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Abstract— High-density PMUs can be implemented to estimate
the location of large power system disturbances based on the
theory of Time Difference Of Arrival (TDOA). Unfortunately,
real-world measurements suffer from low data quality issues
frequently caused by various uncontrollable and unpredictable
factors. In this paper, four types of practical low data quality
issues from onsite PMUs are first identified from the industry
perspective. Then the impacts of each low-quality data issue
on disturbance triangulation are explored using real-time mea-
surement cases from Jiangsu power grid with a high-density
PMU network. This paper provides valuable guidance for utility
operators and academic researchers to use actual PMU data for
power grid applications.

Index Terms— Disturbance Triangulation, Low Data Quality,
PMU Measurement, TDOA

I. INTRODUCTION

The modern power grid is the most complicated artificial

system, which has been evolving in recent decades with

various technologies [1]-[5]. Meanwhile, renewable energy

sources have been promoted and integrated into power

grids [6]. Combined with communication system, the modern

power grid structures and dynamic behaviors are becoming

more complex, considering the flexibility of the new technolo-

gies and the fluctuating nature of renewable energy sources.

With the real-time GPS time-synchronized measurements

at high data rates, Wide-Area Monitoring Systems (WAMS)

reveals unprecedented insights into power grid dynamics and

is envisioned to be one of the key foundations of the next-

generation Energy Management System (EMS) [6]-[11].

However, massive amount of high-resolution PMU data

brings two new challenges for real-time applications:

1. How to detect abnormal events in the power grid?

2. Where are the locations for abnormal events in the power

grid?

To address the aforementioned challenges, a number of

methods have been proposed for power system event detection

and location identification based on PMU data. In 2001,
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the Frequency Monitoring Network (FNET/Grideye) system,

a pilot WAMS system, was developed for power system

event detection [12]. Decision tree and event detection tech-

niques using the Rate Of Change Of Frequency (ROCOF)

were proposed based on real-time measurements from the

FNET/Grideye system [13], [14]. Meanwhile, event detection

based on the generation-load mismatch and triangulation loca-

tion identification technique were proposed and implemented

[15]-[17]. Recently, Ref.[18] proposed a framework based on a

sparse linear unmixing technique to detect multiple cascading

events based on the power system in the FNET/Grideye

system. Besides, algorithms used in other areas of power

systems were also leveraged for event detection and location

identification. Wavelet analysis was performed to extract the

feature of FDRs data and support vector machine (SVM) was

introduced to classify power system events in [19]. In [20],

wavelet transform was employed on voltage and frequency

measurements from PMU data to identify generation trip

and load shedding events. Short time Fourier Transform and

statistical techniques were applied to phase angle for online

event detection in [21]. In [22], disturbance component can

be solved with positive current phasor based on superposition

theorem. The event types and location were identified by

matching the calculated disturbance component with patterns

extracted from historical fault events. Attempts to use principal

component analysis (PCA) for power system event detection

were conducted in [23]. Later, PCA was employed for real-

time event detection at the distribution level [24]. A real-

time event detection based on moving windows PCA was

developed and demonstrated in the United Kingdom and Irish

systems [25]. An investigation of using data mining technique

to detect the event and identify event location was introduced

in Ref.[26]. In [27], a change point method was proposed

to detect sudden change in highly noisy data. It may be a

potential solution for certain types of events detection in power

system. One of the common scenario in the aforementioned

papers is that the algorithms are tested based on PMUs

with low density deployment for demonstration purpose. The

accuracy and robustness of event detection applications are

seldom tested and reported when it is applied in a power grid

with industrial scale PMUs for operation purpose.

Recently, UTK Power Information Laboratory cooperated

with Global Energy Interconnection Research Institute North

America (GEIRINA) to develop a real-time event detection

and location identification application based on PMU mea-
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surements from the Jiangsu power grid in China. It provides

a good opportunity to further explore the capability of the

event detection and triangulation in a power grid with high-

density PMU measurements. Meanwhile, low data quality of

PMU measurements brings new challenges to this application.

In fact, bad data is introduced into PMU measurements due

to measurement noise and instrumentation errors [28]. The

impacts of the bad data in simulated PMU measurements have

been discussed in other research areas of the power system

and some solutions were also proposed in [29]-[34]. However,

the impacts of low data quality in actual high-density PMU

measurement on event detection and location estimation have

not been reported yet.

In this paper, the authors use real-world PMU data from

the Jiangsu power grid to evaluate the impacts of low data

quality issues on the performance of disturbance triangulation.

The event detection was implemented based on the pair-wise

comparison from multiple location PMUs and triangulation

technique was employed for event location identification. The

main innovation of this paper is that the first attempt to employ

real-time event detection application in a power grid with

industrial scale PMU deployments for operation purpose. Four

types of low data issues from actual PMU measurements are

reported and their impacts on triangulation for generation and

location events are first investigated.

The rest of the paper is organized as follows. In Section

II, an overview of Jiangsu power grid with high-density

PMU deployment and platform for triangulation application

in GEIRINA are presented. Tests of TDOA using simulation

and real-world PMU data are present in Section III. Four

typical bad data issues from on-field PMUs are introduced

in Section IV. In Section V, the impacts of low data quality

PMU measurements on disturbance triangulation are explored

using an actual generation trip case from Jiangsu power grid.

The conclusions are drawn in Section VI.

II. OVERVIEW OF DISTURBANCE TRIANGULATION IN

JIANGSU POWER GRID

A. Overview of High-Density Distributed PMU Deployment

IN Jiangsu Power Grid Network

Jiangsu power grid is located in the southeast of China

and connects with multiple adjacent power grids. There are

approximate 150 and 250 PMUs installed at northern and

southern of Jiangsu power grid, respectively. As shown in Fig.

1, the density of distributed PMU is significantly high. PMUs

are mainly installed at terminals of all 500kV transmission

lines and parts of 220 kV transmission lines with the reporting

rate 25 Hz. To utilize the PMU data for wide area monitoring,

a PMU based situational awareness data analytic platform is

developed by GEIRINA [35].

Once the PMU data are transmitted to the control center,

the data is streamed into multiple power system applica-

tions. Event detection and location identification application

has three components: event detection, event location iden-

tification, and event visualization. The event detection only

focuses on detecting whether the system is experiencing a

generation trip or load shedding events, while triangulation

Fig. 1. Map of PMU deployment in Jiangsu power grid

Fig. 2. Scheme of event detection and triangulation for GEIRINA

is designed to identify the event location in the power grid.

To deploy the event detection and triangulation application

on GEIRINA data analytic platform, an interface was imple-

mented to achieve data exchanges. The flowchart of the event

detection and triangulation application is shown in Fig. 2. The

major modules in the application include: data pre-process

module, event detection (EV) module, event triangulation (ET)

module, and visualization module. The PMU measurements

from GEIRINA are aligned based on the GPS timestamp and

streamed into the event detection module frame by frame. A

certain amount of frames are stored in the buffer temporarily.

Once a disturbance is confirmed by EV module, the data in

the buffer will be extracted and delivered to the ET module

and visualization module.

B. Mechanism of Disturbance Detection and Triangulation

1) Event Detection: Generation trip or load shedding events

in a power grid always cause a large amount of active
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power exchange due to imbalances of generation and load.

Consequently, frequency in the system also has abrupt change

during the events. To detect generation trip and load shedding

event, frequency changes
d f
dt

of PMUs at time t1 can be

calculated by

d f

dtn_t1
=

fn_t1 − fn_t0

t1 − t0
(1)

where n is the index number of PMU deployed in the system.

Additional, to distinguish frequency patterns of generation

trips and load shedding from other relatively smaller distur-

bance, i.e. line trip event, the consecutive frequency changes of

PMU must over an empirically determined threshold τ , which

can be expressed as :

∑H−1

h=0

d f

dtn_th

> nτ (2)

where H is the numbers of the consecutive frequency changes.

Once the changes in the system continuously exceed the

threshold, an event is detected, and then the buffered PMU

data is sent to the ET module for event location estimation.

2) Event Triangulation: As frequency perturbations travel

throughout grid as electromechanical waves dispersing at finite

(measurable) speeds, the PMUs located throughout the grid

detects said waves with unique time delays proportional to

the electrical distance between each respective unit and the

disturbance location. Thus disturbance triangulation mainly

involves two steps: (1) the determination of the wave-front

detected by each unit and its corresponding arrival time and

(2) estimating the disturbance location.

Once the PMUs close to the disturbance are selected via

wave-front detection, the disturbance location can be trian-

gulated by using least squares optimization to minimize the

estimated distance error as

min
∑I

i=1

[

(αi − αd )2 + (βi − βd)2 − v2 (ti − td)2
]2

s.t. αmin < αd < αmax

βmin < βd < βmax

0 < td < ti , ∀i ∈ {1, 2, . . . , I } (3)

where I denotes the number of PMUs used to estimate distur-

bance location, (αi , βi ) and (αd , βd) represent the coordinates

of Lambert projection from i -th PMU and real disturbance

location, v denotes the propagation speed of the electro-

mechanical wave, td denotes the start time of the disturbance

and ti denotes the wave-front arrival time of i -th PMU.

3) PMU Measurement Preprocessing Module: Data quality

of raw real-world PMU measurements from power grids may

degrade due to various impacts, such as temporal communi-

cations failure, synchronization inaccuracy, etc. To eliminate

the noise and extract the signal of interest events from raw

PMU measurements, a PMU data preprocessing filter was

designed and implemented [36]. The block diagram of the

PMU data preprocessing filter is shown in Fig. 3. Raw PMU

measurements are fed into a threshold filter to remove random

noises. Then a low-pass filter combining with a moving

median filter is used to remove high-frequency noise. Another

low-pass moving average filter is employed to extract the trend

Fig. 3. PMU measurement preprocessing block diagram

of filtered frequency measurements, which can be expressed

as

ft0 =
1

K

∑K−1

k=0
ft0−k (4)

where K is time windows of the moving median filter, ftk

is PMU frequency measurement at k time point. When a new

frequency measurement is streamed into the filter, a successive

value of moving median is calculated by:

ft1 = ft0 +
ft1

K
+

ft1−K

K
(5)

The data after preprocessing filter is delivered to the event

detection and triangulation application for further analysis.

III. SIMULATION AND REAL-WORLD CASE TEST OF

TDOA

To investigate the performance and robustness of TDOA

for event detection and triangulation, tests including both

simulation and real-world events are conducted.

A. Case Study With Simulated Data

To verify the effectiveness of the event detection and trian-

gulation application in a power grid with high-density PMU,

8 generation trip and 2 load shedding events in Jiangsu power

grid are simulated. The Jiangsu power grid covers 39,614

mi2 and consists of two major regions: Su Nan and Su Bei.

The power grids in two regions are connected via four 500

kV transmission lines. Jiangsu power grid is modeled as a

system with approximate 2500 buses and 5000 branches within

PSD-BPA. PSD-BPA is a power system analysis software

developed by China Electric Power Research Institute (CEPRI)

[37]. To comprehensive evaluate the performance TDOA for

event localization, the events are selected at different locations

in the two regions and the amount of generation and load

impacted by the events are from 200 MW to 1167 MW. The

details of the simulation cases and actual event locations are

summarized in Table 0. Each case contains 1 minute of PMU

measurements, which are collected with a 25 Hz sampling

rate. All the event occur at the 5th second of the simulation

time series.

The event detection and triangulation application success-

fully detected all the simulation events at the correct time

and the event location is pinpointed accurately. The reported

locations of the applications are marked in a red circle in Fig.

4 and Fig. 5. It demonstrates that the performance of the event

detection and triangulation applications in Jiangsu power grid

is remarkable in the simulation cases.



TABLE I

DESCRIPTION OF SIMULATED CASES

Fig. 4. Event detection and triangulation results of Chenjia Gang case

B. Real-World Generation Trip Case

To further evaluate the capability of TDOA for the event

detection and triangulation, a real-world generation trip case,

which occurred in Jiangsu power grid in 2015, is tested.

The generation case includes 7 minutes of measurements col-

lected from Jiangsu power grid. The measurements started at

21:57:00 and the event happened at 21: 57:59. The frequency

measured by PMUs during the event is plotted in Fig. 6.

As shown in Fig. 7, the event was successfully detected and

located. The estimated location is approximately 12 miles

away from the actual location which is acceptable for the

Jiangsu power grid.

IV. PRACTICAL DATA QUALITY ISSUES OF HIGH-DENSITY

DEPLOYED PMU

In practical industrial applications, measurements from

onsite PMU are likely to contain different types of low data

Fig. 5. Event detection and triangulation results of Nantong power plant
case

Fig. 6. PMU frequency measurements during a generation trip in Jiangsu
power grid

Fig. 7. Generation trip event location and estimated location in Jiangsu
power grid

quality issues caused by communication or PMU hardware

malfunction. This section presents four major data issues

discovered in PMUs deployed in Jiangsu power grid.

A. Constant Measurements

Constant PMU measurements are mainly caused by PMU

hardware issues. The value of measurements periodically

repeats with different intervals under both ambient or event
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Fig. 8. Illustration of constant measurement during a generation trip

Fig. 9. Illustration of spike issue

Fig. 10. Illustration of data missing issue

conditions. A typical constant measurement is presented in

Fig, 8. When the most PMU frequency measurements drop

during a generation trip event, some of the PMU measurements

keep the constant periodical patterns before and after the event

thus missing the information of the power system dynamic.

B. Spikes in Measurements

The random spike in measurements is another typical data

quality issue caused by PMU hardware issues. The frequency

and magnitude of the spikes vary case by case. Thus it is

difficult to extract the feathure of the spike and apply a uniform

filter to remove them. It can be observed in Fig. 9 that some

measurements have random spikes in the aspect of amplitude

and time interval. Additionally, some spikes keep swinging

around system frequency as shown in Fig. 9. The tendency of

the swing indicates that the mean value of the measurement

keeps changing over time.

Fig. 11. Illustration of the high-frequency noise issue

Fig. 12. Case 1: PMU1 with constant measurement

C. Missing Data in Measurements

Missing data happens in PMU measurements due to several

uncontrollable factors (e.g. GPS signal lost, network fail-

ure, power failure, etc.[38]). Detecting the missing data is

straightforward since each PMU measurement is assigned a

unique time index thus a discontinuous timestamp implies the

existence of missing data. The entire raw data are broken down

into several non-overlapping frames. The miss data results in

discontinuity and outlines of PMU measurements. As shown

in Fig. 10, missing data at the GEIRINA PMUs platform can

occur frequently and result in a sudden drop to “0” Hz in

frequency measurement from PMU2.

D. High-Frequency Noise in Measurements

The measurement with high-frequency noise can be caused

by an inaccurate sampling interval control related to PMU

calibration and wrong PMU hardware configuration [30]. It

makes the measurements having high-frequency noise and

keeping swinging around the actual system frequency. Based

on the measurement data from the Jiangsu Power grid, the

amplitude of the noise varies in a relatively wide range, from

0.01 to 0.2 Hz. As shown in Fig. 11, high-frequency noise

for each PMU has slight differences in amplitude. Thus, the

randomness and variety of the high-frequency noise make it

difficult to be removed with a uniform threshold filter.



Fig. 13. Case 2: PMU1 with random spikes

Fig. 14. Case 3: PMU1 with high-frequency spikes

V. IMPACT OF DATA QUALITY ON EVENT TRIANGULATION

The purpose of this section is to investigate the impacts of

low data quality on the accuracy of event triangulation when

using high-density PMU measurements. To this end, an actual

generation trip in the Jiangsu power grid is selected for this

study. All low data quality issues mentioned in Section IV are

considered. It is assumed that the measurements of a PMU

that is the first one responding to the actual event disturbance,

referred as PMU1, encounters with low data quality issues.

The scenarios of each testing case are given below:

1) Case 1: PMU1 with constant measurement issue

2) Case 2: PMU1 with spike and missing data issue

3) Case 3: PMU1 with the high-frequency noise issue

Employing the triangulation method, the estimated locations

for each case are illustrated from Fig. 12 to Fig. 14. The

summary result is listed in Table 2. It can be seen from Fig. 12

that the constant measurement issue leads to a large estimation

error. The estimated location is more than 100 miles far away

from the actual location. The impact of other types of data

TABLE II

SUMMARY OF THE IMPACT OF LOW DATA QUALITY ON EVENT TRIANGU-
LATION

issues including spike, missing data, and the high-frequency

spike is negligible, which indicates that the preprocessing filter

has successfully eliminated the impact of these bad data issues

before the measurements been fed into TDOA algorithm.

VI. CONCLUSION

Real-world PMU measurements have low data quality issues

due to various uncontrollable and unpredictable factors, which

degrades the performance of measurement based applications.

To investigate this problem from an industry perspective,

this paper first discovers four typical low data quality issues

from real high-density PMU measurements. Since the event

triangulation is one of the commonest applications using high-

density PMUs, the impacts of the low data quality issues

on event triangulation are explored using measurements from

the Jiangsu power grid as an example. It is discovered that

the constant measurement will cause the inaccuracy of event

triangulation significantly while the impacts of other low data

quality issues are negligible due to the utilization of the

preprocessing filter. This paper provides a practical reference

for utilizing PMU data in the application of event triangulation.
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