of a t2
cancer at t1). The detection of early TPs is also improved

with earlier diagnostic recommendations (e.g., the TP rate

for action aPOMDP0
, aPOMDP0.5

, aPOMDP1
, aPOMDP1.5

for

t2 and post-screening) compared to physicians’ recommenda-

tions. The POMDP TP rate is higher than the physician’s over

time for post-screening, as depicted in Figure 5 and discussed

in the following section.

B. Understanding POMDP and physician differences

We calculated a kappa score to test the level of agreement

between physicians and the POMDP. Notably, kappa values

trended lower, implying that the POMDP and experts classify

different cases positively over time, which influences the

FP rate. To elucidate this difference, we grouped subjects

predicted to have lung cancer by the POMDP vs. physicians,

analyzing cases where they had different predictions. The

preponderance of subjects different between the groups were

individuals classified as FPs or early TP cases (i.e., cases

predicted as positives earlier by the POMDP relative to their

cancer diagnosis in the NLST trial). Figure 4 depicts these two

cohorts. We explored the feature distributions of each group to

assess similarity. We used chi-squared or Fisher’s tests for cat-

egorical variables and the Student or Wilcoxon-Mann-Whitney

tests for continuous variables. Additionally, to assess the effect

size of the computed p-value we used the Cramer’s V and

the r2 or Cohen’s r2 effect size, correspondingly, for each

test [24]–[26]. Tests with p-values < 0.05 were considered

significant. The false positive analysis showed that smoking

years, age, largest nodule size at t0, and smoking quit time

had significantly different distributions and the largest effect

size between the groups of post-screening cases (see Table

III). The additional early prediction TP cases predicted by the

(a) False positive cases between POMDP and physicians.

(b) Early predicted positive cases between POMDP and physicians.

Fig. 4: Comparison of case agreement between the POMDP and
experts. The numbers in each subset represent the total number of FPs
or early TPs grouped from every testing set for each fold of the five
folds. (a) Yellow: Cases predicted as false positives by the POMDP
model. Blue: Cases predicted as false positives by the physicians.
The union of these groups are all cases predicted by the POMDP or
physicians as false positives. POMDPc represents the complement of
the POMDP set. (b) Yellow: Cases predicted as early true positives
by the POMDP model. Blue: Cases predicted as early true positives
by the physicians.

POMDP model in comparison with the physicians showed that

nodule size at t0 (largest nodule diameter) and smoking years

were significantly different between the groups. The nodule

size at t0 was shorter and years of smoking less than the early

TPs predicted by both the physicians and POMDPs (see Table

III and Figure 4). A full analysis comparing these groups is

presented in the Appendix.

C. POMDP stability

In the NLST, a minimum threshold of 4 mm was used to

classify findings as nodules. A later analysis [27], [28] showed

that changing this threshold to 6 mm significantly reduced the

FP rate while maintaining the same TP rate [29], [30]. As

such, we stratified our cases into nodules < 6 and ≥ 6 mm at

baseline and tested the POMDP. To assess the robustness and

performance distribution of the POMDP model we performed

a bootstrap evaluation, randomly sampling from our NLST

dataset 240 times to define our training and testing sets.

Subsequently, all performance measures for each seed were

used to calculate the median, the interquartile range (IQR),

and the range for each metric. This analysis is summarized

in Figure 5, where the box plots depict the median and

IQR of each action. Significance tests were performed using

the Wilcoxon signed rank test or paired t-test as appropriate

to assess if the performance distribution of the POMDP is
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Cancers Non-cancers POMDP Physicians Kappa

TN rate Recall Precision TN Recall Precision

Screening t0 32 1,047 a0 0.46 0.97 0.05 0.48 1.00 0.06 0.41

Screening t1 17 1,030

a0 0.47 0.67 0.02 0.48 0.39 0.01 0.40

a0.5 0.46 0.67 0.02

a1 0.34 0.98 0.02 0.33 0.95 0.02 0.28

Screening t2 21 1,009

a0 0.47 0.56 0.02 0.48 0.28 0.01 0.40

a0.5 0.47 0.56 0.02

a1 0.35 0.70 0.02 0.32 0.46 0.01 0.27

a1.5 0.34 0.72 0.02

a2 0.25 0.96 0.03 0.21 1.00 0.03 0.06

Post-screening 19 900

a0 0.47 0.71 0.03 0.48 0.46 0.02 0.40

a0.5 0.47 0.71 0.03

a1 0.35 0.82 0.02 0.32 0.71 0.02 0.25

a1.5 0.34 0.82 0.02

a2 0.25 0.94 0.02 0.22 0.86 0.02 0.05

TABLE II: POMDP vs. physician performance, 5-fold cross validation using test data partition (average across runs presented). A kappa
score was also calculated to compare the level of agreement between the model and experts.

Variables False positives analysis Early true positives analysis

POMDP Physicians POMDP Physicians

Nodule size t2 (mm) 4.73+ 3.35+ 5.17 5.24

Nodule size t1 (mm) 3.8 3.61 3.17 5.79

Nodule size t0 (mm) 2.47++ 3.86++ 1.54+ 4.82+

Years of smoking 41.64+++ 35.52+++ 40.31+ 45.33+

Years since quitting smoking 2.79++ 5.21++ 4.77 2.29

Age at baseline 61.8++ 58.68++ 62.92 64.89

Smoking status at baseline (% smokers) 60.29+ 32.52+ 46.15 65.38

TABLE III: Feature analysis of cases different between the POMDP and physicians, comparing false positives and early true positives.
Reported values represent the post screening average values per variable. Bold values represent features with statistically significantly different
distributions. The magnitude of the effect size of the p-value computed using the Cramer’s r2, the r

2, and the Cohen’s r2 are color-coded as:
orange, small effect size (+); blue, medium effect size (++); and black, large effect size (+++). The Cramer’s r

2, the r
2, and the Cohen’s

r
2 ranges for small, medium, and large are given in the Appendix.

significantly different from that of physicians. Tests with p-

values < 0.05 were deemed significant.

Interestingly, the POMDP model’s CIs become narrower

over time, suggesting that it stabilizes with longer trajectories

of observations. When only testing the POMDP model on a

cohort of cases with nodules larger than 6 mm at baseline, the

POMDP model improves the true negative rate (i.e., reduces

the FP rate) while maintaining a TP rate comparable to the

physicians. Markedly, precision is significantly improved using

the POMDP model in this scenario. When testing on the

cases with nodules smaller than 6 mm at baseline, initially

the POMDP TN rate is lower than that of physicians’ but

improves over time. The TP rate and early prediction of

cancer is significantly improved compared with physicians in

post-screening. Precision is also significantly improved for

all screenings. This comparison of cases that are typically

easier to classify as cancerous due to a lager nodule size

(i.e., ≥ 6 mm) demonstrates how our approach reduces FPs

associated with lung cancer screening. Additionally, in the

situation where IPNs are smaller (< 6 mm), our model still

improves early prediction and overall precision. Box plots with

the smaller than 6 mm and larger than 6 mm cohorts combined

is presented in Figure 6 in the Appendix.

IV. DISCUSSION

The majority of individuals diagnosed with lung cancer have

a low 5-year survival rate of 18% [31]. In sharp contrast, ear-

lier detection of this cancer improves this statistic threefold to

56% [31]. While LDCT lung cancer screening aims to reduce

mortality through earlier detection, the FP rate associated with

IPNs remains high, with concomitant concerns of increased

healthcare costs and unnecessary psychological burden for

patients. To address this concern, we developed a POMDP for

lung cancer screening, demonstrating simultaneous reduction

in FPs and earlier cancer detection when compared to experts’

performance. Maintaining a high TP rate while minimizing

the FP rate is challenging given the correlation of nodule

malignancy and size: larger nodules tend to be malignant;

and conversely, nodules smaller than 6 mm are less likely

to be cancerous. We improved the TN rate for nodules larger

than 6 mm at baseline while maintaining a true positive rate

on par with experts. When comparing our POMDP against

physicians’ predictions for cases with nodules smaller than 6

mm, improved true positive rate and precision overall were

seen, while progressively increasing the TN rate (see Figure

5).

Our POMDP uses a DBN to generate observations for a

patient over time that are used to update its belief about lung
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(a) TN rate on individuals with nodules smaller than 6 mm at baseline. (b) TN rate on individuals with nodules larger than 6 mm at baseline.

(c) Recall/TP rate on individuals with nodules smaller than 6 mm at baseline. (d) Recall/TP rate on individuals with nodules larger than 6 mm at baseline.

(e) Precision on individuals with nodules smaller than 6 mm at baseline. (f) Precision on individuals with nodules larger than 6 mm at baseline.

Fig. 5: Box plots of the performance (TN, TP, precision) of the POMDP and physicians on cases from the NLST testing set, from the
start of the trial through to last screening. Left column: Cases with nodules smaller than 6mm at baseline. Right column: Cases with
nodules larger than 6mm at baseline. Blue and yellow represent the POMDP and experts, respectively. Red stars depict instances where
the performance measure between the physicians and model are significantly different. The TN, Recall/TP rate, and Precision for the two
cohorts combined is shown in the Appendix in Figure 6.

cancer. We tested three variations of the POMDP, consid-

ering observations as being independent over time (i.e., an

exhaustive search of every combination of observations), as

probabilities of a static regression model, and as probabilities

derived from a DBN. Representing these variables dynamically

via the DBN improved model performance in comparison

with the logistic regression model and performed similarly

as exhaustive search. This analysis is presented in the Ap-

pendix in Table XVI). Modeling observations using a dynamic

model has two main advantages: first, a dynamic model can

capture changes over time in these features, which in our

opinion are potential indicators of lung cancer; and second,

it allows effective scaling of the observation space with the

incorporation of multiple temporal inputs. While considering

temporal change is intuitive, many lung cancer risk models

are “static” and use only the most current observations when

calculating the likelihood of disease. Still, such risk models are

useful in baseline assessment. The initial belief for each case

in our POMDP uses the Tammemägi model [19], instantiated

using the subject’s own demographic and clinical variables at



P. PETOUSIS ET AL.: USING SEQUENTIAL DECISION MAKING TO IMPROVE LUNG CANCER SCREENING PERFORMANCE 9

baseline, updated with subsequent imaging observations.

The POMDP we designed makes use of a reward func-

tion learned through analysis of physicians’ past decisions.

We recently presented an adaptive maximum entropy inverse

reinforcement learning (MaxEnt IRL) algorithm to inform a

reward function in different cancers [12]. Using MaxEnt IRL,

we established an optimization function explicitly modeling

experts’ actions. This strategy is different from other health-

related POMDP applications [8], [10], [11] that typically

employ cost functions based on quality-adjusted life years

(QALYs), resource utilization, or other abstract metrics re-

flecting broader policy considerations. Building atop experts’

prior actions, we take advantage of their experience and

insights to integrate and weigh disparate information about

a given individual; and by learning from multiple physicians

and patients, we overcome potential biases. Yet curiously,

per the diverging kappa score analysis, the POMDP is not

fully replicating physicians’ decisions. When it comes to early

cancer prediction (e.g., predicting screening t2 cancer from

screening t0), the POMDP outperforms experts, indicating that

the model and associated reward function are discriminating

between positive and negative cases in a different way. This

difference may be attributed to the dynamic observation model

used with this POMDP; when independent observations are

instead assumed, we have found kappa scores to 1 in other

domains, indicating high correlation between the model and

experts’ decisions [12]. Indeed, error analysis of the POMDP’s

FPs shows a different subset from the physicians: cases with

smaller nodule sizes but more years of smoking and older

baseline age are predicted as false positives by the POMDP.

Early true positive cases share the same distributions, however,

suggesting that a portion of POMDP false positives are early

true positives. Table II illustrates this point in screening t0 and

post-screening for action a0: 71% of TPs are being predicted

from a0 for post-screening cases – but if compared with

screening t0 cancer cases, they would have been classified

as FPs.

Our previous work on predicting lung cancer in the LDCT

screening setting showed encouraging results with earlier

detection [16]. We showed that using a DBN trained on

the NLST dataset we can match physicians’ performance in

predicting lung cancer, and in a portion of cases, in advance

of the expert. But that method suffered from two limitations:

first, the need to set an acceptable threshold for predicting lung

cancer; and second, a decision-making process based solely on

immediate outcomes without regard for longer-term benefits to

the patient. We compared our current POMDP with our DBN

[16], reproducing it on the same cohort of subjects used in

this paper (i.e., using identical training and test sets and the

same stratified five-fold cross-validation analysis). Even when

setting different probability thresholds to generate performance

metrics (7 · 10−6, 0.01, and 0.01 for each screening time

point of the NLST study), our new POMDP-based approach

outperformed the earlier model in terms of reducing the FP

rate and improving early lung cancer prediction (see Table

XVI in Appendix).

Limitations of this work are around the real-world nature

of cancer surveillance. It is unlikely that patients are screened

at fixed one-year time intervals, for any number of reasons.

As such, a discrete time model may not be well-suited for

instances of imaging observations at irregular frequencies.

Alternatively, a continuous time model may address this issue

more accurately. We also used a simplified, expert-defined

three-state cancer state space (e.g., no cancer, uncertain cancer,

lung cancer); a more sophisticated approach would involve

learning this state space from the data, which we plan to

explore in the future. Likewise, the observation space of

our POMDP model is discrete, whereas a continuous value

space might yield further improvements. This method can

be explored through the use of linear Gaussian conditional

probability tables (CPTs) instead of discrete observational

CPTs. Lastly, the number of cancer and non-cancer cases

changes as a function of time (i.e., more cancer cases are

found at baseline). We did not account for this imbalance

during training other than performing a stratified five-fold

cross-validation to obtain an unbiased estimate of the model.

Similarly, other temporal studies have used a k-fold cross

validation to assess model performance [32]–[36]. This data

imbalance over time occurred as a result of simplifying our

lung POMDP model to consider only cases reporting a single

pulmonary nodule over the course of the trial. A more concrete

analysis would include cases with multiple nodules over time.

However, it was not possible to ascertain the history of

individual nodules in patients with multiple nodules as the

NLST dataset does not contain sufficient tracking information

on nodules. Moreover, the imputation of observations by our

DBN observational model at six month intervals, even though

it reduces over-screening, is inferred rather than based on true

screening observations.

Future work includes conducting an external validation

study of this NLST-based POMDP using data curated from

our institution, expanding our observational model to consider

multiple IPNs, as well as incorporating a richer set of imaging

features derived from deep learning, which have demonstrated

high classification performance in detecting malignant pul-

monary nodules [37], [38].
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APPENDIX

ALGORITHM PSEUDO-CODES:

Algorithm 1: QMDP Algorithm

Input: S, A, R, ǫ

Output: Q matrix

Computing the Q matrix;

V (s) = MDP_V I(S,A,R, ǫ);
for si ∈ S do

for a ∈ A do
Q(si, a) = R(s, a) +

∑
sj∈S T (sj , a, si)V (si);

end

end

return Q

Algorithm 2: Action selection Algorithm

Input: Q, b

Output: aopt optimal action

Given belief b;

aopt = argmaxa

∑
si∈S b(si)Q(si, a)

return aopt

EFFECT SIZE RANGE

Cramer’s V was used for χ2 and Fisher tests.

r2 or η2 was used for Student test.

Cohen’s r2 was used for Wilcoxon-Mann-Whitney test.

TABLE IV: Magnitude of effect size, Cohen et al [24]. Tables 5-14
follow the color coding and bolding depicted in Table 4.

Magnitude of effect size Cramer’s V or φ Cohen’s d r2 or η2

Small 0.1 0.2 0.01
Medium 0.3 0.5 0.059
Large 0.5 0.8 0.14

Physician POMDP p effect-size

cigsmok < 0.001 0.432
0 527/735 (71.7 %) 237/839 (28.25 %)
1 208/735 (28.3 %) 602/839 (71.75 %)

diagcopd < 0.001 0.187
0 728/733 (99.32 %) 758/834 (90.89 %)
1 5/733 (0.68 %) 76/834 (9.11 %)

famHist < 0.001 0.327
0 670/735 (91.16 %) 530/839 (63.17 %)
1 65/735 (8.84 %) 309/839 (36.83 %)

pCancHist < 0.001 0.152
0 728/735 (99.05 %) 778/839 (92.73 %)
1 7/735 (0.95 %) 61/839 (7.27 %)

gender 0.185 0.033
1 435/735 (59.18 %) 525/839 (62.57 %)
2 300/735 (40.82 %) 314/839 (37.43 %)

race < 0.001 0.09
1 701/735 (95.37 %) 746/839 (88.92 %)
2 11/735 (1.5 %) 75/839 (8.94 %)
4 20/735 (2.72 %) 10/839 (1.19 %)
5 0/735 (0 %) 5/839 (0.6 %)
6 3/735 (0.41 %) 3/839 (0.36 %)

educat < 0.001 0.129
1 1/577 (0.17 %) 19/617 (3.08 %)
2 9/577 (1.56 %) 79/617 (12.8 %)
4 84/577 (14.56 %) 120/617 (19.45 %)
5 180/577 (31.2 %) 211/617 (34.2 %)
6 140/577 (24.26 %) 104/617 (16.86 %)
7 152/577 (26.34 %) 67/617 (10.86 %)
8 11/577 (1.91 %) 17/617 (2.76 %)

sctpreatt0 < 0.001 0.078
1 566/664 (85.24 %) 213/280 (76.07 %)
2 57/664 (8.58 %) 50/280 (17.86 %)
3 35/664 (5.27 %) 15/280 (5.36 %)
4 6/664 (0.9 %) 2/280 (0.71 %)

sctmargins0 < 0.001 0.239
1 1/684 (0.15 %) 38/276 (13.77 %)
2 603/684 (88.16 %) 184/276 (66.67 %)
3 80/684 (11.7 %) 54/276 (19.57 %)

BMI 29.06(4.94), 2 26.4(4.26), 3 < 0.001 0.072
smokeIntensity 29.16(11.57), 0 28.58(11.35), 0 0.24 < 0.001

smokeyr 34.65(5.07), 14 45.77(6.38), 1 < 0.001 0.514

smokeQuitTime 5.72(5.36), 27 1.76(3.79), 9 < 0.001 0.186

age 58.39(3.27), 57 64.57(5.29), 49 < 0.001 0.321

LargestDiam0 5.39(1.88), 0 2.71(4.85), 0 < 0.001 0.215

TABLE V: Comparison between physicians and POMDP (baseline
screen). For quantitative covariates: "mean (sd), missing data", and
for categorical covariates: "effective/ total effective (percentage)".
Student test or Wilcoxon-Mann-Whitney test, χ2 test or Fisher test
used when appropriate. The effect-size column follows the color
coding and bolding depicted in Table 4.

FALSE POSITIVES ANALYSIS

Testing data.
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Physician POMDP p effect-size

cigsmok < 0.001 0.343
0 605/875 (69.14 %) 279/802 (34.79 %)
1 270/875 (30.86 %) 523/802 (65.21 %)

diagcopd < 0.001 0.137
0 862/872 (98.85 %) 745/796 (93.59 %)
1 10/872 (1.15 %) 51/796 (6.41 %)

famHist < 0.001 0.259
0 774/875 (88.46 %) 537/802 (66.96 %)
1 101/875 (11.54 %) 265/802 (33.04 %)

pCancHist < 0.001 0.107
0 862/875 (98.51 %) 758/802 (94.51 %)
1 13/875 (1.49 %) 44/802 (5.49 %)

gender 0.037 0.051
1 504/875 (57.6 %) 503/802 (62.72 %)
2 371/875 (42.4 %) 299/802 (37.28 %)

race < 0.001 0.074
1 826/875 (94.4 %) 719/802 (89.65 %)
2 21/875 (2.4 %) 68/802 (8.48 %)
4 25/875 (2.86 %) 10/802 (1.25 %)
5 0/875 (0 %) 1/802 (0.12 %)
6 3/875 (0.34 %) 4/802 (0.5 %)

educat < 0.001 0.099
1 2/685 (0.29 %) 14/599 (2.34 %)
2 11/685 (1.61 %) 61/599 (10.18 %)
4 101/685 (14.74 %) 105/599 (17.53 %)
5 217/685 (31.68 %) 199/599 (33.22 %)
6 166/685 (24.23 %) 123/599 (20.53 %)
7 173/685 (25.26 %) 85/599 (14.19 %)
8 15/685 (2.19 %) 12/599 (2 %)

sctpreatt0 < 0.001 0.087
1 557/651 (85.56 %) 181/244 (74.18 %)
2 58/651 (8.91 %) 48/244 (19.67 %)
3 32/651 (4.92 %) 13/244 (5.33 %)
4 4/651 (0.61 %) 2/244 (0.82 %)

sctpreatt1 0.023 0.056
1 528/595 (88.74 %) 339/406 (83.5 %)
2 47/595 (7.9 %) 56/406 (13.79 %)
3 16/595 (2.69 %) 9/406 (2.22 %)
4 4/595 (0.67 %) 2/406 (0.49 %)

sctmargins0 < 0.001 0.233
1 0/675 (0 %) 30/240 (12.5 %)
2 595/675 (88.15 %) 164/240 (68.33 %)
3 80/675 (11.85 %) 46/240 (19.17 %)

sctmargins1 < 0.001 0.145
1 7/620 (1.13 %) 38/416 (9.13 %)
2 525/620 (84.68 %) 303/416 (72.84 %)
3 88/620 (14.19 %) 75/416 (18.03 %)

BMI 28.9(5.06), 4 26.9(4.63), 3 < 0.001 0.041
smokeIntensity 28.77(11.26), 0 28.63(11.47), 0 0.545 < 0.001

smokeyr 35.24(5.29), 17 43.51(7.13), 2 < 0.001 0.323

smokeQuitTime 5.4(5.36), 32 2.29(4.28), 11 < 0.001 0.112
age 58.62(3.49), 69 63.05(5.53), 56 < 0.001 0.166

LargestDiam0 4.36(2.55), 0 2.45(4.7), 0 < 0.001 0.133
LargestDiam1 4(3.59), 31 4.1(5.56), 38 0.297 < 0.001

TABLE VI: Comparison between physicians and POMDP (2nd

screen). For quantitative covariates: "mean (sd), missing data", and
for categorical covariates: "effective/ total effective (percentage)".
Student test or Wilcoxon-Mann-Whitney test, χ2 test or Fisher test
used when appropriate. The effect-size column follows the color
coding and bolding depicted in Table 4.

EARLY TPS ANALYSIS

Testing data.

Physician POMDP p effect-size

cigsmok < 0.001 0.278
0 643/948 (67.83 %) 306/766 (39.95 %)
1 305/948 (32.17 %) 460/766 (60.05 %)

diagcopd < 0.001 0.074
0 928/946 (98.1 %) 728/763 (95.41 %)
1 18/946 (1.9 %) 35/763 (4.59 %)

famHist < 0.001 0.191
0 830/948 (87.55 %) 554/766 (72.32 %)
1 118/948 (12.45 %) 212/766 (27.68 %)

pCancHist < 0.001 0.08
0 931/948 (98.21 %) 730/766 (95.3 %)
1 17/948 (1.79 %) 36/766 (4.7 %)

gender 0.079 0.042
1 547/948 (57.7 %) 475/766 (62.01 %)
2 401/948 (42.3 %) 291/766 (37.99 %)

race < 0.001 0.071
1 894/948 (94.3 %) 690/766 (90.08 %)
2 26/948 (2.74 %) 61/766 (7.96 %)
4 25/948 (2.64 %) 12/766 (1.57 %)
6 3/948 (0.32 %) 3/766 (0.39 %)

educat < 0.001 0.085
1 1/746 (0.13 %) 13/567 (2.29 %)
2 11/746 (1.47 %) 43/567 (7.58 %)
4 116/746 (15.55 %) 99/567 (17.46 %)
5 236/746 (31.64 %) 184/567 (32.45 %)
6 184/746 (24.66 %) 127/567 (22.4 %)
7 182/746 (24.4 %) 89/567 (15.7 %)
8 16/746 (2.14 %) 12/567 (2.12 %)

sctpreatt0 < 0.001 0.084
1 543/627 (86.6 %) 177/235 (75.32 %)
2 54/627 (8.61 %) 44/235 (18.72 %)
3 26/627 (4.15 %) 12/235 (5.11 %)
4 4/627 (0.64 %) 2/235 (0.85 %)

sctpreatt1 < 0.001 0.066
1 528/588 (89.8 %) 301/361 (83.38 %)
2 43/588 (7.31 %) 51/361 (14.13 %)
3 13/588 (2.21 %) 8/361 (2.22 %)
4 4/588 (0.68 %) 1/361 (0.28 %)

sctpreatt2 0.02 0.055
1 503/572 (87.94 %) 403/490 (82.24 %)
2 52/572 (9.09 %) 74/490 (15.1 %)
3 11/572 (1.92 %) 10/490 (2.04 %)
4 6/572 (1.05 %) 3/490 (0.61 %)

sctmargins0 < 0.001 0.234
1 0/650 (0 %) 29/232 (12.5 %)
2 578/650 (88.92 %) 160/232 (68.97 %)
3 72/650 (11.08 %) 43/232 (18.53 %)

sctmargins1 < 0.001 0.176
1 0/611 (0 %) 32/370 (8.65 %)
2 529/611 (86.58 %) 272/370 (73.51 %)
3 82/611 (13.42 %) 66/370 (17.84 %)

sctmargins2 < 0.001 0.099
1 8/582 (1.37 %) 30/500 (6 %)
2 501/582 (86.08 %) 389/500 (77.8 %)
3 73/582 (12.54 %) 81/500 (16.2 %)

BMI 28.83(5.05), 6 27.3(4.82), 2 < 0.001 0.025
smokeIntensity 28.81(11.19), 0 29.15(11.94), 0 0.889 < 0.001

smokeyr 35.51(5.46), 18 41.62(7.25), 4 < 0.001 0.199

smokeQuitTime 5.24(5.39), 32 2.82(4.74), 16 < 0.001 0.068
age 58.69(3.58), 77 61.81(5.33), 57 < 0.001 0.088

LargestDiam0 3.85(2.75), 0 2.46(4.72), 0 < 0.001 0.083
LargestDiam1 3.61(3.61), 30 3.79(5.43), 38 0.442 < 0.001
LargestDiam2 3.34(2.58), 54 4.74(4.17), 59 < 0.001 0.044

TABLE VII: Comparison between physicians and POMDP (3rd

screen). For quantitative covariates: "mean (sd), missing data", and
for categorical covariates: "effective/ total effective (percentage)".
Student test or Wilcoxon-Mann-Whitney test, χ2 test or Fisher test
used when appropriate. The effect-size column follows the color
coding and bolding depicted in Table 4.



P. PETOUSIS ET AL.: USING SEQUENTIAL DECISION MAKING TO IMPROVE LUNG CANCER SCREENING PERFORMANCE 13

Physician POMDP p effect-size

cigsmok < 0.001 0.276
0 639/947 (67.48 %) 299/753 (39.71 %)
1 308/947 (32.52 %) 454/753 (60.29 %)

diagcopd < 0.001 0.072
0 927/945 (98.1 %) 716/750 (95.47 %)
1 18/945 (1.9 %) 34/750 (4.53 %)

famHist < 0.001 0.193
0 830/947 (87.65 %) 544/753 (72.24 %)
1 117/947 (12.35 %) 209/753 (27.76 %)

pCancHist < 0.001 0.079
0 930/947 (98.2 %) 718/753 (95.35 %)
1 17/947 (1.8 %) 35/753 (4.65 %)

gender 0.079 0.043
1 545/947 (57.55 %) 466/753 (61.89 %)
2 402/947 (42.45 %) 287/753 (38.11 %)

race < 0.001 0.069
1 892/947 (94.19 %) 678/753 (90.04 %)
2 27/947 (2.85 %) 60/753 (7.97 %)
4 25/947 (2.64 %) 12/753 (1.59 %)
6 3/947 (0.32 %) 3/753 (0.4 %)

educat < 0.001 0.082
1 2/745 (0.27 %) 12/556 (2.16 %)
2 11/745 (1.48 %) 42/556 (7.55 %)
4 116/745 (15.57 %) 96/556 (17.27 %)
5 233/745 (31.28 %) 183/556 (32.91 %)
6 184/745 (24.7 %) 125/556 (22.48 %)
7 183/745 (24.56 %) 88/556 (15.83 %)
8 16/745 (2.15 %) 10/556 (1.8 %)

sctpreatt0 < 0.001 0.086
1 544/628 (86.62 %) 174/232 (75 %)
2 54/628 (8.6 %) 44/232 (18.97 %)
3 26/628 (4.14 %) 12/232 (5.17 %)
4 4/628 (0.64 %) 2/232 (0.86 %)

sctpreatt1 < 0.001 0.065
1 528/588 (89.8 %) 298/356 (83.71 %)
2 43/588 (7.31 %) 50/356 (14.04 %)
3 13/588 (2.21 %) 7/356 (1.97 %)
4 4/588 (0.68 %) 1/356 (0.28 %)

sctpreatt2 0.019 0.056
1 503/571 (88.09 %) 396/481 (82.33 %)
2 51/571 (8.93 %) 72/481 (14.97 %)
3 11/571 (1.93 %) 10/481 (2.08 %)
4 6/571 (1.05 %) 3/481 (0.62 %)

sctmargins0 < 0.001 0.229
1 0/651 (0 %) 27/229 (11.79 %)
2 579/651 (88.94 %) 159/229 (69.43 %)
3 72/651 (11.06 %) 43/229 (18.78 %)

sctmargins1 < 0.001 0.174
1 0/611 (0 %) 31/365 (8.49 %)
2 529/611 (86.58 %) 270/365 (73.97 %)
3 82/611 (13.42 %) 64/365 (17.53 %)

sctmargins2 < 0.001 0.1
1 8/581 (1.38 %) 30/491 (6.11 %)
2 501/581 (86.23 %) 383/491 (78 %)
3 72/581 (12.39 %) 78/491 (15.89 %)

BMI 28.82(5.06), 6 27.32(4.82), 2 < 0.001 0.024
smokeIntensity 28.77(11.19), 0 29.02(11.83), 0 0.961 < 0.001

smokeyr 35.52(5.47), 18 41.64(7.25), 4 < 0.001 0.199

smokeQuitTime 5.21(5.38), 32 2.79(4.72), 16 < 0.001 0.068
age 58.68(3.56), 76 61.79(5.31), 56 < 0.001 0.088

LargestDiam0 3.86(2.74), 0 2.47(4.74), 0 < 0.001 0.083
LargestDiam1 3.61(3.61), 30 3.8(5.44), 37 0.442 < 0.001
LargestDiam2 3.35(2.58), 55 4.73(4.17), 58 < 0.001 0.043

TABLE VIII: Comparison between physicians and POMDP (post
screening). For quantitative covariates: "mean (sd), missing data",
and for categorical covariates: "effective/ total effective (percentage)".
Student test or Wilcoxon-Mann-Whitney test, χ2 test or Fisher test
used when appropriate. The effect-size column follows the color
coding and bolding depicted in Table 4.

Physician POMDP p effect-size

cigsmok 0.084 0.229
0 13/30 (43.33 %) 5/27 (18.52 %)
1 17/30 (56.67 %) 22/27 (81.48 %)

diagcopd 0.238 0.127
0 28/30 (93.33 %) 22/27 (81.48 %)
1 2/30 (6.67 %) 5/27 (18.52 %)

famHist 0.855 0.024
0 16/30 (53.33 %) 16/27 (59.26 %)
1 14/30 (46.67 %) 11/27 (40.74 %)

pCancHist 0.66 0.016
0 28/30 (93.33 %) 24/27 (88.89 %)
1 2/30 (6.67 %) 3/27 (11.11 %)

gender 0.098 0.219
1 16/30 (53.33 %) 21/27 (77.78 %)
2 14/30 (46.67 %) 6/27 (22.22 %)

race 0.238 0.127
1 28/30 (93.33 %) 22/27 (81.48 %)
2 2/30 (6.67 %) 5/27 (18.52 %)

educat 0.838 0.106
1 1/21 (4.76 %) 1/19 (5.26 %)
2 1/21 (4.76 %) 3/19 (15.79 %)
4 4/21 (19.05 %) 4/19 (21.05 %)
5 7/21 (33.33 %) 7/19 (36.84 %)
6 4/21 (19.05 %) 2/19 (10.53 %)
7 4/21 (19.05 %) 2/19 (10.53 %)

sctpreatt0 0.324 0.218
1 18/29 (62.07 %) 6/6 (100 %)
2 6/29 (20.69 %) 0/6 (0 %)
3 5/29 (17.24 %) 0/6 (0 %)

sctmargins0 0.87 0.101
1 11/27 (40.74 %) 4/7 (57.14 %)
2 7/27 (25.93 %) 1/7 (14.29 %)
3 9/27 (33.33 %) 2/7 (28.57 %)

BMI 27.15(7.99), 0 24.54(3.61), 0 0.198 0.029
smokeIntensity 30.17(11.56), 0 29.93(11.08), 0 0.98 < 0.001

smokeyr 43.83(5.79), 0 45.7(6.01), 0 0.238 0.025
smokeQuitTime 1.86(3.1), 1 0.73(2.6), 1 0.059 0.065

age 63.83(4.73), 6 63.92(5.36), 2 0.952 < 0.001
LargestDiam0 13.83(20.18), 0 3.52(6.67), 0 < 0.001 0.319

TABLE IX: Comparison between physicians and POMDP (early
prediction of 2nd screen with a0). For quantitatives covariates: "mean
(sd), missing data", and for categorical covariates: "effective/ total
effective (percentage). Student test or Wilcoxon-Mann-Whitney test,
χ
2 test or Fisher test used when appropriate. The effect-size column

follows the color coding and bolding depicted in Table 4.
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Physician POMDP p effect-size

cigsmok 0.016 0.31
0 14/26 (53.85 %) 7/34 (20.59 %)
1 12/26 (46.15 %) 27/34 (79.41 %)

diagcopd 1 < 0.001
0 23/26 (88.46 %) 30/34 (88.24 %)
1 3/26 (11.54 %) 4/34 (11.76 %)

famHist 0.101 0.212
0 20/26 (76.92 %) 18/34 (52.94 %)
1 6/26 (23.08 %) 16/34 (47.06 %)

pCancHist 1 < 0.001
0 25/26 (96.15 %) 32/34 (94.12 %)
1 1/26 (3.85 %) 2/34 (5.88 %)

gender 0.725 0.045
1 14/26 (53.85 %) 21/34 (61.76 %)
2 12/26 (46.15 %) 13/34 (38.24 %)

race 1 0.094
1 25/26 (96.15 %) 31/34 (91.18 %)
2 1/26 (3.85 %) 1/34 (2.94 %)
4 0/26 (0 %) 1/34 (2.94 %)
6 0/26 (0 %) 1/34 (2.94 %)

educat 0.053 0.208
2 2/21 (9.52 %) 4/27 (14.81 %)
4 6/21 (28.57 %) 7/27 (25.93 %)
5 4/21 (19.05 %) 13/27 (48.15 %)
6 4/21 (19.05 %) 1/27 (3.7 %)
7 5/21 (23.81 %) 1/27 (3.7 %)
8 0/21 (0 %) 1/27 (3.7 %)

sctpreatt0 1 0.065
1 16/26 (61.54 %) 2/3 (66.67 %)
2 8/26 (30.77 %) 1/3 (33.33 %)
4 2/26 (7.69 %) 0/3 (0 %)

sctmargins0 1 0.11
1 5/22 (22.73 %) 0/2 (0 %)
2 9/22 (40.91 %) 1/2 (50 %)
3 8/22 (36.36 %) 1/2 (50 %)

BMI 25.84(3.83), 0 25.4(5.28), 0 0.438 0.01
smokeIntensity 33.65(16.34), 0 29.12(12.34), 0 0.346 0.015

smokeyr 40.96(6.86), 0 47.59(7.57), 0 < 0.001 0.171
smokeQuitTime 4.12(5.32), 1 1.45(3.96), 1 0.01 0.116

age 61.32(4.5), 1 65.91(5.34), 2 < 0.001 0.167

LargestDiam0 10.5(7.63), 0 0.85(3.23), 0 < 0.001 0.71

TABLE X: Comparison between physicians and POMDP (early
prediction of 3rd screen with a0). For quantitatives covariates: "mean
(sd), missing data", and for categorical covariates: "effective/ total
effective (percentage). Student test or Wilcoxon-Mann-Whitney test,
χ
2 test or Fisher test used when appropriate. The effect-size column

follows the color coding and bolding depicted in Table 4.

Physician POMDP p effect-size

cigsmok 0.051 0.226
0 20/43 (46.51 %) 7/32 (21.88 %)
1 23/43 (53.49 %) 25/32 (78.12 %)

diagcopd 0.451 0.048
0 40/43 (93.02 %) 28/32 (87.5 %)
1 3/43 (6.98 %) 4/32 (12.5 %)

famHist 0.258 0.131
0 32/43 (74.42 %) 19/32 (59.38 %)
1 11/43 (25.58 %) 13/32 (40.62 %)

pCancHist 0.572 0.03
0 42/43 (97.67 %) 30/32 (93.75 %)
1 1/43 (2.33 %) 2/32 (6.25 %)

gender 1 < 0.001
1 24/43 (55.81 %) 17/32 (53.12 %)
2 19/43 (44.19 %) 15/32 (46.88 %)

race 0.038 0.176
1 39/43 (90.7 %) 29/32 (90.62 %)
2 4/43 (9.3 %) 0/32 (0 %)
4 0/43 (0 %) 1/32 (3.12 %)
6 0/43 (0 %) 2/32 (6.25 %)

educat 0.195 0.156
2 3/33 (9.09 %) 4/25 (16 %)
4 8/33 (24.24 %) 6/25 (24 %)
5 9/33 (27.27 %) 12/25 (48 %)
6 7/33 (21.21 %) 1/25 (4 %)
7 5/33 (15.15 %) 1/25 (4 %)
8 1/33 (3.03 %) 1/25 (4 %)

sctpreatt0 1 0.065
1 16/26 (61.54 %) 2/3 (66.67 %)
2 8/26 (30.77 %) 1/3 (33.33 %)
4 2/26 (7.69 %) 0/3 (0 %)

sctpreatt1 0.754 0.107
1 22/34 (64.71 %) 4/6 (66.67 %)
2 7/34 (20.59 %) 1/6 (16.67 %)
3 2/34 (5.88 %) 1/6 (16.67 %)
4 3/34 (8.82 %) 0/6 (0 %)

sctmargins0 1 0.11
1 5/22 (22.73 %) 0/2 (0 %)
2 9/22 (40.91 %) 1/2 (50 %)
3 8/22 (36.36 %) 1/2 (50 %)

sctmargins1 0.645 0.126
1 9/31 (29.03 %) 2/6 (33.33 %)
2 12/31 (38.71 %) 1/6 (16.67 %)
3 10/31 (32.26 %) 3/6 (50 %)

BMI 26.34(3.32), 0 25.29(5.44), 0 0.097 0.037
smokeIntensity 32.44(15.13), 0 26.5(10), 0 0.079 0.041

smokeyr 42.4(6.47), 0 46.25(7.99), 0 0.029 0.064
smokeQuitTime 3.26(4.79), 1 1.55(4.07), 1 0.032 0.063

age 61.69(4.79), 1 64.83(5.86), 2 0.019 0.076
LargestDiam0 6.35(7.85), 0 0.91(3.32), 0 < 0.001 0.25

LargestDiam1 7.86(8.04), 1 2.98(7.15), 0 < 0.001 0.225

TABLE XI: Comparison between physicians and POMDP (early
prediction of 3rd screen with a1). For quantitatives covariates: "mean
(sd), missing data", and for categorical covariates: "effective/ total
effective (percentage). Student test or Wilcoxon-Mann-Whitney test,
χ
2 test or Fisher test used when appropriate. The effect-size column

follows the color coding and bolding depicted in Table 4.
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Physician POMDP p effect-size

cigsmok 0.789 0.032
0 14/45 (31.11 %) 9/24 (37.5 %)
1 31/45 (68.89 %) 15/24 (62.5 %)

diagcopd 0.687 < 0.01
0 41/45 (91.11 %) 21/24 (87.5 %)
1 4/45 (8.89 %) 3/24 (12.5 %)

famHist 0.39 0.104
0 34/45 (75.56 %) 15/24 (62.5 %)
1 11/45 (24.44 %) 9/24 (37.5 %)

pCancHist 0.333 0.089
0 43/45 (95.56 %) 21/24 (87.5 %)
1 2/45 (4.44 %) 3/24 (12.5 %)

gender 1 < 0.001
1 30/45 (66.67 %) 16/24 (66.67 %)
2 15/45 (33.33 %) 8/24 (33.33 %)

race 0.012 0.253
1 43/45 (95.56 %) 20/24 (83.33 %)
2 0/45 (0 %) 4/24 (16.67 %)
4 2/45 (4.44 %) 0/24 (0 %)

educat 0.072 0.216
1 0/26 (0 %) 1/15 (6.67 %)
2 0/26 (0 %) 2/15 (13.33 %)
4 10/26 (38.46 %) 3/15 (20 %)
5 9/26 (34.62 %) 5/15 (33.33 %)
6 4/26 (15.38 %) 2/15 (13.33 %)
7 3/26 (11.54 %) 0/15 (0 %)
8 0/26 (0 %) 2/15 (13.33 %)

sctpreatt0 0.731 0.155
1 28/41 (68.29 %) 5/5 (100 %)
2 9/41 (21.95 %) 0/5 (0 %)
3 4/41 (9.76 %) 0/5 (0 %)

sctmargins0 0.287 0.175
1 11/43 (25.58 %) 3/5 (60 %)
2 24/43 (55.81 %) 2/5 (40 %)
3 8/43 (18.6 %) 0/5 (0 %)

BMI 26.52(4.71), 0 27.08(4.83), 0 0.668 < 0.001
smokeIntensity 28.22(10.07), 0 31.12(13.3), 0 0.442 < 0.001

smokeyr 46.33(5.51), 0 45.92(7.26), 0 0.807 < 0.001
smokeQuitTime 2(4.13), 1 3.33(5.11), 0 0.387 0.011

age 65.36(5.32), 3 66.79(4.45), 0 0.246 0.021
LargestDiam0 8.02(4.91), 0 1.46(2.93), 0 < 0.001 0.397

TABLE XII: Comparison between physicians and POMDP (early
prediction of post-screening with a0). For quantitatives covariates:
"mean (sd), missing data", and for categorical covariates: "effective/
total effective (percentage). Student test or Wilcoxon-Mann-Whitney
test, χ

2 test or Fisher test used when appropriate. The effect-size
column follows the color coding and bolding depicted in Table 4.

Physician POMDP p effect-size

cigsmok 0.267 0.124
0 22/65 (33.85 %) 8/15 (53.33 %)
1 43/65 (66.15 %) 7/15 (46.67 %)

diagcopd 1 0.019
0 57/65 (87.69 %) 14/15 (93.33 %)
1 8/65 (12.31 %) 1/15 (6.67 %)

famHist 0.166 0.155
0 49/65 (75.38 %) 8/15 (53.33 %)
1 16/65 (24.62 %) 7/15 (46.67 %)

pCancHist 0.234 0.074
0 62/65 (95.38 %) 13/15 (86.67 %)
1 3/65 (4.62 %) 2/15 (13.33 %)

gender 1 < 0.001
1 43/65 (66.15 %) 10/15 (66.67 %)
2 22/65 (33.85 %) 5/15 (33.33 %)

race 0.035 0.241
1 61/65 (93.85 %) 12/15 (80 %)
2 1/65 (1.54 %) 3/15 (20 %)
4 3/65 (4.62 %) 0/15 (0 %)

educat 0.361 0.148
1 0/35 (0 %) 1/12 (8.33 %)
2 2/35 (5.71 %) 2/12 (16.67 %)
4 11/35 (31.43 %) 4/12 (33.33 %)
5 12/35 (34.29 %) 2/12 (16.67 %)
6 6/35 (17.14 %) 1/12 (8.33 %)
7 3/35 (8.57 %) 1/12 (8.33 %)
8 1/35 (2.86 %) 1/12 (8.33 %)

sctpreatt0 1 0.117
1 30/43 (69.77 %) 3/3 (100 %)
2 9/43 (20.93 %) 0/3 (0 %)
3 4/43 (9.3 %) 0/3 (0 %)

sctpreatt1 0.28 0.108
1 37/48 (77.08 %) 4/7 (57.14 %)
2 7/48 (14.58 %) 2/7 (28.57 %)
3 4/48 (8.33 %) 1/7 (14.29 %)

sctmargins0 0.268 0.156
1 12/45 (26.67 %) 2/3 (66.67 %)
2 25/45 (55.56 %) 1/3 (33.33 %)
3 8/45 (17.78 %) 0/3 (0 %)

sctmargins1 0.745 0.092
1 8/47 (17.02 %) 1/7 (14.29 %)
2 27/47 (57.45 %) 3/7 (42.86 %)
3 12/47 (25.53 %) 3/7 (42.86 %)

BMI 26.26(4.62), 0 27.13(5.05), 0 0.613 < 0.001
smokeIntensity 28.57(10.36), 0 32.33(12.66), 0 0.302 0.013

smokeyr 46.12(5.94), 0 42.6(6.29), 0 0.062 0.048
smokeQuitTime 2.31(4.29), 1 4.2(5.2), 0 0.116 0.031

age 65.53(5.41), 6 65(5.59), 1 0.763 < 0.001
LargestDiam0 5.78(5.44), 0 1.33(2.79), 0 < 0.001 0.128
LargestDiam1 6.53(4.74), 4 4.59(6.07), 1 0.111 0.034

TABLE XIII: Comparison between physicians and POMDP (early
prediction of post-screening with a1). For quantitatives covariates:
"mean (sd), missing data", and for categorical covariates: "effective/
total effective (percentage). Student test or Wilcoxon-Mann-Whitney
test, χ

2 test or Fisher test used when appropriate. The effect-size
column follows the color coding and bolding depicted in Table 4.
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Physician POMDP p effect-size

cigsmok 0.309 0.107
0 27/78 (34.62 %) 7/13 (53.85 %)
1 51/78 (65.38 %) 6/13 (46.15 %)

diagcopd 1 < 0.001
0 70/78 (89.74 %) 12/13 (92.31 %)
1 8/78 (10.26 %) 1/13 (7.69 %)

famHist 1 < 0.001
0 58/78 (74.36 %) 10/13 (76.92 %)
1 20/78 (25.64 %) 3/13 (23.08 %)

pCancHist 1 < 0.001
0 73/78 (93.59 %) 12/13 (92.31 %)
1 5/78 (6.41 %) 1/13 (7.69 %)

gender 1 < 0.01
1 50/78 (64.1 %) 9/13 (69.23 %)
2 28/78 (35.9 %) 4/13 (30.77 %)

race 0.724 0.059
1 71/78 (91.03 %) 12/13 (92.31 %)
2 4/78 (5.13 %) 1/13 (7.69 %)
4 3/78 (3.85 %) 0/13 (0 %)

educat 0.091 0.177
1 0/44 (0 %) 1/11 (9.09 %)
2 3/44 (6.82 %) 1/11 (9.09 %)
4 13/44 (29.55 %) 3/11 (27.27 %)
5 16/44 (36.36 %) 1/11 (9.09 %)
6 7/44 (15.91 %) 2/11 (18.18 %)
7 4/44 (9.09 %) 1/11 (9.09 %)
8 1/44 (2.27 %) 2/11 (18.18 %)

sctpreatt0 1 0.117
1 30/43 (69.77 %) 3/3 (100 %)
2 9/43 (20.93 %) 0/3 (0 %)
3 4/43 (9.3 %) 0/3 (0 %)

sctpreatt1 0.367 0.093
1 39/51 (76.47 %) 3/5 (60 %)
2 8/51 (15.69 %) 1/5 (20 %)
3 4/51 (7.84 %) 1/5 (20 %)

sctpreatt2 1 0.055
1 32/42 (76.19 %) 7/9 (77.78 %)
2 8/42 (19.05 %) 2/9 (22.22 %)
3 1/42 (2.38 %) 0/9 (0 %)
4 1/42 (2.38 %) 0/9 (0 %)

sctmargins0 0.268 0.156
1 12/45 (26.67 %) 2/3 (66.67 %)
2 25/45 (55.56 %) 1/3 (33.33 %)
3 8/45 (17.78 %) 0/3 (0 %)

sctmargins1 0.554 0.076
1 8/50 (16 %) 1/5 (20 %)
2 29/50 (58 %) 2/5 (40 %)
3 13/50 (26 %) 2/5 (40 %)

sctmargins2 0.746 0.109
1 5/43 (11.63 %) 0/9 (0 %)
2 27/43 (62.79 %) 6/9 (66.67 %)
3 11/43 (25.58 %) 3/9 (33.33 %)

BMI 26.73(4.78), 0 26.52(5.19), 0 0.755 < 0.001
smokeIntensity 28.49(10.29), 0 36.54(15.99), 0 0.075 0.035

smokeyr 45.33(5.93), 0 40.31(7.78), 0 0.043 0.053
smokeQuitTime 2.29(4.24), 1 4.77(5.78), 0 0.086 0.033

age 64.89(5.46), 6 62.92(6.49), 1 0.3 0.013
LargestDiam0 4.82(5.41), 0 1.54(2.96), 0 0.027 0.053
LargestDiam1 5.79(5.14), 4 3.17(4.34), 1 0.096 0.032
LargestDiam2 5.24(5.33), 11 5.17(3.81), 1 0.774 < 0.001

TABLE XIV: Comparison between physicians and POMDP (early
prediction of post-screening with a2). For quantitatives covariates:
"mean (sd), missing data", and for categorical covariates: "effective/
total effective (percentage). Student test or Wilcoxon-Mann-Whitney
test, χ

2 test or Fisher test used when appropriate. The effect-size
column follows the color coding and bolding depicted in Table 4.
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Variable
Variable

Explanation
Categories

cigsmok
Smoking status at T0
Participant

0="Former" 1="Current"

diagcopd
COPD: Ever diagnosed
prior to trial?

0="No" 1="Yes"

famHist
Family History of lung
cancer, 1st degree relative

0="No" 1="Yes"

pCancHist
Personal cancer history,
all types of cancer

0="No" 1="Yes"

gender 1="Male" 2="Female"

race

1="White" 2="Black"
3="Hispanic" 4="Asian"
5="American Indian or
Alaskan Native"
6="Native Hawaiian or
Other Pacific Islander"

educat Education level

1="8th grade or less"
2="9th-11th grade"
3="High school graduate/GED"
4="Post high school
training,excluding college"
5="Associate degree/
some college"
6="Bachelors Degree"
7="Graduate School"
8="Other"

BMI Body mass Index continuous

smokeIntensity
Average number of
cigarettes per day

continuous

smokeYr Total years of smoking continuous

smokeQuitTime Time of Quitting Smoking continuous

age Age at T0 continuous

sct_pre_att0_2
Predominant attenuation
T0-2

1="Soft Tissue"
2="Ground Glass"
3="Mixed" 4="Other"

sct_margins0_2 Margins T0-2

1="Spiculated"
2="Smooth"
3="Poorly defined"

LargestDiam0_2
Largest nodule diameter
(mm) T0-2

continuous

TABLE XV: The categories and description of each variable.

VARIABLES’ CATEGORIES
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POMDP DBN 2016

TN rate TP rate/Recall Precision TN rate TP rate/Recall Precision

Screening T0 (Cancers = 32, Non-Cancers = 1,047)

a0 0.47 0.97 0.05 0.43 1.00 0.06

Screening T1 (Cancers = 17, Non-Cancers = 1,030)

a0 0.47 0.67 0.02 0.43 0.47 0.01

a0.5 0.47 0.67 0.02

a1 0.34 0.98 0.02 0.30 0.99 0.02

Screening T2 (Cancers = 21, Non-Cancers = 1,009)

a0 0.47 0.55 0.02 0.42 0.30 0.01

a0.5 0.47 0.55 0.02

a1 0.34 0.69 0.02 0.30 0.48 0.01

a1.5 0.34 0.70 0.02

a2 0.25 0.96 0.03 0.18 1.00 0.03

Post Screening (Cancers = 19, Non-Cancers = 990)

a0 0.48 0.68 0.02 0.43 0.49 0.02

a0.5 0.47 0.68 0.02

a1 0.35 0.81 0.02 0.30 0.71 0.02

a1.5 0.34 0.81 0.02

a2 0.25 0.93 0.02 0.18 0.88 0.02

TABLE XVI: POMDP Vs DBN 2016 model. Testing data.

POMDP – DBN POMDP – Exhaustive search POMDP – LR

TN rate TP rate/Recall Precision TN rate TP rate/Recall Precision TN rate TP rate/Recall Precision

Screening T0 (Cancers = 32, Non-Cancers = 1,047)

a0 0.84 0.83 0.14 0.76 0.87 0.1 0.9 0.79 0.2

Screening T1 (Cancers = 17, Non-Cancers = 1,030)

a0 0.84 0.31 0.03 0.76 0.36 0.03 0.9 0.21 0.03

a0.5 0.84 0.31 0.03 0.7 0.74 0.04 0.88 0.45 0.06

a1 0.74 0.69 0.04 0.7 0.8 0.04 0.85 0.63 0.07

Screening T2 (Cancers = 21, Non-Cancers = 1,009)

a0 0.84 0.19 0.02 0.77 0.23 0.02 0.9 0.12 0.02

a0.5 0.84 0.19 0.02 0.7 0.38 0.03 0.88 0.15 0.03

a1 0.75 0.34 0.03 0.69 0.4 0.03 0.85 0.22 0.03

a1.5 0.74 0.36 0.03 0.64 0.74 0.04 0.84 0.37 0.05

a2 0.69 0.71 0.05 0.63 0.8 0.04 0.84 0.37 0.05

Post Screening (Cancers = 19, Non-Cancers = 990)

a0 0.84 0.24 0.03 0.77 0.32 0.03 0.9 0.15 0.03

a0.5 0.84 0.24 0.03 0.7 0.4 0.03 0.89 0.19 0.03

a1 0.75 0.39 0.03 0.63 0.42 0.03 0.86 0.25 0.03

a1.5 0.74 0.39 0.03 0.64 0.46 0.03 0.85 0.26 0.03

a2 0.69 0.47 0.03 0.63 0.5 0.03 0.85 0.26 0.03

TABLE XVII: POMDP model performance using the DBN, an Exhaustive search model (all combinations of observations), and a logistic
regression model, respectively. Testing data.

COMPARISON OF POMDP AND DBN:

POMDP PERFORMANCE - COMPARISON OF OBSERVATION MODELS
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(a) TN rate.

(b) Recall/TP rate.

(c) Precision.

Fig. 6: Box plots of the performance (TN, TP, precision) of the POMDP and physicians on cases from the NLST testing set, from the start
of the trial through to last screening. Blue and yellow represent the POMDP and experts, respectively. Red stars depict instances where the
performance measure between the physicians and model are significantly different.

BOX PLOTS OF ALL CASES:


