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Abstract—In advanced metering infrastructure (AMI) net-
works, smart meters installed at the consumer side should
report fine-grained power consumption readings (every few
minutes) to the system operator for billing, real-time load
monitoring, and energy management. On the other hand,
AMI networks are vulnerable to cyber-attacks where malicious
consumers report false (low) electricity consumption to reduce
their bills in an illegal way. Therefore, it is imperative to
develop schemes to accurately identify the consumers that
steal electricity by reporting false electricity usage. Most of the
existing schemes rely on machine learning for electricity theft
detection using the consumers’ fine-grained power consumption
meter readings. However, this fine-grained data that is used
for electricity theft detection, load monitoring, and billing can
also be misused to infer sensitive information regarding the
consumers such as whether they are on travel, the appliances
they use, etc. In this paper, we propose an efficient and
privacy-preserving electricity theft detection scheme for AMI
network and we refer to it as PPETD. Our scheme allows
system operators to identify the electricity thefts, monitor the
loads, and compute electricity bills efficiently using masked
fine-grained meter readings without violating the consumers’
privacy. PPETD uses secret sharing to allow the consumers to
send masked readings to the system operator such that these
readings can be aggregated for the purpose of monitoring and
billing. In addition, secure two-party protocols using arithmetic
and binary circuits are executed by the system operator
and each consumer to evaluate a generalized convolutional-
neural network model on the reported masked fine-grained
power consumption readings for the purpose of electricity theft
detection. An extensive analysis on real datasets is performed
to evaluate the security and the performance of PPETD.
Our results confirm that our scheme is accurate in detecting
fraudulent consumers with privacy preservation and acceptable
communication and computation overhead.

I. Introduction

Electricity theft is a serious problem in the existing
power grid, which causes great economic loss. Many
countries experience a considerable amount of electricity
theft. In the United States, the electricity theft costs $6
billion/year [1] while in the United Kingdom, electricity
theft costs $173 million [2]. In Canada, there is a loss
of around $100 million per year [3]. For developing
economics, the losses have much worse consequences.
India loses $17 billion every year due to electricity theft

[1]. Other developing countries lose almost 50% of their
electricity revenue [5].

The Smart Grid (SG) is a revolutionary upgrade to the
current power grid that aims to improve the grid efficiency,
sustainability, and security [11]. One of the main compo-
nents of the SG is the Advanced Metering Infrastructure
(AMI) networks, which use two-way communications to
connect the smart meters (SMs), installed at consumers’
houses, to the system operator (SO). Figure 1 gives a
conceptual architecture for the SG. As shown in the figure,
the SG has AMI networks and a system operator. Each
AMI network covers an area, e.g., a neighborhood, and
sends to the SO a massive amount of fine-grained elec-
tricity consumption data, e.g., every few minutes. Using
these data, the SO can run demand-response programs to
reduce the load and balance supply and demand, compute
bills using dynamic pricing, and monitor/forecast loads [?],
[11].

This new architecture of the power grid can limit the
traditional (physical) electricity theft attacks, e.g., meter
tampering and line hooking [1]. However, the use of
SMs opens the door wide for new serious cybersecurity
threats. For example, in the context of electricity theft,
a malicious consumer may hack its SM to manipulate
(reduce) the amount of energy consumption reported to
the SO to reduce their bills. These new attacks not only
cause financial losses but also jeopardize the integrity of
the power grid and hinder its reliability because the power
consumption data reported by the SMs are used by the
SO for energy management and load monitoring. The use
of the SMs’ false data may cause instability to the power
grid and, in severe cases, may cause blackouts.

Different hardware and software-based solutions have
been proposed in the literature to detect electricity theft
cyber-attacks [1], [12], [13], [15]. Among the existing
solutions, data-driven approaches are the most promising
because they have small cost and provide good detec-
tion rate [1], [12], [13]. Specifically, recent studies [1],
[12] have indicated that utilizing the fine-grained energy
consumption data with machine-learning-based models
can accurately detect electricity thefts. These models
can be trained offline using honest and malicious energy
consumption data samples. After that, the trained models
can be used online to detect electricity theft. However,
the existing models suffer from the following limitations.
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Fig. 1: Smart grid conceptual architecture.

First, most of the existing models need to access the
consumers’ fine-grained power consumption data to detect
electricity theft, which seriously invades the privacy of
the consumers. In particular, fine-grained consumption
data can reveal sensitive information of the households’
activities, such as appliances in use, the times the con-
sumers leave and return home, whether consumers are on
travel, etc. [17]. These data can be collected and misused.
For instance, insurance companies could purchase these
data to adapt their insurance plans according to the
activities of each consumer. Marketing companies may also
be interested in these data to identify potential customers.
Most importantly, criminals (such as thieves) may use
these data to know the best times to commit crimes (e.g.,
break into houses if consumers are on travel). Finally,
according to the Electronic Privacy Information Center,
determining consumers’ personal activities is a serious
privacy concern in smart grid [?].

To the best of our knowledge, very few works have
tried to address privacy preservation in electricity theft
detection [21]–[24], [29]. State estimation is used in [21]–
[23] where a set of distributed algorithms are employed
between all SMs in the network. Nevertheless, distributed
state estimation approaches may fail if any SM manipulate
the messages it sends to other peers. Also, state estimation
approaches usually give lower performance than machine
learning models [1]. Besides, the schemes in [21], [22]
require knowing the power line losses, which may be
infeasible in practice. In [24], [29] machine learning and
statistical models are used for privacy-preserving electric-
ity theft detection. However, an online trusted entity is
assumed to participate in the electricity theft detection
phase. In practice, it is impossible to guarantee that a
party (that is assumed trusted) does not misuse the data
of the consumers.

The second limitation in the literature is that some of
the existing electricity theft detectors are either based on
shallow machine learning techniques [26], [27] or static
machine learning techniques [28]. On one hand, these

schemes do not exploit the temporal correlation nature
of the energy consumption data, which results in low
detection rates. On the other hand, convolutional neural
networks (CNNs) can deal with time-series data, and
hence, can capture the temporal correlation in the time-
dependent energy consumption data leading to an im-
proved detection performance. The final limitation is that,
most of the existing research works, e.g., [?], [1], focus on
consumer-specific detectors, where a detector is designed
for each consumer based on the historical meter readings
of that consumer. These schemes cannot be used for the
new consumers who do not have any historical readings.
Besides, consumer-specific detectors are vulnerable to data
contamination attacks where malicious consumers report
false readings during the detector’s design/training stage.
On the other hand, general detectors are designed using
energy consumption readings from all consumers, and
hence, they can be used to detect electricity theft cyber-
attacks launched by new consumers and are more robust
against data contamination attacks.

In this paper, we propose an efficient and privacy
preserving electricity theft detection scheme for AMI
network, and we refer to it as PPETD. The scheme
aims at efficient detection of electricity thefts using
convolutional machine learning model while preserving
consumers’ privacy and enabling the SO to monitor the
loads and compute electricity bills following a dynamic
pricing mechanism. In PPETD, each SM shares a set of
secrets with other SMs in the AMI network to efficiently
compute shared pairwise secret masks with each SM.
During an electricity consumption reporting, the SM
should blind its fine-grained reading using all the masks
shared with other meters, such that all the masks get
canceled after aggregating all meters’ masked readings. As
a result, the SO can obtain the aggregated reading for load
monitoring without accessing the fine-grained readings of
each consumer to preserve his/her privacy. In addition,
secure two-party computation protocols for arithmetic and
binary circuits are executed by each consumer’s SM and
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the SO using a number of consecutive reports, referred to
as electricity theft detection interval. These protocols use a
secure convolutional neural network model that operates
on the consumers’ blinded fine-grained reports and can
efficiently detect electricity thefts. Furthermore, the masks
are designed in a way that allows the SO to obtain the total
consumption of an SM over a billing interval to compute
the bills following dynamic pricing.

The novelty and contributions of this paper can be
summarized as follows:

• We propose a privacy-preserving electricity theft
detection scheme. To the best of our knowledge,
this work is the first to investigate the energy theft
detection problem using privacy-preserving machine
learning model. Our model is evaluated using a set of
privacy-preserving protocols and can detect electricity
theft effectively.

• Our simulation results show that PPETD can pre-
serve consumers’ privacy with acceptable communica-
tion and computation overhead and a very slight loss
in performance, compared with the existing machine-
learning-based electricity theft detection schemes that
do not consider privacy preservation [1].

• In addition to theft detection with privacy preser-
vation, PPETD also allows the SO to perform load
monitoring and bill computation following dynamic
pricing. In addition, unlike existing schemes [29], our
solution does not need an online trusted entity for
electricity theft detection. In practice, there is not any
guarantee that such an entity would not misbehave
and misuse the consumers’ data.

The remainder of this paper is organized as follows. The
considered system models and design goals are presented
in section II. Preliminaries are given in section III. The
proposed electricity theft detection scheme is explained
in section IV. The security analysis and communica-
tion/computation overhead are given in section V and
section VI, respectively. The related works are discussed
in section VII. Conclusions are drawn in section VIII.

II. System Models and Design Objectives

This section discusses the considered network and threat
models and the design objectives of our scheme.

A. Network Model

As shown in Figure 1, the considered network model
has the following entities: the system operator and a set
of SMs forming the AMI network. The role of each entity
is described below.

• The system operator (SO): The consumers of an AMI
network should periodically report their fine-grained
power consumption data to the SO that should use
these data for energy management and load moni-
toring. In addition, the SO runs the neural network
model for electricity theft detection and computes the
electricity bills following dynamic pricing.

• Smart meters (SMs): We consider a set of SMs
SM = {SMi, 1 ≤ i ≤ |SM|}. SMs are installed at the
consumers’ premises and should periodically report
to the SO masked readings for the fine-grained power
consumption.

B. Threat Model

The SOs are honest-but-curious, which means they
follow the proposed scheme honestly but they want to
learn the fine-grained power consumption of the con-
sumers. Some of the consumers are malicious and they
may report false (low) power consumption to the SO to
reduce their bills. Some consumers are also curious to know
the fine-grained power consumption of other consumers.
In addition, a set of external adversaries A eavesdrop
all the communications between consumers and the SO
to obtain the consumers’ fine-grained readings to learn
sensitive information about their activities. Moreover,
adversaries can work individually or collude together to
launch stronger attacks.

To conclude, PPETD mainly focuses on the detection
of malicious consumers that report false (low) power
consumption readings to steal electricity. In addition, we
aim to preserve the privacy of the consumers’ fine-grained
power consumption data, i.e., no entity should be able to
access these data. Other attacks are beyond the scope of
this paper.

C. Functionality Requirements and Design Objectives

We aim to achieve the following functionality and
security requirements in our scheme:

1) Functionality Requirements:

(F1) At the end of each reporting period, PPETD
should allow each SO to obtain the total ag-
gregated electricity consumption of each AMI
network for the purpose of energy management
and load monitoring.

(F2) PPETD should allow the SO to efficiently com-
pute the electricity bill for each customer following
dynamic pricing.

(F3) At the end of each electricity theft detection
interval, PPETD should allow the SO to detect
the malicious consumers effectively.

2) Security Requirements:

(S1) Consumers’ privacy preservation: At any report-
ing period, no entity should be able to access
the fine-grained power consumption data of any
consumer.

(S2) Aggregated power confidentiality: At any report-
ing period, no entity except the SO should be able
to access the aggregated power consumption data.

(S3) Electricity theft detection: At the end of each
electricity theft interval, the SO and the SMs
should be able to run a secure machine learning
model that can detect the malicious consumers
using the masked fine-grained power consumption
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readings reported by the consumers. The scheme
should be secure against any misbehavior from
the malicious consumers that aim to steal energy
without being detected.

III. Preliminaries

In this section, we present the protocols, techniques,
and notations that we will use in the coming sections.

A. Additive Secret Sharing

Secret sharing is a famous cryptographic technique first
proposed by A. Shamir in [32]. The idea is that, in order to
protect a secret data (i.e., key), the data can be distributed
among a group of parties. To illustrate, a secret x can be
split into random-looking pieces {x1 . . . xn} called shares.
The shares are then distributed to the involved parties,
where each party should get a single share. The secret
x can be reconstructed by combining a sufficient subset
of the shares, however, a smaller subset of the shares
do not reveal any information about x. Shared values
will be denoted as JxK. Secret sharing is the basis of
many secure multiparty computation protocols that rely
on secure arithmetic circuit evaluation [34].

B. SPDZ Protocol

SPDZ [36] (or speedz) is a secure multi-party compu-
tation (SMC) protocol where a number of parties collab-
oratively perform certain computation(s) of a function on
their private data without revealing this data to other
parties. All parties are intended to know the function
output. SPDZ protocol uses arithmetic circuits to evaluate
the computations, thus it is highly efficient. To evaluate an
arithmetic circuit privately on secret inputs, participants
have to secretly share the inputs. In particular, a private
input value x is split into N pieces xi, where

∑N

i=0 xi = x,
for N -parties computation. When a computation is per-
formed on secret shared values, each participant should
perform a local computation on its shares of the secret
values.

The notation of shared computation is as follows. When
the desired computation is given by x+y = z, the values of
x and y are shared to create secret-shared values JxK and
JyK. The required mutli-party secret computation should
be represented as: JxK + JyK = JzK. Each participant i

should perform operations on xi and yi to obtain zi. To
obtain the value of z from JzK, each participant should
broadcast its shares zi to other participants, where the
summation of the shares gives the value of z.

In SPDZ, addition and multiplication operations are the
two main operations considered by the protocol. Addition
is performed by simply adding the shares locally, i.e., the
shared computation JxK + JyK = JzK is achieved by local
computation of xi + yi = zi. Multiplication operation
is more difficult to compute (i.e., cannot be computed
locally). To get JxK × JyK = JzK, a triple (a, b, c) should
be constructed so that a× b = c. This triple is secret and

can be shared offline before the circuit is evaluated such
that every participant can compute a masked version of its
shares αi = (xi − ai) and βi = (yi − bi). Subsequently, all
individuals broadcast their masked shares αi and βi. Both
α and β can be reconstructed from the shares αi and βi,
and can be made publicly available to every party. Then,
a share zi can be computed by:

zi = ci + αbi + βai

= ci + (x− a)bi + (y − b)ai.

Moreover, a random party adds on the public value (x−
a)(y − b) = αβ to its share of zi so that by summing the
local computations zi, eventually determines the required
multiplication z.

A Message Authentication Code (MAC) is used by
SPDZ protocol [43] to protect the data from active
adversaries during computations. Before starting the com-
putations, the MAC key △ is secret shared among the
parties such that no party knows it. The MAC keys are
used in generating a MAC value for all the secret shared
values involved in the protocol. Note that, MAC values
are also secret shared among the parties. Then, after the
circuit evaluation, the parties open the output values of the
protocol and the corresponding MACs, and check whether
the MACs are correct or not.

C. Garbled Circuits

Garbled circuit [?] is a secure multi-party computation
protocol that enables two parties to compute any func-
tion f(.) on their private inputs. However, unlike SPDZ
protocol, garbled circuits protocols represent f(.) using
binary gates. Therefore, garbled circuits are more general
compared with the SPDZ protocol but they need more
computations. In garbled circuits, one of the two parties is
called generator and the other is called evaluator. The gen-
erator generates an encrypted (garbled) version of f(.) and
an encrypted version of the inputs of the circuit, and sends
them to the evaluator. To evaluate the encrypted circuit,
the evaluator needs to get also its encrypted inputs from
the generator without revealing any information about
these inputs. Therefore, an oblivious transfer protocol is
used to transfer the evaluator’s encrypted inputs from the
generator to the evaluator. After getting all the required
inputs to evaluate f(.), the evaluator evaluates the garbled
circuit securely to obtain the required result.

D. Convolutional neural networks (CNNs)

CNNs are widely used in solving many challenging ma-
chine learning problems such as computer vision applica-
tions, natural language processing, and speech processing
[40]. This wide adoption of CNNs is due to their capability
of capturing complex patterns in the inputs.
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Fig. 2: Typical architecture of convolutional neural network (CNN).

1) Architecture of CNN: As shown in Figure 2, a typical
architecture of convolutional neural network consists of
the input layer, convolutional layer(s), pooling layer(s),
fully connected layer, and Softmax output layer. The
convolutional layers are composed of a number of learnable
filters that are intended to extract features from the input.
Learnable filters are usually small in size, and thus, they
can interpret input data with strong local connectivity
and dependency patterns. Convolving one filter with
a channel from the input results in a two-dimensional
feature map of that filter. After the convolutional step,
a nonlinear activation function such as Rectified Linear
Unit (ReLU), Sigmoid, or Tanh is used to enable the
neural network model to make more complex decisions and
solve difficult tasks. Sigmoid is commonly used with deep
neural networks and if initialized properly, deep sigmoidal
networks can outperform networks with other activation
type [41].

The pooling layer is used to compress the output of
the convolutional layer by sub-sampling the feature maps
while retaining the most important information. After
successive convolutional and pooling layers, the fully-
connected layer is used where the features extracted can
be used for inference. Softmax function is used as output
layer for multi-class classification problems. Softmax out-
puts a probability vector for the input to be assigned
a certain class label. Specifically, for an input vector
z = (z1, . . . , zK) ∈ R

K of length K and M classes, the
Softmax function is defined as follows:

σ(z)i =
ezi

∑K

j=1 e
zj

for i = {1, . . . ,M}.

2) CNN Training: The CNN training involves learning
the weight and the bias parameters Θ by defining a cost
function and selecting an optimizer. For the cost function,
categorical cross-entropy C is defined to measure the loss
due to the difference of two distribution y and ŷ as follows:

C(y, ŷ) = min
Θ

(−

M
∑

c=1

y(c) log (ŷ(c))).

During training, an optimization method such as Stochas-
tic Gradient Descent (SGD) [42] is used iteratively for
optimizing the cost function. The optimization process in-
volves a back-propagation step in which the CNN weights

are updated using the gradients of the cost function
with respect to the neural network’s weights. Supervised
labeled data is used to train the neural network. In
addition, hyper-parameters of the neural network such
as the number of neurons in each layer, the number of
layers, type of optimizer, etc., can be determined using
k-fold cross validation or any other validation method [?].

IV. Proposed Scheme

In this section, we give the details of PPETD starting
with system setup. Then, we discuss how SMs report their
power consumption readings, and how the SO verifies the
reports and computes the aggregated reading for load
monitoring. Finally, we explain how the electricity bills
are computed using dynamic pricing, and how the SO can
use the SMs’ reports to run a privacy-preserving machine
learning protocol with each SM to detect electricity thefts.
For better readability, we define the main notations used
in this section in Table I. We use the standard lowercase
bold notation for vectors and uppercase bold notation for
matrices. Note that, unless otherwise stated, all arithmetic
operations are in Z

∗
q .

A. System Initialization

System initialization, carried out by a key distribution
center (KDC), consists of the following phases: (1) Public
system parameters; (2) Identity-based public/private key
pairs; and (3) SMs’ seed secret keys and SPDZ initializa-
tion.

1) Public system parameters: To generate the public
parameters, the KDC should:

1) generate the bilinear pairing parameters {G1,G2, ê,

P, q}, where G1 is an additive cyclic group, G2 is a
multiplicative cyclic group of the same prime order
q, and P is a generator of G1.

2) choose a random number s ∈ Z
∗
q and compute sP ∈

G1,
3) choose two secure hash functions H1 and H2 defined

as H1 : {0, 1}∗ → G1 and H2 : {0, 1}∗ × G1 → Z
∗
q ,

and
4) choose a keyed hash function H(K,m) → Z

∗
q where K

is the key used to compute a keyed-hash on a message
m.
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TABLE I: Main notations.

Notation Description

J.K A secret shared value

ri(t) Consumption report of SMi at period t

ri
Consumption report vector of SMi over, T
where ri = [ri(1) . . . ri(|T|)]T

hi(t) Hidden/masked reading of SMi at period t

hi
Hidden/masked consumption report vector of SMi

over T, where hi = [hi(1) . . . hi(|T|)]T
SMi i-th smart meter

IDi Identity of SMi

T
Set of reporting periods used for theft detection
T = {t : 1 ≤ t ≤ |T|}

H(K,m) → Z∗
q Keyed hash function

mi(t) Mask of SMi at period t

mi
Mask vector of SMi over T

mi = [mi(1) . . .mi(|T|)]T
n Number of electricity theft detection intervals

l Number of off/on/mid-peak reports

q,G1,G2, ê, P, Public parameters for the ID-based scheme
Q,H1, H2

σi(t) Signature on the reading of SMi at period t

SM Set of smart meters SM = {SMi, 1 ≤ i ≤ |SM|}

Then, s is kept as a master secret and the public
system parameters param = {G1,G2, ê, P, sP,H1, H2,H}
are published.

2) Identity-based public/private key pairs: Each smart
meter SMi with an identity IDi receives from the KDC
a private key Xi = sQi where Qi = H1(IDi) is the
corresponding public key. Similarly, the SO receives from
the KDC its private/public key pairs as Xso = sQso

and Qso = H1(IDso). Since Identity-based (ID-based)
cryptography is used, the SMs and the SO do not need
to obtain digital certificates from the KDC to certify the
public keys.

3) Smart meters’ seed secret keys and SPDZ initializa-
tion: A seed secret key Ki,j is computed for each pair of
SMs in the AMI network in an efficient non-interactive
way using ID-based cryptography [31]. In particular, a
smart meter SMi with private/public key pairs Xi = sQi

and Qi = H1(IDi) can use its private key along with the
public key Qj of another smart meter SMj to compute a
key Ki,j = ê(Xi, Qj) = ê(sQi, Qj) = ê(Qi, Qj)

s. Similarly,
SMj uses its private key Xj along with SMi’s public
key Qi to compute the same key as Ki,j = ê(Qi, Xj) =
ê(Qi, sQj) = ê(Qi, Qj)

s. This seed key is used by SMi to
compute secret masks for blinding its fine-grained readings
(to preserve privacy). The masks are computed in such
a way that after the SO aggregates all masked readings
received from all SMs in the AMI network, all masks
cancel each other and the aggregated power consumption
is obtained [11], [35]. By performing the above steps, the
SO can learn the total consumption for load monitoring
without accessing the fine-grained power consumption
readings of the consumers to preserve privacy.

By construction, any masked reading is secret shared

between the SO and the SM, and hence, can be used in
the computations of the SPDZ protocol. Thus, masks are
used to preserve privacy and run multi-party computations
on the fine-grained readings, as will be explained in
subsection IV-E. Note that, the multiplication triplets
required by the SPDZ protocol are independent of the
computations of the online phase and can be made avail-
able offline using existing secure cryptographic protocols
such as [43]. Thus, throughout this paper, we assume that
the multiplication triplets are available for the SMs and
the SO, and our main focus is on the online theft detection
procedure. In addition, a MAC secret key △i,so = △i+△so

is secret shared between every SMi and the SO for every
circuit evaluation such that △i and △so are the SM and
SO shares, respectively. Note that, every SM and the SO
can randomly sample their MAC keys from Z

∗
q .

B. Reporting fine-grained power consumption readings

For each reporting period t ∈ T, each SMi ∈ SM should
generate a power consumption report by executing the
following steps:

• Step 1: SMi generates a mask mi(t) using the seed
secret key Ki,j shared with every other SM as follows:

mi(t) =
∑

j<i
1≤j≤|SM|

H(Ki,j , t)−
∑

j>i
1≤j≤|SM|

H(Ki,j , t).

It should be noted that the mask can be computed
offline, i.e, before the reporting period starts.

• Step 2: SMi masks its reading ri(t) using the mask
mi(t) to get a masked reading hi(t),

hi(t) = ri(t)−mi(t).

• Step 3: SMi uses its private key Xi to compute an ID-
based signature on hi(t) [30]. It first selects a random
element r ∈ Z

∗
q and computes T = rQi. Then, SMi

computes ei = H2(hi(t), T ) and S = (r + ei)Xi. The
signature components are (T, S),

σi(t) = (T, S).

• Step 4: SMi sends to the SO the following encrypted
report:

Enc(hi(t)||IDi||t)||σi(t).

It also runs an input authentication protocol [43]
with the MAC keys △i and △so to share a MAC
on ri(t). Hence, the SO and the SM share a MAC on
the reading ri(t). It should be noted that, Jri(t)K is
shared between the SO and the SM and the shares
are hi(t) and mi(t). This input authentication step is
necessary so that when Jri(t)K is used as input in any
computation, the integrity of the output is ensured.

Beside the aforementioned steps, the SM should store
the masks used over an electricity theft detection interval
T = {t : 1 ≤ t ≤ |T|} in a vector mi defined as follows:

mi = [mi(1) . . .mi(|T|)]
T .

The mi vector is needed to evaluate the theft detection
model, as will be explained in subsection IV-E.
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C. Aggregating fine-grained power consumption data

After collecting all the SMs’ reports, the SO should
verify the received signatures and aggregate all the masked
messages. These are done by performing the following
steps:

• Step 1: For a report received from SMi, the SO
computes ei = H2(hi(t), T ) for 1 ≤ i ≤ |SM|.

• Step 2: The SO first decrypts the received reports
and then it verifies the received signatures to ensure
the reports’ integrity and authenticity by checking

ê(P, S)
?
= ê(sP, T + eiQi). The proof of this equation

is as follows:

ê(P, S) = ê(P, (r + ei)Xi)

= ê(P, (r + ei)sQi)

= ê(sP, (r + ei)Qi)

= ê(sP, T + eiQi).

• Step 3: The SO computes the aggregated reading
(rso(t)) as

rso(t) =

|SM|
∑

i=1

hi(t) =

|SM|
∑

i=1

ri(t) +mi(t)

=

|SM|
∑

i=1

ri(t).

By performing these steps, PPETD can achieve the
functional requirement (F1) of reporting aggregated power
consumption reading for load monitoring by the SO.

Beside the aforementioned steps, the SO should store
the reports of SMi over an electricity theft detection
interval T = {t : 1 ≤ t ≤ |T|} in vector hi defined as
follows:

hi = [hi(1) . . . hi(|T|)]
T .

The hi vector is needed to evaluate the theft detection
model and it is considered as the SO share of ri while the
SM share is mi. Moreover, at the end of each electricity
theft detection interval, the SO should also secretly share
the weights/biases of the neural network model by gen-
erating a set of random matrices corresponding to each
weight/bias matrix, and then it should mask each matrix
with one random matrix and share the result with the SM.
Subsequently, the SM and the SO could proceed with the
secure evaluation of the theft detection model as will be
explained in subsection IV-E.

D. Dynamic Billing

As shown in Figure 3, the billing cycle is divided into n

electricity theft detection intervals (e.g., days), denoted as
{Ti : 1 ≤ i ≤ n}. Each electricity theft detection interval
is divided into three periods each has l fine-grained power
consumption reporting slots. The periods are named on-
peak (e.g., high demand day hours), off-peak (e.g., night
hours), and mid-peak (e.g., other hours). The electricity
has different prices in these periods. The SO can compute
bills at the end of each billing interval as follows.

1) Smart meter: From Figure 3, each SMi should
report 3ln power consumption reports during each billing
interval. At the electricity theft detection interval Tn, SMi

should follow the same steps of the fine-grained power
consumption reporting discussed in subsection IV-B, but
SMi should use masks such that the summation of the
masks used in the off-peak period Tn should equal to the
negative summation of all the masks used in the n − 1
off-peak periods. The same requirement is applied to the
masks of the on-peak and the mid-peak periods. Thus,
the three requirements for the masks of interval Tn can
be formulated as follows:

Off-peak-masks at (Tn) = −
∑

1≤k≤l

mi(t
n
k )

= −
∑

1≤k≤l
1≤m≤n−1

∑

j<i
1≤j≤|SM|

H(Ki,j , tmk )

+
∑

j>i
1≤j≤|SM|

H(Ki,j , tmk )),

On-peak-masks at (Tn) = −
∑

l+1≤k≤2l

mi(t
n
k )

= −
∑

l+1≤k≤2l
1≤m≤n−1

∑

j<i
1≤j≤|SM|

H(Ki,j , tmk )

+
∑

j>i
1≤j≤|SM|

H(Ki,j , tmk )),

Mid-peak-masks (Tn) = −
∑

2l+1≤k≤3l

mi(t
n
k )

= −
∑

2l+1≤k≤3l
1≤m≤n−1

∑

j<i
1≤j≤|SM|

H(Ki,j , tmk )

+
∑

j>i
1≤j≤|SM|

H(Ki,j , tmk )).

2) System Operator: During the billing interval, the
SO stores all the masked readings received from SMi, i.e.,
hi(t

m
k ) where 1 ≤ k ≤ 3l and 1 ≤ m ≤ n − 1. Then, at

the last interval Tn, the SO receives masked readings for
off-peak, on-peak, and mid-peak periods. By aggregating
the masked readings of SMi for each period at the end of
the billing interval, the masks cancel each other and the
total consumption can be obtained for each period, and
then it can be multiplied by the time-use price to compute
the bill.

By doing the above two steps, PPETD can achieve
the functionality requirement (F2) of computing the con-
sumers’ bills following dynamic prices.

E. Privacy-Preserving Electricity Theft Detection

In this sub-section, we discuss how SO can detect
electricity theft detection without violating the consumers’
privacy, i.e., without learning the fine-grained power
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Fig. 3: Billing and electricity theft detection intervals.

consumption readings. Two building blocks are used by
our scheme: secure addition/multiplication and evaluation
of the non-linear activation function sigmoid(.). In this
subsection, we first discuss the two building blocks and
then discuss the construction used to detect electricity
theft. Note that, unless otherwise stated, all arithmetic
operations on the secret shares are in Z

∗
q .

1) Secure Addition and Multiplication: The main op-
eration needed by a neural network’s feed-forward layers
can be expressed by z = Wx + b where W is the weight
matrix, x is the previous layer input, and b is the bias.
Therefore, only additions and multiplications are needed
to evaluate feed-forward layers. Inherently, SPDZ protocol
offers secure addition and multiplication operations on the
shared secret values. However, original SPDZ protocol
was designed to work on single values, i.e., it was not
designed for matrices. Inspired by recent works [44], [45],
we use matrices’ triplets to generalize the SPDZ protocol
to operate on matrices rather than single values. The
computation of the feed-forward layer secret shares of
Wx + b is given in Protocol 1. The triplets’ matrices are
defined as c = Ay, where A has the same dimension as
W and y has the same dimension as x. In the protocol,
each participant first computes JUK = JWK − JAK and
JvK = JxK−JyK. Then, in step 2, participants jointly reveal
U and v. After that, the participants compute locally their
shares z in steps 3 to 5. Note that, the new MAC values
can be calculated using similar steps to Protocol 1 [43].
Subsequently, participants need to evaluate non-linear
activation sigmoid(z) and share the result again securely
between the participating parties.

2) Secure Sigmoid Evaluation: In neural networks,
nonlinear activation functions are needed by feed-forward
layers to support complex decisions [41]. We consider
the support of a secure evaluation of non-linear activa-
tion function such as sigmoid(.) in our solution. The
secure evaluation of sigmoid(.) can either be achieved
using SPDZ protocol with polynomial approximation [46]
or garbled circuits [44]. However, since SPDZ protocol
can only support secure addition and multiplication,
polynomial approximation usually needs a high degree
polynomial to efficiently generate low error sigmoid(.)

Protocol 1 Secure evaluation of feed-forward layers output.

Input: JWK, JxK, JbK, JAK, JyK, JcK
Output: JWx + bK

1: SMi and SO computes JUK = JWK − JAK and JvK =
JxK − JyK.

2: SMi and SO reveal U and v.
3: SMi computes JWxKSMi

= UJyKSMi
+ JAKSMi

v +
JcKSMi

4: SO computes JWxKSO = Uv + UJyKSO + JAKSOv +
JcKSO

5: SMi and SO computes JzK = JWx + bK = JWxK + JbK

Protocol 2 Secure evaluation of sigmoid activation.

Input: JzK and a random r from SO
Output: Jsigmoid∗(z)K

1: Reconstruct z form its shares.
2: Compute SMi share as Jsigmoid∗(z)KSMi

=
compare(z1, z)·(0−(a1z+b1))+compare(z2, z)·((a1z+
b1)(a2z + b2)) + · · · + compare(zm−1, z) · ((am−1z +
bm−1)1) + 1− r

3: Compute SO share as Jsigmoid∗(z)KSO = r

approximation, which may not be practical and may incur
high computation and communication cost [44].

Instead of using polynomial approximation, we resort
to piece-wise continuous linear approximation, i.e., splines
[47] and garbled circuits. We followed the same method
presented in [44] for sigmoid approximation and secure
two-party evaluation. In particular, a smooth function f(.)
can be splitted into several intervals, in each, a straight
line is used to approximate the interval. The approximated
version of sigmoid(.) can be defined as follows:

sigmoid∗(z) =































0 if z < z1

a1z + b1 if z1 ≤ z < z2

. . .

am−1z + bm−1 if zm−1 ≤ z < zm

1 otherwise.
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Fig. 4: sigmoid(.) function and its approximation using
25 spline points.

The slopes a(.), the intercepts b(.), and the values z(.) are
chosen in such a way that the overall fitness is maximized.
Figure 4 illustrates the approximation of the sigmoid(.)
function using only 25 splines1. Protocol 2 gives the secure
evaluation of sigmoid∗(z) using garbled circuits. In step
1, the input z is reconstructed from its shares. Then, in
step 2, the sigmoid∗(z)− r is computed. Hence, the share
of SMi is sigmoid∗(z) − r and the share of the SO is
r as in step 3. The compare(., .) function, in step 2, is
needed to determine which interval the input lies in and
it outputs either zero or one. This function cannot be
evaluated directly using SPDZ. Thus, garbled circuits are
used for the evaluation of the sigmoid∗(z).

From Figure 4 and Protocol 2, we note that the piece-
wise linear approximation method has small approxima-
tion error and it can be efficiently computed using garbled
circuits two-party protocol. Note that, the new MAC value
after the sigmoid evaluation can also be computed using
garbled circuit by securely reconstructing the shared MAC
key and calculating the new MAC value, and then sharing
the result between the participants.

3) Our CNN Model Construction: In this subsection,
we present the detailed construction of privacy-preserving
CNN-based electricity theft detection. As shown in Fig-
ure 5, we use 1D CNN network that includes a convolu-
tional layer, an average pooling layer, a fully connected
layer, and a softmax output layer. The layers are described
as follows.

• For input layer, 1D convolution is used where the
shape of the input data is equal to the length of the
electricity theft detection interval T. The purpose of
this layer is to capture the temporal correlation in
the input sequence using a number of convolutional
filters. The number of filters were determined from
a pre-defined set using k-fold cross validation. Since
convolution is merely a set of multiplications and

1Python libraries scipy.interpolate.UnivariateSpline and
numpy.polyfit are used to generate this approximation

1D	Convolution

Average	Pooling

Flatten

Softmax
Classifier

Fig. 5: 1D convolutional network model used.

additions, thus convolution layer can be evaluated
securely using SPDZ protocol (i.e., Protocol 1).

• An average pooling layer is used to combine the
features extracted from the previous layer. The reason
for selecting average pooling is that it is friendly
with the SPDZ protocol (only additions and mul-
tiplications, unlike max or min pooling) and can be
computed using SPDZ protocol (i.e., Protocol 1).

• One fully connected hidden layer is used to extract
more features and enable our model to make complex
decisions while the loss in the performance due to
the sigmoid approximation is minimized. Protocol 2
is used for the secure evaluation of this layer.

• Softmax output layer is used to classify the tar-
get (i.e., electricity theft). Since we only have two
categories, electricity theft or not, the final output
is of shape of two. Our scheme does not compute
the softmax using secure two-party computation.
However, we assume the input to the softmax layer
once computed can be revealed and verified, and then
the SO can compute each class probability.

The CNN model is evaluated securely by the SO and
SMi at the end of each electricity theft detection interval
and the final MACs are used to verify the result. Therefore,
PPETD can achieve the functionality requirement (F3) of
privacy-preserving electricity theft detection.

Note that, despite the fact that recurrent neural net-
works (RNNs) can also be used to detect temporal
correlations in the input sequence, secure RNNs evaluation
can give low performance compared to secure CNNs due
to the accumulated approximation error of the composite
non-linear activation functions used by RNNs.

V. Security/Privacy Analysis

In this section, we discuss how our schemes can achieve
the privacy-preservation requirements mentioned in Sec-
tion II-C2.

A. Electricity theft Detection

In order to evaluate PPETD, we conduct the training
on the high-performance cluster (HPC) of the Tennessee
Tech University using two NVIDIA Tesla K80 GPUs. The
privacy-preserving inference is conducted on two servers
having Intel Core i7-4765T 2.00 GHz and 8 GB RAM
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TABLE II: Electricity Theft Cyber Attacks

Cyber attacks in Jokar et al. 2016 [1] Attack Type

f1(ri(t
d
j )) = αri(t

d
j ) Partial Reduction

f2(ri(t
d
j )) = β(d, tj)ri(t

d
j ) Partial Reduction

f3(ri(t
d
j )) =

{

0 ∀t ∈ [ts(d), tf(d)]

ri(t
d
j ) ∀t /∈ [ts(d), tf(d)]

By-pass

f4(ri(t
d
j )) = E[ri(t

d)] Partial Reduction

f5(ri(t
d
j )) = β(d, tj)E[ri(t

d)] By-pass/Partial Reduction

f6(ri(t
d
j )) = ri(t

d
|T|−j+1

) Price-based Load Control

connected on local LAN. To train our model, we used
Python 3 libraries such as Pandas, Numpy, Tensorflow [48]
and Keras [49]. For SPDZ protocol, we used Tensorflow-
encrypted [50] which is a Python framework for privacy-
preserving machine learning models. For garbled circuits,
we used OblivC [?] which is a framework for Yao’s garbled
circuits. It is a compiler for secure two-party computation
protocols, which incorporates most recent optimization
techniques.

1) Experimental Data: Dataset: Real smart meter data
from the Irish Smart Energy Trials [51] is used in our
experiments. The dataset was published by the Electric
Ireland and Sustainable Energy Authority of Ireland in
January 2012. We used the energy consumption readings
for |SM| = 200 smart meters over 536 days between 2009−
2010. We define a set of days D = {1, . . . , |D|}, where a
set Td of electricity consumption readings are reported in
each day d. In the dataset, the consumers report their
readings every 30 minutes. Since we consider that each
electricity theft interval is one day, the CNN input size
|Td| is 48. The total number of readings per consumer in
the dataset is 25, 728. The total number of a SM’s honest
days of the 200 consumers is 107, 200 days.

Electricity Theft Attacks: It might not be easy to collect
false readings sent by malicious SMs (electricity thieves)
because the consumer reports may all be honest or it has
not been detected previously as a malicious consumer.

To tackle this problem, a set of electricity theft attacks
are defined in [1]. These attacks are used to create
malicious dataset. Table II summarizes the attacks. Three
types of attacks are considered: partial reduction, by-pass
filters, and price-based load control. We denote ri(t

d
j ) as

the jth electricity report of smart meter SMi at day d.
Each function f(·) creates a different attack scenario that
aims to reduce the consumers’ energy consumption report
ri(t

d
j ). The first attack f1(·) aims to reduce ri(t

d
j ) by some

fraction, where α denotes a flat reduction ratio. On the
other hand, attack f2(·) dynamically reduces ri(t

d
j ) by a

value controlled by the time function β(d, tj). The third
attack f3(·) represents a selective time filtering function,
where the malicious consumer reports zero readings during
the interval [ti(d), tf(d)], otherwise, the consumer reports
the actual consumption ri(t

d
j ). Here, ti(d) and tf(d) denote

the initial and the final periods of the electricity theft
interval, respectively. The next two attacks f4(·) and f5(·)
are based on the expected value of the energy consumption
of the malicious consumer for a given day, denoted by
E[ri(t

d)]. In f4(·), the attacker reports a flat value during

the day, while in f5(·), the attacker reduces E[ri(t
d)]

dynamically from time to time using function β(d, tj).
The last attack f6(·) is a reverse function that reorders
the energy consumption readings during the day so that
higher readings are reported during low tariff periods to
reduce the electricity bill.

Data Pre-processing: To process the dataset, we first
choose the parameters of the electricity theft attacks’ func-
tions. For functions f1(·), f2(·), and f5(·), α and β(d, tj)
are random variables that are uniformly distributed over
the interval [0.1, 0.6] [1]. For attack f3(·), ts(d) is a uniform
random variable in [0, 42], and the duration of the attack,
i.e., tf(d) − ts(d), is a uniform random variable in [8, 48],
and hence, the maximum value of tf (d) = 48. Applying the
electricity theft attack’s functions on each SM’s readings
results in X̂SMi

dataset which contains 536 honest samples
(days) and 3, 216 malicious samples. Each sample in X̂SMi

has 48 energy consumption values. For each X̂SMi
dataset,

adaptive synthetic sampling approach (ADASYN) [52] is
performed to balance the size of honest and malicious
classes. Consequently, the total size of each X̂SMi

dataset
is 6, 432 honest and malicious samples. The total number
of samples for all SMi ∈ SM is 1.2 million. Each X̂SMi

dataset is partitioned into training set X̂SMi,tr and testing
set X̂SMi,tst with ratio 5:4. The training sets for all SMs
are merged together to form X̂tr. Similarly, the test sets
for all SMs are merged together to form X̂tst. Feature
scaling on training data produces Xtr and applying the
same scores on the test data produces Xtst.

Performance Metrics: Three metrics are used to evaluate
the performance of the detector defined as as follows.
The detection rate (DR) measures the percentage of
the correctly detected malicious consumers. The false
acceptance (FA) rate measures the percentage of the
honest samples that are falsely identified as malicious. The
highest difference (HD) measures the difference between
DR and FA [1].

DR =
TP

TP + FP
, FA =

FP

TN + FP
, HD = DR− FA

where, TP , FP and TN stands for true positive, false
positive and true negative, respectively.

2) Results and Discussion: To select the hyper-
parmaters of our CNN model, we used 3-fold cross vali-
dation on Xtr to tune the number of CNN filters and the
number of neurons in the hidden layer. Then, the three top
performance models are chosen to be evaluated on Xtst.
Note that, since we focus on the privacy of the online theft
detection phase, we assume the model is either trained
on an anonymized dataset or the training is done using
privacy-preservation method such as differential privacy
[?].

Finally, our baseline is the plaintext CNN model (with-
out privacy preservation) and we compare it to our
privacy-preserving model. We denote the top selected
models as MD1 with "128 CNN filters, 1 stride size, 6
units filter size, and 2,048 hidden units"; MD2 with "256
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(b) ROC for MD2
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(c) ROC for MD3

Fig. 6: ROC curves of MD1, MD2 and MD3, for the plaintext model and our privcay-presreving model.

TABLE III: The results of CNN models.

Model Method DR(%) FA(%) HD(%) Accuracy(%)
Plaintext 93.6 8.00 85.6 93.2

MD1
Our model 91.5 7.40 84.1 91.8
Plaintext 92.9 8.80 84.0 92.4

MD2
Our model 90.0 8.79 81.2 90.2
Plaintext 91.5 4.80 86.7 92.4

MD3
Our model 88.6 3.90 84.6 90.3

Jokar et al. 2016 [1] Plaintext 94.0 11.0 83.0 –

CNN filters, 1 stride size, 5 units filter size, 1,536 hidden
units"; and MD3 with "64 CNN filters, 1 stride size, 5
units filter size, 1,536 hidden units". Adam optimizer is
used to train all models.

Table III gives the evaluation results obtained by each
of the three models with and without privacy preservation.
In addition, Figure 6 shows the Receiver Operating Char-
acteristics (ROC) curves for the three models with and
without privacy preservation. The given results indicate
that the overall performance of our privacy-preserving
model is comparable to the that of the plaintext model.
In addition, our proposed detector is a general model that
does not rely on a specific consumer’s data. Hence, it is
more robust against contamination attacks comparing to
the proposed detector in [1].

Given that the cryptographic techniques used for the se-
cure evaluation of the electricity theft detector, such as ad-
ditive secret sharing [32], SPDZ protocol [43], and garbled
circuits [?], are secure, the security of our scheme can be
proved as follows. Firstly, before the secure evaluation of
the electricity theft detector, the SM and the SO share the
fine-grained readings and the weights of the CNN model.
The security of additive secret sharing ensures that no
entity can know the input of the other party. Subsequently,
during the evaluation of CNN model, the consumer and SO
use their secret shares locally for the secure addition and
need communications for the secure multiplication and
the evaluation of the non-linear activation functions. The
MACs used during model evaluation ensure the integrity of
the computations against the modifications of the active
adversaries [43], and thus ensure the correctness of the
final result. Therefore, PPETD can satisfy the security

requirement of privacy-preserving theft detection (S3).

B. Resistance to Attacks

Our schemes can achieve the following desirable secu-
rity/privacy requirements.

• Consumers’ privacy preservation: The fine-grained
power consumption readings of consumers are masked
and no entity, including the SO, can access the
readings to preserve consumers privacy. Note that we
assume each SM shares a secret mask with each of
all the SMs in the AMI network and the number of
colluding SMs is always less than the total number
of added masks. Only masked readings are reported
by the SMs and they cannot reveal any information
in the readings. Therefore, to get ri(t), an adversary
has to collude with all other SMs in network to reveal
ri(t) which is infeasible if the number of SMs is
large enough [11]. Thus, PPETD satisfies the security
requirement of privacy presrevation (S1).

• Aggregated power confidentiality: After receiving the
masked fine-grained power consumption reports of the
SMs, the SO can aggregate the reports to obtain
the total power consumption for load monitoring.
Since the reports sent from the SMs to the SO are
encrypted, an external adversary cannot get any infor-
mation about the total consumption. Thus, PPETD
satisfies the security requirement of the aggregated
power confidentiality (S2).

• Resistance to replay attacks: The time stamp used
with each report from the SM to the SO prevents
any adversary from intercepting and re-transmitting
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TABLE IV: Computation cost of the used secure opera-
tions.

Secure Operation Addition Multiplication Sigmoid
Time 0.081 µs 0.643 µs 1.34 s

SMs’ reports claiming that they are fresh to disrupt
the operation of our scheme.

• Resistance to impersonation attacks: The ID-based
signature sent with each report from the SMs to the
SO prevents any adversary from impersonating an
SM in the AMI network.

VI. Computation and Communication Overhead

To measure the cryptography operations used by our
scheme, we used Python charm cryptographic library [53]
running on Raspberry Pi 3 device with 1.2 GHz Processor
and 1 GB RAM. Supersingular elliptic curve with the
asymmetric Type 3 pairing of size 160 bits (MNT159
curve) is used for pairing operations [?].

1) Computation Overhead: For fine-grained power con-
sumption reporting, each SM needs to compute a mask
to blind its reading ri(t) and compute a signature. Note
that, the signature generation and verification opera-
tions take 0.34ms and 6.27ms, respectively. Therefore,
the computation overhead on an SM to report a power
consumption reading is 0.35ms. On the other hand, the
computation overhead needed from the SO to verify each
SM’s reading is 6.27ms, while the overhead of aggregating
200 readings is 0.071 µs. These results are highly efficient
and comparable to the literature [11], [35].

For privacy-preserving CNN model evaluation, Table
IV measures the computation cost of each secure op-
eration needed by our scheme. The operations needed
include secure addition, secure multiplication, and secure
sigmoid∗(.) evaluation. It is shown that these operations
are efficient. The total time needed to evaluate 2048 hidden
units CNN model is around 48 minutes. This time is
dominated by the evaluation of the garbled circuit of the
hidden layer of the model. Moreover, this time is only
needed once every day (at the end of the day, i.e., at
the end of the electricity theft interval) for the purpose of
the privacy preserving theft detection, which is acceptable
cost for privacy.

2) Communication Overhead: For fine-grained power
consumption reporting, each SM sends a masked report,
signature, identity, and timestamp of total size of 56
bytes. For privacy-preserving CNN model evaluation, the
overhead of the communication between the SM and the
SO is only 256 bits for a single secure multiplication. The
addition operation is done locally and no communication
is needed. For the secure evaluation of sigmoid∗(.), the
overhead of the communication between the SM and the
SO is about 850 KB. It can be concluded that the the
overhead of sigmoid∗(.) is dominated by the garbled
circuit’s online execution. Overall, the communication
overhead in each electricity theft detection interval is

around 1900 MB, which is practically acceptable cost for
preserving the consumers’ privacy.

VII. Related Work

A. Privacy-preserving electricity theft detection

Several schemes have addressed security and privacy
issues in the literature [?], [?], [?], [?], [?], [?], [?], [?],
[?]. However, very few works in the literature have tried
to address privacy-preserving electricity theft detection
[21]–[23]. Nevertheless, these approaches consider weak
threat models that makes the privacy problem simple.
Salinas et. al. [21], [22] is the first work that tried to
study the privacy problem in electricity theft detection.
In the proposed schemes, three peer-to-peer distributed
algorithms have been proposed to solve a linear system
of equations (LSE) for SMs’ "honesty coefficients". Since
the scheme is distributed, it fails if the SMs manipulate
the messages submitted to other peers. In addition, the
power line losses are needed before the execution of the
scheme, which is not feasible in practice.

The proposed electricity theft detection algorithm in
[23] uses a peer-to-peer state estimation approach using
Kalman filter to detect irregularities in the readings
reported by the customers. In the proposed algorithm, the
SMs cooperate to privately estimate line segment currents
and voltages. Then, these estimations are used by the
SO to determine the malicious consumers. However, this
work substantially differs from ours in two aspects. First,
we use privacy-preserving machine learning to detect elec-
tricity theft, which usually outperforms state estimation
approaches [1]. Second, the proposed state estimation uses
a distributed algorithm between all SMs and assumes a
semi-honest threat model, and thus, the scheme fails if the
SMs manipulate the messages submitted to other peers.

In [29], a CNN model is used to detect electricity theft
in smart grid. The proposed approach assumes that SMs
should report their encrypted electricity consumption to
two system entities, namely server gateway and gateway.
The server gateway is assumed to be a fully trusted
entity that can decrypt the consumer’s fine-grained power
consumption to run the CNN model and report the elec-
tricity theft result to the gateway. On the other hand, the
gateway is responsible for aggregating the consumption of
the consumers in a certain residential area and reporting
the aggregated result to the utility for load management.
Likewise, a trusted entity is assumed in [24]. In practice, it
is impossible to guarantee that a party (that is assumed
trusted) does not misuse the data of the consumers. A
recent work that uses CNN model is presented in [12]. In
Table V, we compare PPETD to the relevant schemes in
the literature.

B. Privacy-preserving neural network inference

This paper also falls under secure neural network
inference. In this category, the weights of a trained model
is used for privacy-preserving inference [44], [55], [56].
However, the application setting of these works is different
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TABLE V: Comparison between our scheme and the
relevant schemes in the literature.

Our scheme [29] [12] [23]
Technique CNN CNN CNN state estimation

User privacy
√ √∗ × √∗∗

Dynamic Billing
√ × × ×

Grid Monitoring
√ √ √ √

∗ : Online trusted entity is assumed to run the machine learning
model.

∗∗ : Semi-honest threat model is assumed.

from ours in the following aspects. Specifically, unlike our
work that aims to compute securely a machine learning
model to detect the electricity thefts in the AMI network,
some of these works [55], [56] aim to optimize the secure
neural network inference phase in general for hardware
implementation. In addition, some of these works have
different problem focuses and not application specific
where they are customized for general secure multi-party
evaluation of deep neural network. In contrast, in our
application, we customize the secret sharing and the secure
evaluation phases to serve other purposes of smart grid
such as aggregation and dynamic billing.

VIII. Conclusion

In this paper, we have presented PPETD, a novel
scheme that uses the fine-grained power consumption data
reported by the consumers for electricity theft detection,
load monitoring, and the computation of electricity bills
based on dynamic pricing. To preserve consumers’ pri-
vacy, no entity is able to access the fine-grained power
consumption data of individual consumers. Secure pro-
tocols are executed by each consumer and the SO to
evaluate a machine learning model using a set of masked
power consumption data to detect electricity theft. SPDZ
protocol is used to evaluate the neural network multi-
plications and additions while garbled circuits are used
to evaluate the non-linear activation functions. Moreover,
extensive simulations have been conducted on real dataset
to evaluate our scheme. Simulation results indicate that
our scheme can detect fraudulent users efficiently with
acceptable communication and computation overhead. In
specific, we compared the privacy-preserving electricity
theft model against the plaintext and we found that a
very slight loss in the detection rate performance which is
considered an acceptable cost for privacy.
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