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ABSTRACT Thermostatically controlled residential appliances have built-in thermodynamic storage that,

even within a narrow temperature band that need not degrade the comfort level of occupants, can be used

to provide a variety of value streams to power system operators and customers. In this work, residential air

conditioners and electric water heaters are used to improve feeder power factor in a distribution systemwhere

photovoltaic systems cause the feeder power factor to dip daily, increasing losses. Improving distribution

feeder power factor improves the efficiency of the transmission and bulk generation systems. A daily optimal

dispatch regime is used to maximize the daily minimum feeder power factor. Following this regime, electric

water heaters cool off in preparation for a low-feeder-power-factor event, turn on to improve the power factor

during the event, and return to a neutral condition after the event. Air conditioners, which have a power factor

lower than the feeder overall, are optimally dispatched in inverse pattern. Using a model of a real commercial

and residential distribution feeder in the western United States, optimal dispatch of virtual batteries is shown

to be capable of improving the daily minimum power of that feeder by as much as 0.026. The power factor

correction and optimal dispatch techniques are based on a robust virtual battery framework, making them

portable to other applications such as volt-var optimization and transactive energy systems.

15

16

INDEX TERMS Energy storage, optimal scheduling, power distribution, power generation dispatch, power

system management, power system modeling.

I. INTRODUCTION17

Distributed photovoltaic (PV) systems enable electric utility18

customers to produce power onsite, reducing electricity bills19

as well as the aggregate net load of the feeder. This paradigm20

can benefit customers and society at large [1]; however,21

distributed generation also introduces technical challenges22

[2]. Among these challenges, the real power injections from23

distributed PV systems cause both voltage rise [3] and power24

factor degradation [4], conflicting issues that are both com-25

monly addressed using capacitors [5]. The virtual battery26

(VB) framework [6], [7], [8] leverages the thermodynamic27

energy capacity of thermostatically controlled appliances and28

offers a mechanism to counteract power factor degradation29

XXXXX

caused by distributed PV systems without contributing to 30

voltage rise. 31

The power factor of a load on an alternating current power 32

system characterizes a relationship between the real power 33

delivered to the load and the amplitude of the current required 34

to supply that power [9].When the power factor deviates from 35

unity, additional losses are incurred in the conductors serving 36

the load [10]. The power factor of distribution system feeders 37

impacts the efficiency of the generators and transmission 38

lines that serve them. Capacitors can be used to improve the 39

power factor of a distribution system by injecting reactive 40

power [5]. Techniques have long been developed to optimally 41

size and place capacitors for loss minimization [11], [12], 42

[13]; however, these traditional techniques assume that cor- 43

recting the system power factor will never cause overvoltage. 44
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While fixed capacitors affect system voltage and var flow,45

substation automation introduced an opportunity to coordi-46

nate voltage and var control [14]. Combining var control with47

conservation voltage reduction yields methods to optimize48

the settings of voltage and var controlling equipment (volt-49

var optimization, VVO) [15]. More recent VVO algorithms50

extend control beyond the substation and optimize a formal51

objective such as minimizing loss and/or a voltage profile52

metric [16], [17]. Consideration is traditionally limited to53

system infrastructure including voltage regulators and capac-54

itors. More recent work also includes reactive power from PV55

inverters [18], [19] and battery storage [20].56

VVO traditionally dispatches utility-owned resources only.57

Demand response allows system operators to modulate load58

along with generation to achieve power balance. Early inter-59

est in demand-side management of utility load focused on60

marketing to influence customer behavior [21]. Smart grid61

concepts and communication infrastructure enable demand62

response via direct load control using a price signal or load-63

shedding command [22]. Optimal direct load control has been64

proposed as a way to manage peak load by throttling water65

heaters [23], and later a combination of water heaters, air66

conditioners, and other end-use loads [24]. Improvements67

that control load by modifying setpoints were introduced68

in [25]. Leveraging demand response to enhance VVO is69

demonstrated in [26] (using a multi-objective optimization)70

and [27] (using a game theory approach). The role of demand71

response in energy markets is discussed in [28] and demand72

response of elastic and inelastic loads to achieve optimal73

power flow is discussed in [29].74

The traditional concept of demand response treats dis-75

patchable load as a virtual power plant and allows appliances76

to return to their normal thermodynamic cycle during a ‘‘pay-77

back’’ period. Reimagining thermostatically controlled loads78

as VBs [6], [7], [8] expands both the range of behavior79

profiles for the loads (e.g., VBs can ‘‘charge up’’ to prepare80

for a discharging event) and the range of services that can81

be provided by the appliances. In this paper, thermostati-82

cally controlled loads are represented as VBs that can pro-83

vide distribution system services including power factor cor-84

rection. Specifically, thermostatically controlled residential85

appliances are treated as VBs that can mitigate power factor86

degradation caused by distributed PV systems. Improving the87

feeder power factor reduces the transmission current required88

to supply the feeder, reducing transmission and distribution89

losses.90

The specific contributions of this paper are a power factor91

correction framework for distribution feeders and an optimal92

dispatch method for thermostatically controlled loads based93

on a VB framework.94

VB power factor correction is portable to other applica-95

tions. In VVO, VBs could be co-optimized alongside other96

resources. And in transactive energy systems, VBs could par-97

ticipate in markets to provide power factor correction as one98

of a number of services. The optimization methods presented99

here are based on a robust abstract VB framework and the100

optimization methods themselves are portable and can be 101

easily extended to other applications. 102

The rest of this paper is organized as follows. In Section II, 103

thermostatically controlled residential appliances are charac- 104

terized as VBs. In Section III, optimal feeder power factor 105

correction using VBs is introduced. In Section IV, a demon- 106

stration of these concepts is discussed. Section V contains 107

concluding remarks. 108

II. APPLIANCES AS VIRTUAL BATTERIES 109

A VB model uses the thermodynamic energy storage of 110

thermostatically controlled systems to modulate load on the 111

power system. A VB charges by turning appliances on that 112

would otherwise be off and discharges by turning appliances 113

off that would otherwise be on. As defined in [8], a VB is a 114

set of power profiles in which each profile P satisfies (1)-(3). 115

P (k) ≤ P (k) ≤ P̄ (k) (1) 116

E (k) ≤ E (k) ≤ Ē (k) (2) 117

E (k + 1) = αE (k) + P (k) 1t (3) 118

where k is the discrete time step, P(k) is the VB power at 119

step k bounded by its upper and lower limits, E(k) is the 120

VB energy state at step k , bounded by its upper and lower 121

limits, α is the self-discharge rate, and 1t is the time step 122

size. Additional detail on the VB model can be found in [8]. 123

The power and energy limits and the self-discharge rate are 124

determined by the characteristics of participating appliances. 125

The energy limits are symmetric about zero and proportionate 126

to number and volume of the units participating at a given 127

point in time. The span of the power limits is determined by 128

the number and heating capacity of the participating appli- 129

ances at a given point in time and the position of that span 130

relative to zero is determined by the amount of power required 131

to keep the VB energy at its neutral position. The ability of a 132

particular appliance to participate at a given time depends on 133

the thermostat setpoint compared to the ambient or exterior 134

temperature. For example, when it is cold outside, an air 135

conditioner is neither on nor available to turn on. 136

A feeder from the western United States used to illustrate 137

the virtual battery equations. The feeder is also used for a 138

case study in Section IV. The temperature profile for part of 139

the summer shown with the weighted average temperature 140

setpoint of the air conditioner fleet on a feeder is shown in 141

Fig. 1. 142

Air conditioners become available as indoor temperatures 143

begin to exceed air conditioner cooling setpoints. Indoor 144

temperature lags outdoor temperature for insulated homes. 145

A. ELECTRIC WATER HEATERS 146

A water heater is a thermostatically controlled appliance that 147

heats and stores water for use on demand. Water is typically 148

heated by a resistive element. Temperature setpoints and 149

deadband of the electric water heaters are used to estimate 150

VB parameters. The ambient temperature outside of the water 151

heater (air temperature of the home or garage where the water 152
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FIGURE 1. Outdoor temperature profile for part of the summer; Tset is
device-specific and holds a range of values across the fleet.

heater is located) is never expected to exceed the thermostat153

setpoint of the unit. However, if the water draw is large, the154

water heater may not have any flexibility to participate in the155

VB.156

1)POWER FACTOR157

Electric water heaters typically use resistive heating ele-158

ments with unity power factor.159

2)POWER AND ENERGY LIMITS160

The thermodynamic energy storage capability of a water161

heater depends on the volume of water and the upper and162

lower temperature limits for the appliance.163

The power limits span depends on the sum of the heating164

capacities of all of the water heaters and is nominally con-165

stant. The actual power consumption ofwater heaters depends166

on the supply voltage, bounded by the operational voltage167

limits of the feeder (0.95 per-unit to 1.05 per-unit). When168

hundreds of devices are aggregated across a feeder, some169

devices will draw additional power and others will draw less170

than the nominal power. Because water heaters are off more171

often than they are on, the power limits are generally biased172

in the positive direction with a lesser bias at times of common173

hot water usage.174

The power and energy limits for the electric water heater175

VB resource are shown in Fig. 2.176

The positive power limit usually has a greater magnitude177

than the negative power limit. This is because of the low duty178

cycle of water heaters; there are typically more water heaters179

to turn on than there are to turn off at any given time. The180

power limits also change throughout the day. When people181

are at home and using more hot water, the power limits shift182

in the negative direction. The energy limits are proportionate183

in magnitude to the aggregate thermal capacity of the devices184

in the VB. Because the number of participating water heaters185

is constant, the energy limits are constant.186

B. AIR CONDITIONERS187

An air conditioner is a thermostatically controlled appliance188

that cools the air inside a building. The availability of an air189

FIGURE 2. Power limits (top) and energy limits (bottom) for the electric
water heater based VB in the demonstration feeder.

FIGURE 3. Power limits (top) and energy limits (bottom) for the air
conditioner based VB in the demonstration feeder.

conditioner depends on the outside temperature relative to 190

the thermostat setpoint. Availability throughout a fleet of air 191

conditioners varies seasonally and daily. 192

1)POWER FACTOR 193

Air conditioners rely on machines including condensers 194

and fans and have a lagging power factor. In this work, air 195

conditioners were modeled with a power factor of 0.8. 196

2)POWER AND ENERGY LIMITS 197

The VB power and energy limits vary with time of day and 198

season based on the air conditioning use as shown in Fig. 3. 199

At peak usage during summer months, the VB capacity at 200

this locationmay be compared to a 500-kW, 100-kWh battery. 201

III. FEEDER POWER FACTOR CORRECTION 202

Feeder power factor describes how much current is required 203

to supply a given amount of power. The feeder power factor 204

depends on the net feeder load. 205

p.f . =
P

|V | · |I |
=

P
√

P2 + Q2
(4) 206

where P is the net real power, Q is the net reactive power, V 207

is the voltage, and I is the current. Power factor is maximized 208

when current and voltage waveforms are aligned. Improving 209

this alignment reduces the current magnitude required to 210

deliver a fixed amount of real power and improves efficiency 211

of transmission and distribution. Distribution feeder power 212
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FIGURE 4. Feeder power factor as a function of P for fixed Q (green);
shown with active sign convention (positive for net power export) in the
net-generation region and with passive sign convention (positive for net
power import) in the net-load region; for unity power factor VBs, charging
increases total real power load and discharging decreases total real
power load.

factor correction is the act of controlling feeder power factor213

to reduce transmission system losses.214

The magnitude of power factor lies on the range between215

zero and one and is further characterized by the direction of216

real power flow: if the real power net load of the feeder is217

positive, the passive sign convention is used; if the net load218

of the feeder is negative, the active sign convention is used.219

The net load is a combination of the uncontrolled load, the220

distributed generation, and the load of all VBs.221

P = PL + PVB (5)222

Q = QL + QVB (6)223

where PL is the uncontrolled feeder net real load, QL is the224

uncontrolled feeder net reactive load, PVB is the total real225

load of all VBs, and QVB is the total reactive load of all226

VBs. Uncontrolled feeder load includes PV generation, loss,227

customer load that is not participating in the VB, and load228

from devices that are participating in the VB necessary to229

keep the VB at neutral power output and neutral energy state.230

Note that small changes in uncontrolled load (e.g., line losses)231

resulting from changes in VB load are not captured in this VB232

model. The relationship betweenPVB andQVB depends on the233

power factor of each of the VBs.234

PVB (k) =
∑

i

PVBi (k) (7)235

QVB (k) =
∑

i

PVBi (k) tan
(

cos−1
(

[p.f .]VBi

)

)

(8)236

(9)237

where k is the discrete time step, i is the VB index and [p.f.]VBi238

is the power factor of VBi.239

Fig. 4 shows the effect of changing P while holding Q240

constant. Note that P decreases as PVB enters its discharging241

region.242

A traditional feeder has a positive PL and a positive QL ; 243

that is, it has a lagging power factor in the net-load region of 244

Fig. 4. Distributed PV systems operating at unity power factor 245

reduce the feeder total real power load without changing the 246

total reactive power load, reducing the feeder power factor 247

or eventually shifting the feeder to the net-generation region. 248

Notably, smart inverter settings, including fixed non-unity 249

power factor or volt-var control, can exacerbate the feeder 250

power factor by canceling real power load while increasing 251

the reactive power load. 252

A. MAXIMIZING MINIMUM POWER FACTOR 253

Like physical batteries, VBs are limited by both power and 254

energy. They cannot be charged or discharged indefinitely. 255

However, VBs can be charged daily to level the minimum 256

power factor and then recharged later in the day. Solving 257

the following optimization problem maximizes the minimum 258

power factor for a given period. 259

max
τ,PVB(k)

{τ } (10) 260

subject to the VB power and energy limits (1)-(3), physical 261

constraints (4)-(6), joint VB equations (7)-(8), and: 262

0 ≤ τ ≤ 1 (11) 263

p.f .(k) ≥ τ∀k (12) 264

where τ is a minimum power factor threshold, PVB(k) is the 265

VB load power at time step k , p.f.(k) is the feeder power 266

factor at time step k , and α is 1. Power and energy limits 267

are defined by the physics of the distributed energy resources 268

participating in the VB. 269

B. MINIMIZING AVERAGE STATE OF CHARGE 270

In the first stage of optimization described above, PVB(k) is 271

generally under-constrained. To determine an optimal dis- 272

patch, the absolute virtual state of charge, or energy, of each 273

VB can be minimized in a second stage of optimization (13) 274

subject to τ∗ (from the first stage of optimization). This 275

ensures that the VBs (a) are maximally available for other 276

services and (b) have aminimal impact on customers and their 277

appliances participating in the VB. 278

min
PVB(k)

∑

k,i

∣

∣EVBi (k)
∣

∣ (13) 279

subject for any time step k to the VB power and energy limits 280

(1)-(3), physical constraints (4)-(6), joint VB equations (7)- 281

(8), and: 282

p.f . (k) ≤ τ ∗∀k (14) 283

where τ∗ is the optimal minimum power factor threshold, 284

PVB(k) is theVB load power at time step k , p.f.(k) is the feeder 285

power factor at time step k , and α is 1. Power and energy 286

limits are defined by the physics of the distributed energy 287

resources participating in the VB. 288
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IV. VIRTUAL BATTERY DISPATCH DEMONSTRATION289

VB dispatch was demonstrated using a GridLAB-D [30]290

model of a real distribution feeder. Water heaters and air291

conditioners were modeled as agent-based appliances and292

allowed to follow their normal thermostat-controlled behav-293

ior. The power flow solver was set to Newton-Raphson mode.294

Themodel was simulated to obtain the baseline weekly power295

factor profile. The optimal dispatch of VBs was computed296

using a generic non-linear program solver, first for an electric297

water heater based VB, then for an air conditioner based298

VB, and finally for a co-optimal dispatch of both VBs act-299

ing together. Voltage-controlled capacitors switching oper-300

ations are assumed to prioritize voltage control and remain301

unchanged with the introduction of VB dispatch. VB dispatch302

is optimized each day and computed assuming neutral charge303

at midnight.304

A. DEMONSTRATION FEEDER305

A demonstration feeder located in the western United States306

was used to demonstrate VBs. To study VB capability, elec-307

tric water heaters were modeled for all residential customers308

to represent a hypothetical water heater electrification sce-309

nario. This demonstration feeder model has the following310

attributes:311

–Primary voltage: 12.47 kV312

–Residential houses: 340313

–Residential houses with electric water heating: 340314

–Total electric water heater capacity: 1.53 MW315

–Residential houses with electric air conditioning: 152316

–Total electric air conditioner capacity: 1.73 MW317

–Total distribution transformer capacity: 23.5 MVA318

–Residential transformer capacity ratio: 0.4575319

–Commercial transformer capacity ratio: 0.5425320

–Distributed PV: ∼20% peak load capacity321

–Distributed capacitors: two banks, voltage controlled322

The model includes behavioral residential loads with323

explicit representation of heating, ventilation, and air condi-324

tioning systems and other end uses. The feeder is less than325

half residential (by transformer capacity) and fewer than half326

of houses have electric air conditioning. The impact that a327

VB can have on a system depends on factors including the328

fraction of load that the participating appliances form and the329

power factor of the VB.330

B. BASELINE SIMULATION331

The feeder model was simulated without VB actuations for a332

warm summer week. The simulated PV generation profile is333

shown in Fig. 5.334

The simulated PV power and feeder power factor is shown335

in Fig. 6.336

The feeder power factor shows diurnal variations. In each337

of the days simulated, the power factor begins low at night and338

increases slightly as load begins to increase in the morning.339

As unity-power-factor PV systems begin to produce power,340

the power factor decreases, leading to the daily minimum.341

FIGURE 5. Total PV generation during simulated week.

FIGURE 6. Baseline simulated feeder power factor without VB dispatch.

FIGURE 7. Optimal feeder power factor with water heater VB dispatch
(blue) over simulated baseline feeder power factor without VB dispatch
(black).

When the voltage-controlled capacitors engage, the power 342

factor rises sharply until the capacitors switch off again at 343

night. At mid-day, fluctuations are caused primarily by indi- 344

vidual phases of voltage-controlled capacitors responding to 345

PV and load fluctuations. 346

C. VB DISPATCH OF WATER HEATER FLEET 347

Given the baseline feeder power factor and the VB limits 348

for the electric water heater fleet, the optimal VB profile 349

was computed as described in Sections III-A and III-B. The 350

optimal feeder power factor is shown in Fig. 7. 351

On each day, the minimum power factor was increased. 352

The worst-case power factor day was the fifth day and the 353

overall minimum power factor was increased by 0.025. The 354

VB power and energy profiles are shown along with the VB 355

power and energy limits in Fig. 8. 356

Because the electric water heater fleet VB has unity power 357

factor, charging the VB (turning appliances on) improves the 358

power factor of the system. Each day, the VB discharges 359

in preparation to charge during the minimum power factor 360

event; the VB discharges back to the neutral position after 361

the event. The charging power limit is never approached and 362

power factor improvement was limited by VB energy. 363
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FIGURE 8. Water heater VB power profile (blue, top) and energy profile
(green, bottom) for optimal dispatch; power and energy limits are shown
in gray.

FIGURE 9. Optimal feeder power factor with air conditioner VB dispatch
(blue) over simulated baseline feeder power factor without VB dispatch
(black).

FIGURE 10. Air conditioner VB power profile (blue, top) and energy
profile (green, bottom) for optimal dispatch; power and energy limits are
shown in gray.

D. VB DISPATCH OF AIR CONDITIONER FLEET364

Given the baseline feeder power factor and the VB limits for365

the air conditioner fleet, the optimal VB profilewas computed366

as described in Sections III-A and III-B and the resulting367

power factor is shown in Fig. 9.368

On each day, the minimum power factor was increased369

slightly. The worst-case power factor day was the fifth day370

and the overall minimum power factor was increased by371

0.001. The VB power and energy profiles are shown along372

with the VB power and energy limits in Fig. 10.373

FIGURE 11. Optimal feeder power factor with air conditioner VB dispatch
(blue) over simulated baseline feeder power factor without VB dispatch
(black).

Because the air conditioner fleet in GridLAB-D has a 374

power factor of 0.8 (as reflected in the VB model), discharg- 375

ing the VB (turning appliances off) improves the power factor 376

of the system. Each day, the VB charges in preparation to 377

discharge during the minimum power factor event. On each 378

of the seven days simulated, power factor correction is limited 379

by the VB discharging power limit and the VB energy limits 380

are not reached. 381

E. JOINT DISPATCH OF COMBINED FLEET 382

The feeder power factor was optimized as described in Sec- 383

tions III-A and III-B considering both the water heater fleet 384

VB and the air conditioner fleet VB. Joint optimization is 385

described by (7)-(8). The optimal feeder power factor is 386

shown in Fig. 11. 387

The power factor improvement is similar to that observed 388

with the water heater VB only. The worst-case power factor 389

day was the fifth day and the overall minimum power factor 390

was increased by 0.026. The VB power and energy profiles 391

for each VB are shown with their corresponding limits in Fig. 392

12. 393

The two VBs were jointly optimized. The power and 394

energy profiles for the water heater VB are nearly identical 395

to the water heater only case. However, the air conditioner 396

VB was able to make a larger impact at the beginning and/or 397

end of the minimum power factor event, extending the event 398

and slightly increasing the minimum power factor compared 399

to the water heater only case. 400

F. COMPARISON OF SCENARIOS 401

The feeder power factor and improvement for each of the 402

scenarios discussed is summarized in Table I. 403

All VB dispatch scenarios showed positive improvement 404

in feeder power factor across all days (also see Fig. 7, Fig. 9, 405

and Fig. 11). The greatest improvement in the combined VB 406

case came on the worst-case day. The worst-day feeder power 407

factor improvement for each scenario is shown in Fig. 13. 408

The worst-day feeder power factor was improved in all 409

VB dispatch scenarios. However, the improvement achieved 410

with VB dispatch for electric water heaters is an order of 411

magnitude greater than that achieved by VB dispatch of air 412

6 VOLUME 7, 2019
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FIGURE 12. Water heater VB power profile (blue, first from top) and
energy profile (green, second), and air conditioner VB power profile (blue,
third) and energy profile (green, fourth) for optimal dispatch; power and
energy limits are shown in gray.

TABLE 1. Feeder Power Factor and Change in Power Factor by Day

conditioners. As on other days, most of the improvement413

came from the water heater VB.414

V. CONCLUSIONS415

The VB framework allows thermostatically controlled res-416

idential appliances to be controlled optimally. In order to417

implement this scheme, a centralized controller requires418

feeder load monitoring (substation SCADA), device charac-419

terization to build the VB profiles, and the ability to dispatch420

participating devices using a method such as priority stack421

control. This framework can be used to improve the power422

FIGURE 13. Lowest power factor event on day 5: baseline feeder power
factor (black) and minimum power factor thresholds for each VB dispatch
scenario.

factor of distribution feeders, reducing transmission and dis- 423

tribution system losses. 424

Modeling and analysis suggest that on a particular western 425

United States feeder with residential and commercial load, 426

VBs consisting of electric water heaters from 100% of res- 427

idences and air conditioners from 45% of residences could 428

improve the daily minimum power factor by up to 0.026. 429

Power factor improvement ranged from 0.016 to 0.026, with 430

the greatest improvement coming on the worst-case day. 431

Considered individually, optimal VB dispatch of the elec- 432

tric water heater fleet improved the daily minimum power 433

factor by 0.015 to 0.025 and optimal VB dispatch of the air 434

conditioner fleet improved daily minimum power factor by 435

0.001 to 0.005. The unity power factor of the water heater 436

fleet means that it has a greater effect on power factor per 437

kilowatt dispatched. In addition, at the time of day that the 438

minimum power factor occurs, the electric water heater VB 439

has a higher power limit than the air conditioner VB in the 440

direction that improves the feeder power factor (positive for 441

the water heater VB and negative for the air conditioner VB) 442

when the daily minimum feeder power factor occurs. The 443

water heater VB was constrained by its energy limits while 444

the air conditioner VB was constrained by its power limits. 445

The VB approach to power factor correction leverages 446

resources that are already present on the system and does 447

not require investment in a combination of infrastructure 448

upgrades such as capacitors, voltage regulators, and line 449

upgrades that might otherwise be required for power factor 450

correction without introducing overvoltage violations. The 451

communications and control infrastructure required for VB 452

dispatch are comparable to and likely to be compatible with 453

that required for load-aware VVO or transactive control. 454

Daily minimum power factor maximization does not 455

require full utilization of VB resources so capacity remains 456

available for other services. Other services could be pro- 457

vided either by co-optimal dispatch of the VB resource for 458

power factor correction and other services or by considering 459

VB resources and constraints as part of a state-aware VVO 460

or other system-wide power-flow optimization. Future work 461

will continue to investigate how the VB framework can be 462

used to provide the best value to the power system considering 463

both the transmission and distribution levels. 464
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