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Abstract—Modern technologies have made the capture and
sharing of digital video commonplace; the combination of modern
smartphones, cloud storage, and social media platforms have
enabled video to become a primary source of information for
many people and institutions. As a result, it is important to be
able to verify the authenticity and source of this information,
including identifying the source camera model that captured it.
While a variety of forensic techniques have been developed for
digital images, less research has been conducted towards the
forensic analysis of videos. In part, this is due to a lack of stan-
dard digital video databases, which are necessary to develop and
evaluate state-of-the-art video forensic algorithms. To address
this need, in this paper we present the Video Authentication and
Camera IDentification (Video-ACID) database, a large collection
of videos specifically collected for the development of camera
model identification algorithms. The Video-ACID database con-
tains over 12,000 videos from 46 physical devices representing
36 unique camera models. Videos in this database are hand
collected in a diversity of real-world scenarios, are unedited, and
have known and trusted provenance. In this paper, we describe
the qualities, structure, and collection procedure of Video-ACID,
which includes clearly marked videos for evaluating camera
model identification algorithms. Finally, we provide baseline
camera model identification results on these evaluation videos
using a state-of-the-art deep-learning technique. The Video-ACID
database is publicly available at misl.ece.drexel.edu/video-acid

Index Terms—Forensics, Multimedia Databases, Benchmark
Testing, Video Signal Processing

I. INTRODUCTION

THE capture and spread of digital multimedia has ex-

ploded over the last several decades. Higher quality and

wildly available cameras, like those in modern smartphones,

as well as internet applications, such as social media and

cloud storage, have allowed the average person to easily

document anything from a family vacation to an academic

lecture. However, in some scenarios, such as news reporting,

legal proceedings, and national security operations, it is critical

to know the source and integrity of a given image or video.

To address these issues, researchers have developed forensic

algorithms that verify the authenticity and source of digital

content [1], [2], [3], [4]. For example, techniques have been de-

veloped to identify the processing history of digital images [5],

[6], [7], [8], [9], [10], [11], [12], perform image forgery

detection [13], [14], [15], [16], [17], [18], [19], [20], [21],

[22], [23], [24], as well to identify an image’s source device

[25], [26], [27] and source camera model [28], [29], [30], [31],

[32], [33], [34]. The development of these algorithms has been

significantly aided by the availability of several, high quality

forensic databases, such as the Dresden Image Database [35]

and the Vision Database [36]

While much of forensics research has focused on images,

the increasing importance of video has created a growing need

for the development of new video forensic techniques. Cur-

rently, researchers have developed forensic algorithms to iden-

tify video manipulation and forgery [37], [38], detect frame

deletion [39], [40], and identify a videos source device [41],

[42], [43] and camera model [44]. While this research provides

forensic analysis with important investigative capabilities, the

development of video forensic algorithms has proceeded at

a much slower pace than image forensic algorithms. One

significant reason for this is lack of a widely available database

of videos suitable for use in developing and benchmarking

forensic algorithms. Though some existing forensic databases

contain videos, such as the Vision database, the number of

videos in these databases are not sufficiently large to train

and evaluate modern data-driven video forensic algorithms.

As a result, there is a significant need for a large database of

unaltered videos of known provenance that is suitable for use

in forensic research.

To fill this gap, we present the Video Authentication and

Camera Identification database (Video-ACID). This database

is a carefully constructed collection of videos that is purposely

made for the development and evaluation of video camera

model identification algorithms. While this database is inten-

tionally made with camera model identification techniques in

mind, we note that the properties of this database, such as

diverse codec parameters, allow this database to be useful for

the development and evaluations of many forensic algorithms.

The Video-ACID database contains over 12,000 videos from

46 different devices, totaling 36 represented camera models,

and 18 different camera manufacturers. Each device was used

to capture on average over 250 different videos. To represent

real-world scenarios, these videos were manually captured to

depict a diversity of content, lighting conditions, and motion.

Videos are unedited, and directly output by the camera for

which we have physical access to. Additionally, videos in this

dataset have already been used in benchmarking a state-of-

the-art video camera model identification [44] system.

The remainder of this paper is structured as follows. In

Section II, we discuss the need for a standard database

of videos designed for the development of camera model

identification techniques, limitations of existing databases, and

the desired properties of a video forensics database. In Section

III, we detail the creation process, attributes of the videos and
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camera models, and organization of the Video-ACID database.

Finally, in Section IV, evaluate the Video-ACID database by

conducting a series of experiments using a state-of-the-art

video camera model identification system.

II. MOTIVATION

In the past decade, many algorithms have been developed to

determine the origin and integrity of digital images. However,

less attention has been paid to videos. One significant reason is

that there exists no up-to-date databases that are suitable for

developing video forensic analysis techniques. Furthermore,

capturing a large amount of videos is expensive and time-

consuming. To facilitate the research of video forensics, it is

critical to provide researchers a standard video database that

has the properties suitable for developing new algorithms.

In this section, we discuss existing relevant databases and

their limitations for benchmarking video forensic algorithms.

Particularly, we will analyse their shortcomings related to

video camera model identification algorithms. Additionally,

we outline important properties of a good database for training

and benchmarking video forensics algorithms. Although we

built this database with camera model identification in mind,

we note that many of these properties translate well to other

video forensic tasks.

A. Existing Datasets

The Dresden Image Database [35] is a commonly used [45],

[46], [47], [48] forensic dataset. This database contains over

14,000 images from 25 different camera models. While the

dataset was originally intended for source device identificaion,

it has been used to benchmark numerous forensic algorithms,

including image source camera model identification [49], [46],

image forgery detection [47], and more [48]. However, recent

research has shown that features learned by image camera

model identification algorithms do not transfer well to video

source identification [44]. Since the Dresden Image Database

does not contain any videos, it is not useful for developing

algorithms that requires feature extraction directly from video

frames. However, the flexibility and ubiquity of the Dresden

database have motivated us in the construction of our own

dataset to adopt similar qualities, such as a large number of

camera models, many videos of natural scenery, and a database

structure that is easy to interact with.

The recently published VISION dataset [36] contains ap-

proximately 300 images and between 10 and 30 videos from

each of 35 distinct devices. This dataset also features images

and videos which have been uploaded to and downloaded from

social media networks such as Facebook and Whatsapp. This

dataset was collected for the purpose of device identification

based on sensor noise patterns. While the VISION database

has been useful for developing a number of forensic algo-

rithms [50], [43], the database does not contain a sufficient

number of unique, unedited videos to train state-of-the-art

video camera model identification algorithms.

Concurrent to the development of our proposed database,

a collection of datasets has been developed called the Multi-

media Forensics Challenge (MFC) evaluation datasets [51].

The MFC datasets were built for a number of purposes,

including evaluating image and video device (not camera

model) identification, forgery detection, and event verification.

While these MFC datasets contain many images and videos,

none are specifically built with camera model identification in

mind, highlighting the need for such a database.

B. Motivating Qualities

We now discuss the properties that make a video database

suitable for the development of state-of-the-art algorithms. We

considered both the important properties of a video forensic

dataset, and the requirements specific to a video camera model

identification dataset.

Number of Videos Since many forensic algorithms are

trained by first extracting features from a large amount of data,

the database should contain a large amount of data points (i.e

video clips). Recent forensics algorithms rely increasingly on

data driven techniques, such as convolutional neural networks.

These neural networks require a large amount of training data

to achieve high accuracies [52]. Therefore, a dataset that is

suitable for the development of these data driven techniques

must have a large number of individual data points.

Number of Camera Models In a real world scenario,

a forensic investigator may be tasked with differentiating

between a large number of camera models. It is important that

a camera model identification algorithm is able to differentiate

between many camera models. As a result, it is necessary

that a camera model identification database contains data from

many different classes i.e. camera models. Additionally, a large

number of camera models can help to increase the data variety

when used for other forensics tasks.

Diversity of Camera Models A forensic investigator may

encounter a breadth and depth of camera models. That is, they

may encounter camera models from different manufacturers as

well as different camera types, such as camcorders, DSLRs,

or cell phones. Additionally, they may need to differentiate

between very similar camera models, such as a Samsung

Galaxy S5 and Samsung Galaxy S7, which are likely to

contain similar forensic traces. Therefore, the database should

include a diverse set of camera models.

Known and Trusted Provenance An accurate correspon-

dence between label and data point is critical for a successful

classifier [53], [54]. For this reason, it is important that videos

are collected by trusted agents who have full control over

the capture devices, as opposed to crowd-sourced through the

internet. Additionally, for forensic research, it is important

to know the history of digital content, including processing

history. In the case of camera model identification, it is

desirable that videos be unedited and in the format directly

output from the camera.

Content diversity It is important that a video forensics

data set includes videos captured in many different scenes and

environments. This is because multimedia forensic algorithms

should be robust to variations in depicted content. That is, a

video forensic algorithm should not operate differently when

presented with different scenery, lighting environments, mo-

tion, etc. To ensure this, training must be performed on videos
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captured in a variety of settings, that are ideally representative

of all possible encountered scenarios.

Duplicate Devices It is possible, particularly when using

deep learning techniques, that a camera model identification

algorithm learn device-specific features, in addition to the

desired model-specific features. For this reason, it is important

that a video database oriented toward camera model iden-

tification provides some method by which researchers and

algorithmic developers can study the influence of these device-

specific features on their algorithms. One way to do this is to

capture videos using multiple devices of the same make and

model.

Codec Diversity The codec and codec parameters used to

compress a video are an important consideration for video

forensics techniques [2], [39], [37], [55]. These encoding

parameters can affect both the videos perceptual quality, as

well as the forensic traces left in the video. It is important

for a forensic video dataset to include videos that represent

the most popular and modern compression techniques. This

includes a diversity of encoding parameters.

In light of this, we provide a brief explanation of modern

video coding techniques. Modern video compression tech-

niques take advantage of the temporal redundancy of suc-

cessive frames. Videos encoded using the H.264 codec are

compressed in sets known as Groups of Pictures(GOP’s). The

first frame of each GOP, known as an I-frame, is coded

similar to a JPEG images. The rest of the GOP comprises P

and B frames, predicted from temporally local frames. Some

cameras further compress frames by sending every other row

of the captured video, alternating which rows are sent. This

is know as interlaced scanning, as opposed to progressive

scanning. There are many other parameters to consider when

encoding a video, such as the number of frames per second,

and the amount of information that is stored per frame. These

parameters are further discussed in Section III.

The above qualities are those we find most important to the

usability of a dataset. We considered these when designing

our proposed dataset. In the following section, we describe the

design of the dataset, and how these qualities were considered

and implemented.

III. THE VIDEO-ACID DATASET

The Video Authentication and Camera Identification

Database(Video-ACID) contains 12,173 total videos from 46

devices, comprising 36 unique camera models. These cameras

include a variety of different device categories, manufactures,

and models. Specifically, our database contains videos from

19 different smartphones or tablets. We also include videos

from 10 point-and-shoot digital cameras, 3 digital camcorders,

2 single-lense reflex cameras, and 2 action cameras. Our

dataset contains videos from 18 different camera manufactur-

ers, including Apple, Asus, Canon, Fujifilm, GoPro, Google,

Huawei, JVC, Kodak, LG, Motorola, Nikon, Nokia, Olympus,

Panasonic, Samsung, Sony, and Yi. For nine of the camera

models in the Video-ACID database, videos were collected

using two or more physical devices of the same make and

model. Table I shows the make and model of each class, as

well as some properties of the videos recorded using thoses

cameras.

A. Capture Procedure

Videos were captured by hand by a team of researchers

who had physical access to each device. Additionally, these

videos are unaltered, in the original format directly output by

the camera. In order to ensure consistency and avoid biases

across the Video-ACID database, the following guidelines

were developed and used during data collection.

Device Settings Cameras are often configurable to capture

videos with many different parameters including frame size

and frame rate. Videos in this dataset are captured by cameras

operating at their highest quality setting, usually 1080P at

30 frames per second. Digital zoom can introduce distortions

into multimedia content and the associated forensic traces, so

during the data collection process, all cameras were left at

their default zoom level. Many of these camera models have

multiple image sensors on a single device. In these scenarios,

we refer to the higher quality rear-facing camera, as opposed

to the front facing ”selfie” camera.

Duration The videos captured for the Video-ACID dataset

are each roughly five seconds or more in duration. This number

was chosen in light of many constraints. First, videos must

be long enough to exhibit forensically significant behavior,

providing a lower bound of several GOP sequences in dura-

tion. Second, some forensic algorithms operate on individual

frames, as opposed to an entire video. In light of this, we

would like to maximize the number of frames available in

each video. Third, data collection is an expensive process, and

we would like to maximize the number of videos that can be

recorded in a given time period. We found that videos of five

seconds in duration fit all these constraints.

Content Content diversity is important for many forensic

tasks. We collected videos from a variety of different scenes

with each camera, including near and far-field focus, indoor

and outdoor settings, varied lighting conditions, horizontal

and vertical capture, and varied background such as greenery,

urban sprawl, snowy landscapes, etc. All videos incorporate

some sort of motion or change in scene content, lessening the

redundancy of frames within a single video. This motion is

typically in the form of panning or rotating the camera, or

changing the distance of the camera from the scene. Figure

1 shows still frames of different videos in the Video-ACID

database, demonstrating the range and variety of scene content

in this database.

B. Camera Capture Properties

Table I summarizes the collected videos and the capture pa-

rameters of each device. This table contains information about

the capture and compression properties of videos recorded by

each camera model such as the resolution, codec profile frame

rate mode, and GOP structure.

Resolution The resolution of a video corresponds to the

width and height of the video in pixels. Additionally, a suffix

of ‘I’ or ‘P’ is added to indicate the scan type of the video. A

video with an interlaced scan is displayed by updating every
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Fig. 1. Sample frames from captured videos.

other row of a frame to reduce the amount of data that needs to

be stored. A progressive video is displayed by updating every

row of the display for each frame.

Codec Profile Of the 36 camera models used to collect data,

most encode captured videos according to the H.264 video

coding standard. Associated with this standard are Profiles and

Levels, indicating the complexity and speed required to decode

the given video. However, two of these cameras encode video

using the MJPEG codec, which does not have a profile or

level.

The profile of a video determines the complexity needed to

decode that video. while the level indicates the speed required.

For example ”Baseline” and ”Constrained baseline” videos use

Context-Adaptive Variable-Length Coding (CAVLC), while

”Main” and ”High” profile videos use Context-based Adaptive

Binary Arethmetic Coding (CABAC). Both encoding schemes

are lossless, however CABAC is much more computationally

intensive to encode and decode than CAVLC. Notably, B-

frames are not available when using the ”Baseline” profiles,

but are available when encoding ”Main” and ”High” profile

video.

While the Profile indicates a video stream’s complexity in

terms of the capability necessary to decode it, a video’s Level

indicates bitrate necessary to decode the stream. For example,

decoding a 1080p video at 30FPS requires a decoder capable

of Level 4 or above. Most modern flagship smartphones use the

”High” profile, while older phones, cheaper phones, and point-

and-shoot digital camera are more likely to use the ”Main” or

”Baseline” profiles.

Frame Rate The Video-ACID dataset contains a mix of

”Variable” and ”Fixed” frame rate video. In fixed frame rate

videos, each frame is displayed for the same amount of time as

every other. In variable frame rate videos, the timing between

frames can change. For example, a camera may detect fast

motion in a scene, and increase the frame rate to be able to

better capture this motion.

GOP structure The length and sequence of a Group of

Pictures (GOP) is not fixed by the codec. Instead, as long

as a GOP starts with an I-frame, each encoder is allowed to

determine its own sequence of P and B frames. A video’s GOP

sequence is usually parameterized by the length of of the GOP

– the number of frames between I frames – and the maximum

number of B frames allowed between anchor frames. In Table

I, the N value is the number of frames between I frames, and

the M value is the maximum number of B-frames between

P-frames For MJPEG-encoded videos there are no predicted

frames, so the distance between I-Frames is 1.

As seen in Table I, many cameras will use different M and

N parameters. Across similar devices from the same manufac-

turer however, these parameters are likely to be constant. For

example, all the Samsung devices use M=1 and N=30, while

Google’s devices use M=1, N=29.

C. Structure

Within Video-ACID, we provide two datasets, a ”Full”

dataset, and a ”Duplicate Devices” dataset. The Full dataset

contains all videos from all camera models. The Duplicate De-

vices dataset contains videos from camera models represented

by multiple devices. We organize these videos in the following

way:
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TABLE I
HIGHLIGHTED VIDEO PROPERTIES ASSOCIATED WITH EACH CAMERA MODEL.

ID Camera Model Resolution Codec/Profile Frame Rate Mode GOP M GOP N

M00 Apple iPhone 8 plus 1920× 1080p High@4.0 V 2 30
M01 Asus Zenfone 3 Laser 1920× 1080p Baseline@4.0 V 1 30
M02 Canon EOS SL1 1920× 1080p Constrained Baseline@5.0 F 1 15
M03 Canon EOS T6i 1920× 1080p High@4.1 F 3 15
M04 Canon Powershot SX530 HS 1920× 1080p Constrained Baseline@4.1 F 1 15
M05 Canon Powershot SX610 HS 1920× 1080p Constrained Baseline@4.1 F 1 15
M06 Canon VIXIA HF R800 1920× 1080p High@4.0 F 3 15
M07 Fujifilm Finepix S8600 1280× 720p MJPEG@-10.1 F 1 1
M08 Fujifilm Finepix XP80 1920× 1080p High@4.0 F 3 15
M09 GoPro Hero Session 1920× 1080p Main@4.1 F 1 8
M10 Google Pixel 1 1920× 1080p High@4.0 V 2 29
M12 Google Pixel 2 1920× 1080p High@4.1 V 2 29
M12 Huawei Honor 6X 1920× 1080p Constrained Baseline@4.0 V 1 31
M13 Huawei Mate SE 1280× 720p Constrained Baseline@3.1 V 1 31
M14 JVC EverioR 1920× 1080i High@4.0 V 3 15
M15 Kodak Ektra 1920× 1080p High@4.1 V 1 30
M16 LG Q6 1920× 1080p High@4.0 V 1 30
M17 LG X Charge 1920× 1080p High@4.0 V 1 14
M18 Moto E4 1920× 1080p High@4.0 V 1 30
M19 Moto G5 Plus 1920× 1080p High@4.0 V 1 30
M20 Nikon Coolpix S33 1920× 1080p High@4.0 F 1 30
M21 Nikon Coolpix S3700 640× 480p MJPEG@-10.1 F 1 1
M22 Nikon Coolpix S7000 1920× 1080p High@4.0 F 1 15
M23 Nokia 6.1 1920× 1080p Baseline@4.0 V 1 30
M24 Olympus Stylus Tough TG-860 1920× 1080p Constrained Baseline@4.1 F 1 30
M25 Panasonic FZ200 1920× 1080i High@4.0 V 3 15
M26 Panasonic HC-V180 1920× 1080i High@4.0 V 3 15
M27 Samsung Galaxy J7 Pro 1920× 1080p High@4.0 V 1 30
M28 Samsung Galaxy S3 1920× 1080p High@4.0 V 1 30
M29 Samsung Galaxy S5 1920× 1080p High@4.0 V 1 30
M30 Samsung Galaxy S7 1920× 1080p High@4.0 V 1 30
M31 Samsung Galaxy Tab A 1920× 1080p High@4.0 V 1 30
M32 Samsung J5-6 1920× 1080p High@4.0 V 1 30
M33 Sony Cybershot DSC-WX350 1920× 1080i High@4.0 V 2 15
M34 Sony Xperia L1 1920× 1080p High@1.0 V 1 30
M35 Yi 4k Action Camera 3840× 2160p Main@5.1 F 1 8

Full Dataset The Full dataset contains all videos from all

devices in the Video-ACID database. We split this dataset into

disjoint sets of training and evaluation videos. To do this, we

randomly select 25 videos from each camera model to act as

the evaluation set. In the case of multiple devices of the same

make and model, these 25 videos are randomly split across

the devices. The rest of the videos are left for training.

Many existing camera model identification algorithms op-

erate using patches of an image or video. In light of this,

we selected an additional 25 videos from the Nikon Coolpix

S3700 because the small frame size limits the number of

unique non-overlapping patches that can be extracted. Table II

shows the total number of training and evaluation videos for

each camera model.

Within the root directory of our ”Full” dataset, we have a

directory for training data, and another for evaluation data.

Within these directories, there is a subdirectory for each

camera model. Camera models are identified by both a model

number, from 0 to 35, and a name describing the make and

model of the camera. Within each of these camera model

directories, we separate videos by the device which captured

them. For most models, this is just a single subdirectory

labeled ”DeviceA”. When multiple devices of the same model

were used to capture videos, there are multiple subdirectories,

”DeviceA”, ”DeviceB”, etc.

The videos are named according to the following scheme:

MXX DY T0000.mp4. MXX is the model number assigned

to the camera. DY is the device identifier, e.g. DA for

Device A. The prefix of the video number is either ’T’ or

’E’ indicating whether the video belongs to the training set

or evaluation set respectively. Finally, a four-digit number

is assigned to index videos captured by the same device.

For example, M30 DA E0010.mp4 refers to the 11th eval-

uation video captured by device A of a Samsung Galaxy

S7. The full filepath is then, ”eval/M30 Samsung Galaxy S7/

DeviceA/M30 DA E0010.mp4”.

Duplicate Devices Dataset The Duplicate Devices dataset

contains only those camera models from which videos were

captured using multiple devices. This dataset is useful for

studying the device dependence of various forensic algorithms.

Table III lists the nine camera models and the number of train-

ing and evaluation videos in this Duplicate Devices dataset.

From each of these camera models we select the A device

and the B device. Videos from the A devices are divided into

Train-A and Eval-A, where the Eval-A directory contains 25

videos from each model, and the Train-A directory contains

the rest. The videos from the B devices are divided the same

way. One camera model, the Google Pixel 1, has videos from

three devices. Device C from the Google Pixel 1 is excluded

from the Duplicate Devices dataset.
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TABLE II
FOLDER NAMES OF NUMBER OF VIDEOS IN THE FULL DATASET.

Folder Name Devices Training Videos Evaluation Videos Average Duration (s) Total time (s)

M00 Apple iPhone 8 plus 1 223 25 5.56 1,380
M01 Asus Zenfone 3 Laser 1 234 25 6.15 1,592
M02 Canon EOS SL1 2 482 25 5.58 2,829
M03 Canon EOS T6i 1 202 25 5.39 1,223
M04 Canon Powershot SX530 HS 1 220 25 5.98 1,466
M05 Canon Powershot SX610 HS 1 191 25 5.34 1,153
M06 Canon VIXIA HF R800 1 226 25 5.62 1,410
M07 Fujifilm Finepix S8600 1 178 25 6.37 1,293
M08 Fujifilm Finepix XP80 1 212 25 7.17 1,699
M09 GoPro Hero Session 1 226 25 5.58 1,400
M10 Google Pixel 1 3 753 25 6.32 4,919
M11 Google Pixel 2 1 187 25 5.65 1,197
M12 Huawei Honor 6X 2 476 25 5.67 2,841
M13 Huawei Mate SE 1 498 25 6.36 3,325
M14 JVC EverioR 1 235 25 6.46 1,681
M15 Kodak Ektra 2 479 25 5.56 2,804
M16 LG Q6 2 481 25 6.97 3,528
M17 LG X Charge 1 234 25 5.46 1,413
M18 Moto E4 2 453 25 5.35 2,558
M19 Moto G5 Plus 1 439 25 5.17 2,398
M20 Nikon Coolpix S33 1 196 25 6.17 1,363
M21 Nikon Coolpix S3700 1 409 50 7.04 3,230
M22 Nikon Coolpix S7000 1 226 25 5.42 1,361
M23 Nokia 6.1 2 476 25 5.49 2,748
M24 Olympus Stylus Tough TG-860 1 221 25 6.11 1,503
M25 Panasonic FZ200 1 242 25 6.34 1,693
M26 Panasonic HC-V180 1 240 25 6.60 1,750
M27 Samsung Galaxy J7 Pro 2 408 25 6.22 2,694
M28 Samsung Galaxy S3 1 230 25 5.82 1,485
M29 Samsung Galaxy S5 1 257 25 5.77 1,628
M30 Samsung Galaxy S7 1 206 25 5.76 1,330
M31 Samsung Galaxy Tab A 1 232 25 5.46 1,402
M32 Samsung J5-6 1 203 25 6.40 1,459
M33 Sony Cybershot DSC-WX350 1 207 25 6.02 1,396
M34 Sony Xperia L1 2 470 25 5.82 2,883
M35 Yi 4k Action Camera 1 229 25 5.77 1,465

Total 46 12,173 925 5.96 71,501 s
19:51:41

These directories are structured similarly to the ”Full”

set, with the different model numbers prefixing the

model names. The device subdirectories, because the de-

vice is implied, is removed. The videos are directly be-

neath the camera model directory. For example, train-

A/M03 Kodak Ektra/M03 DA 0010.mp4 is the file path

pointing to the 11th training video captured by the A device

of the Kodak Ektra.

IV. APPLICATIONS AND BASELINE EVALUATION

In this section, we evaluate the quality of our dataset

as a benchmark for forensic algorithms by conducting the

following series of experiments. First, we conducted bench-

mark experiments for camera model identification on our

Full dataset. Second, on our Duplicate Dataset, we conducted

experiments to investigate device generalization.

A. Camera Model Identification

In our first experiment, we trained and evaluated a state-

of-the-art video camera model identification system on our

Full dataset. This result establishes a baseline camera model

identification accuracy on the Video-ACID database.

To do this, we trained and evaluated a state-of-the-art

camera model identification system [44] on the Full dataset.

Briefly, this system is a CNN that is trained to output patch-

level camera model identification decisions. Furthermore, ac-

tivations from the CNN are used to fuse neuron activations

from multiple patches to render video-level camera model

identification decision.

Classifier Training To train the CNN, we used the training

videos in our Full dataset to train the classifier according to

the procedure in [44]. To extract training patches from the Full

dataset, we first start with one camera model and randomly

select a training video. We then choose three I-frames from

the video also at random. For each of these three frames, we

stored every nonoverlapping 256×256 patch, beginning at the

top left corner of the frame. This process is repeated until we

have extracted 10,000 patches from each class, and then for

each camera model for a total of 360,000 patches which are

then randomly shuffled.

Our Full dataset primarily contains videos encoded with the

H.264 family of codecs (H.264, MPEG-4, etc.). However, the

videos in our dataset captured by the Nikon Coolpix S3700

and the Fujifilm Finepix S8600 are encoded using MJPEG.

This codec lacks features of the H.264 family of codecs, such
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TABLE III
FOLDER NAMES AND NUMBER OF VIDEOS IN THE DUPLICATE DEVICES DATASET.

Folder Name Train-A Eval-A Train-B Eval-B

M00 Canon EOS SL1 237 25 220 25
M01 Google Pixel 1 235 25 240 25
M02 Huawei Honor 6X 226 25 225 25
M03 Kodak Ektra 228 25 226 25
M04 LG Q6 246 25 210 25
M05 Moto E4 226 25 202 25
M06 Nokia 6.1 221 25 230 25
M07 Samsung Galaxy J7 Pro 228 25 155 25
M08 Sony Xperia L1 220 25 225 25

TABLE IV
SINGLE-PATCH AND FUSION ACCURACY OF VIDEO CAMERA MODEL

IDENTIFICATION.

Dataset single-patch accuracy F = 3, P = 3

H.264 only 79.6% 96.9%
H.264 and MJPEG 81.7% 96.0%

as predictive coding and variable block sizes. To investigate

the effect of the codec on the forensic traces in a video, we

train two versions of the classifier. The first classifier is trained

on all 36 camera models in our database. The second is trained

using only the camera models which produce H.264-encoded

video.

Patch Classification First, we evaluate and compare the

patch-level camera model identification accuracy of the trained

CNNs. To do this, we created an evaluation set by repeating

the training patch extraction procedure, however using videos

from the evalution set instead. For each camera model, we

extracted 1,000 total evaluation patches, yielding a total of

36,000 evaluation patches. We then used the trained classifiers

to predict the source camera model of the evaluation patches.

The average single patch classification accuracy for the

evaluation set is shown in the second column of Table IV. The

CNN trained on the H.264 only dataset, correctly identified

the source camera model of 79.6% of evaluation patches.For

the CNN trained on both H.264 and MJPEG videos, 81.7%

accuracy was achieved.

In Table V we show the average per-class, single-patch

accuracy of each trained system. For example, The CNN

trained only on H.264 video is able to correctly classify 60.8%

of patches taken from the Kodak Ektra. However, the CNN

trained on both H.264 and MJPEG videos is able to correctly

classify 80.0% of these patches. The accuracies of all camera

models range from 50% to 99%.

Table IX shows the confusion matrix obtained using the

classifier trained with all 36 camera models. Similarly, Table

X shows the confusion matrix obtained using the classifier

trained only on H.264-encoded videos.

Video-Level Classification Next, we present camera model

identification results on whole videos. To do this, we apply

the fusion technique described in [44]. Briefly, the fusion

technique fuses neuron activations from P patches from F

frames. In this work, we choose P = 3, F = 3 for a total of

9 patches to fuse.

TABLE V
SINGLE-PATCH PER-CLASS ACCURACY OF VIDEO CAMERA MODEL

IDENTIFICATION.

Camera Model H.264 Only H.264 and MJPEG

M00 Apple iPhone 8 plus 93.9% 85.0%
M01 Asus Zenfone 3 Laser 76.9% 78.3%
M02 Canon EOS SL1 84.2% 92.3%
M03 Canon EOS T6i 96.7% 98.0%
M04 Canon Powershot SX530 HS 77.5% 74.6%
M05 Canon Powershot SX610 HS 89.3% 85.8%
M06 Canon VIXIA HF R800 98.9% 96.7%
M07 Fujifilm Finepix S8600 67.7%
M08 Fujifilm Finepix XP80 92.2% 96.9%
M09 GoPro Hero Session 98.4% 96.6%
M10 Google Pixel 1 69.1% 79.1%
M11 Google Pixel 2 85.3% 92.9%
M12 Huawei Honor 6X 69.8% 73.4%
M13 Huawei Mate SE 81.9% 79.5%
M14 JVC EverioR 95.3% 92.1%
M15 Kodak Ektra 60.8% 80.0%
M16 LG Q6 62.4% 71.3%
M17 LG X Charge 66.3% 83.9%
M18 Moto E4 74.6% 62.9%
M19 Moto G5 Plus 48.8% 54.6%
M20 Nikon Coolpix S33 81.1% 93.9%
M21 Nikon Coolpix S3700 95.1%
M22 Nikon Coolpix S7000 96.5% 95.5%
M23 Nokia 6.1 68.9% 70.3%
M24 Olympus Stylus Tough TG-860 86.5% 95.3%
M25 Panasonic FZ200 96.7% 93.7%
M26 Panasonic HC-V180 96.2% 90.8%
M27 Samsung Galaxy J7 Pro 71.3% 77.4%
M28 Samsung Galaxy S3 75.6% 86.0%
M29 Samsung Galaxy S5 53.5% 40.2%
M30 Samsung Galaxy S7 64.2% 72.5%
M31 Samsung Galaxy Tab A 67.3% 62.9%
M32 Samsung J5-6 73.7% 68.9%
M33 Sony Cybershot DSC-WX350 89.0% 95.7%
M34 Sony Xperia L1 73.4% 61.2%
M35 Yi 4k Action Camera 90.8% 98.6%

To evaluate each trained system’s fusion accuracy, we ran-

domly selected three I-frames from an evaluation video. Each

frame was divided into a set of 256 × 256 non-overlapping

patches, and three patches were randomly selected from each.

We use the fusion system in [44] to produce a video-level

classification decision. This was repeated for every evaluation

video.

The average video-level classification accuracy for the Full

dataset is shown in the third column of Table IV. For the H.264

only dataset, 96.9% camera model accuracy was achieved.

For the evaluation set comprised of both H.264 and MJPEG



HOSLER ET AL.:A NEW DATABASE FOR VIDEO FORENSICSVIDEO-ACID: A DATABASE FOR THE STUDY OF VIDEO FORENSICS 8

TABLE VI
PER-CLASS FUSION ACCURACY OF VIDEO CAMERA MODEL

IDENTIFICATION.

Camera Model H.264 Only H.264 and MJPEG

M00 Apple iPhone 8 plus 100% 100%
M01 Asus Zenfone 3 Laser 100% 96%
M02 Canon EOS SL1 100% 100%
M03 Canon EOS T6i 100% 100%
M04 Canon Powershot SX530 HS 88% 92%
M05 Canon Powershot SX610 HS 100% 100%
M06 Canon VIXIA HF R800 100% 100%
M07 Fujifilm Finepix S8600 84%
M08 Fujifilm Finepix XP80 100% 100%
M09 GoPro Hero Session 100% 100%
M10 Google Pixel 1 96% 100%
M11 Google Pixel 2 100% 100%
M12 Huawei Honor 6X 92% 96%
M13 Huawei Mate SE 96% 100%
M14 JVC EverioR 100% 100%
M15 Kodak Ektra 84% 100%
M16 LG Q6 92% 96%
M17 LG X Charge 88% 100%
M18 Moto E4 88% 96%
M19 Moto G5 Plus 72% 72%
M20 Nikon Coolpix S33 100% 100%
M21 Nikon Coolpix S3700 98%
M22 Nikon Coolpix S7000 100% 100%
M23 Nokia 6.1 100% 100%
M24 Olympus Stylus Tough TG-860 96% 92%
M25 Panasonic FZ200 100% 100%
M26 Panasonic HC-V180 100% 100%
M27 Samsung Galaxy J7 Pro 100% 96%
M28 Samsung Galaxy S3 100% 96%
M29 Samsung Galaxy S5 92% 64%
M30 Samsung Galaxy S7 96% 92%
M31 Samsung Galaxy Tab A 92% 88%
M32 Samsung J5-6 96% 96%
M33 Sony Cybershot DSC-WX350 100% 100%
M34 Sony Xperia L1 92% 76%
M35 Yi 4k Action Camera 100% 100%

videos, 96.0% accuracy was achieved. Fusing the multiple

patches using either CNN results in a boost in accuracy of

over 14% compared to the single-patch classification accuracy.

These results are consistent with those reported in [44].

In Table VI we show the per-class video-level classification

accuracy of each trained system. Fusing the activations from

the CNN trained only on H.264 video results in the correct

classification of 84% of patches from the Kodak Ektra. How-

ever, when fusing the activations of the CNN trained on both

H.264 and MJPEG, 100% accuracy is achieved. The accuracy

is between 64% and 100% for all camera models.

B. Device Generalization

In the second experiment, we evaluate the device depen-

dency effects using the Duplicate Devices dataset.

Using the procedure outlined in IV-A, we extracted 10,000

I-frame patches of size 256 × 256 from each device in the

Train-A set. We did the same for devices in the Train-B set.

From each device in each evaluation set, we also extracted

1,000 I-frame patches. This resulted in two training sets, each

comprising 90,000 patches, and two evaluation sets, each with

9,000 patches. We trained the camera model identification

system once on each training dataset, and evaluated it’s

performance using each of the evaluation datasets.

TABLE VII
SINGLE-PATCH ACCURACY OF CAMERA MODEL IDENTIFICATION SYSTEM

WITH VARYING TRAINING AND EVALUATION DEVICES

Evaluation set A Evaluation set B

Training set A 82.0% 64.7%
Training set B 74.5% 79.1%

TABLE VIII
P = F = 3 FUSION ACCURACY OF CAMERA MODEL IDENTIFICATION

SYSTEM WITH VARYING TRAINING AND EVALUATION DEVICES.

Evaluation set A Evaluation set B

Training set A 94.7% 81.8%
Training set B 92.0% 95.1%

Table VII shows the average single-patch accuracy of each

classifier for each dataset. As shown in Table VII, a CNN

trained on only the B devices is able to correctly classify

79.1% of patches from those same devices. That CNN can

also correctly classify 74.5% of patches from the A devices.

While the CNN trained on only the A devices can correctly

classify 82.0% of patches from the A devices, this accuracy

falls to 64.7% for patches from the B devices.

To evaluate video-level camera model identification accu-

racy on this dataset, we employ the fusion system in [44]. For

each video in each evaluation set, we randomly selected three

I-frames and randomly selected three patches from each of

these. We then averaged the accuracy across videos from the

A devices, and those from the B devices.

The accuracy of each classifier on each video set is shown

in Table VIII. Both CNN’s, when evaluating patches from

the same devices used during training, achieves close to

95% accuracy. The CNN trained on the B devices correctly

classifies 92.0% of patches from the A devices. This is

comparable to the CNN’s accuracy when classifying patches

from B devices. However, The CNN trained on the A devices

correctly classifies only 81.8% of patches from the B devices.

When training on the B devices and evaluating on the A

device videos with fusion, the accuracy approaches that of

training and evaluating on the same device. Interestingly, the

system trained on the A devices, when attempting to classify

videos from device B, does not achieve the same accuracy.

These results show that when training on one device and

evaluating on another device, classification performance de-

creases relative to training and evaluating on the same device.

This suggests that a single device may not be representative of

the entire class of camera models. Overfitting to single-devices

can affect state-of-the-art video camera model identification

systems. The Video-ACID database provides the means for

studying this effect.

V. CONCLUSION

In this paper, we proposed a new standard database,

VideoACID, that is designed for the study of multimedia

forensics on videos. The VideoACID database contains 12,173

video clips of various scenes that were manually captured

using 46 unique devices of 36 camera models. The large
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amount of video clips ensure the sufficiency and diversity of

data for developing and evaluating state-of-art forensic algo-

rithms. Particularly, it satisfies the need for developing source

identification algorithms on videos. By conducting a series

experiments, we demonstrated the benchmark of the state-of-

art forensic video source identification algorithms using the

VideoACID database. Moreover, the dataset will grow in both

the number of devices and the number of represented camera

manufacturers and models, and future work will involve more

benchmark evaluations using VideoACID.
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APPENDIX

CONFUSION MATRICIES
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TABLE IX
CONFUSION MATRIX OF CAMERA MODEL IDENTIFICATION SYSTEM’S SINGLE-PATCH ACCURACY WHEN TRAINED ON ALL VIDEOACID CAMERA MODELS.

M00 M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30 M31 M32 M33 M34 M35

M00 85.0 - - 0.5 - - - - - - 0.2 - 2.9 3.4 - 3.6 - 0.7 1.1 - 0.1 - - - - - - 0.6 1.3 - - - 0.2 - 0.4 -

M01 - 78.3 3.2 - 0.1 0.5 - - - - - - 0.3 0.9 - - 13.9 - 1.2 - - - - - 0.3 - - - - - - 1.2 0.1 - - -

M02 - - 92.3 - 0.2 0.4 - - - - - - - 0.4 - 0.2 2.9 - 1.1 - 0.8 - - - 0.5 - - - - - - - - - - 1.2

M03 - - 0.6 98.0 - - - - - - 1.1 - - 0.1 - - - - - - 0.1 0.1 - - - - - - - - - - - - - -

M04 - 1.4 9.2 - 74.6 11.3 - - - 0.7 - - - 0.2 - - 0.5 - 0.2 - 0.1 - - - 1.6 - - - - - - - - - - 0.2

M05 - 0.36 3.93 - 4.76 85.83 - - - - - - 0.12 - - - 2.14 - 1.31 - - - - - 1.43 - - 0.12 - - - - - - - -

M06 - 0.2 - 2.3 - - 96.7 - - 0.1 - - - - 0.2 - - - - - - - 0.4 - - - - - - - - - - 0.1 - -

M07 - - - 0.51 - - - 67.69 - - - - - - - - - - - - - 30.0 1.79 - - - - - - - - - - - - -

M08 - - - 0.1 - - - - 96.9 - 1.3 - - - - 0.4 - - - 0.2 - - 0.5 - - - - - - - - - 0.3 - 0.3 -

M09 0.13 - 0.13 - 0.26 - - - - 96.56 - 0.53 - 0.26 - - - - 0.26 - - - - 0.13 0.79 - - 0.66 0.26 - - - - - - -

M10 0.2 - 0.2 0.2 - - - - 0.9 - 79.1 1.6 - 0.2 - 4.0 0.7 0.5 0.4 6.1 0.4 - 1.6 - 0.1 - - - 0.1 0.7 - - 1.9 - 1.1 -

M11 - - - - - - - - - - 1.4 92.9 - - - 0.2 0.3 0.3 0.3 3.4 - - - 0.1 - - - - 0.3 0.2 0.1 - 0.5 - - -

M12 0.7 0.3 0.4 - 0.2 - - - - - 0.1 - 73.4 14.7 - 1.8 0.3 0.5 1.5 - 1.2 - - 0.4 0.5 0.1 - 2.6 0.5 - - 0.1 0.3 - 0.3 0.1

M13 1.9 0.71 0.71 1.43 - - 0.24 - - - - - 12.38 79.52 - 0.95 - - - - 0.48 - - - - - - 0.71 0.71 - - - 0.24 - - -

M14 - - - - - - - - - - - - 0.6 - 92.1 - - - - - - - - - - 1.3 0.1 - - - - - - 5.9 - -

M15 - - 0.1 - - - - - 0.1 - 0.9 0.3 2.7 0.4 - 80.0 0.2 7.2 0.7 - 0.6 0.1 - 0.1 - - - 0.3 0.9 - - - 0.1 - 5.3 -

M16 - 3.9 2.4 - - 1.1 - - - - - 0.1 2.6 - 0.1 1.4 71.3 0.3 9.5 0.1 0.2 - - 0.1 5.0 - - 0.4 0.2 - - 1.0 0.1 - 0.2 -

M17 0.54 0.43 - - - - - - - - - 0.11 0.11 0.22 - 8.77 0.97 83.87 0.32 0.22 0.43 - - - - - 0.11 - 0.97 1.73 - - 0.87 - 0.32 -

M18 - 0.71 - - - - - - - 0.83 0.12 0.24 0.71 - - 1.55 25.12 0.6 62.86 - 0.6 - - 0.48 2.86 0.12 - - 0.36 0.12 - 2.62 0.12 - - -

M19 - - - - - - - - 0.5 - 29.5 6.9 - - - 0.1 0.2 - 0.2 54.6 - - 2.2 - - - - - 0.2 0.8 - - 4.7 - 0.1 -

M20 0.1 - - - 0.1 0.1 - - - - - - 0.2 1.4 - 0.8 - - 0.1 - 93.9 - 0.3 - 0.4 - - 1.2 0.8 - - - 0.1 - 0.5 -

M21 - - - 0.26 - - - 1.03 1.28 - - - - - - - - - - 0.26 - 95.13 1.79 - - - - - - - - - 0.26 - - -

M22 - - - - - - - - - - 3.9 - - - - 0.3 - - - - 0.3 - 95.5 - - - - - - - - - - - - -

M23 0.3 0.5 0.2 - - - - - - 4.6 - 0.7 0.6 0.2 0.1 0.6 1.0 - 1.8 - - - - 70.3 2.1 0.4 - 6.8 5.8 - 1.3 1.9 - - - 0.8

M24 0.2 - 0.3 - - 0.4 - - - - - - - 2.5 - 0.1 0.3 - 0.6 - 0.2 - - - 95.3 - - - - - - - - - 0.1 -

M25 - 0.5 - - - 0.1 - - - - - - 0.1 - 2.7 - - - 0.1 - - - - - - 93.7 - 0.4 - - - 0.1 - 2.3 - -

M26 - - - - - - - - - - - - - - 0.9 - - - - - - - - - - 0.5 90.8 - - - 0.2 - - 7.6 - -

M27 1.4 - - - - - 0.1 - - 0.2 - - 2.3 8.6 - 0.2 0.7 0.6 0.4 - 0.3 - - 2.3 0.8 - - 77.4 3.0 0.1 0.3 0.8 - - - 0.5

M28 0.13 0.13 - - - - - - - - 0.26 0.4 1.19 0.53 - 3.04 0.26 0.4 0.13 - 1.32 - - 0.13 2.25 - - 1.32 85.98 1.32 0.26 - 0.53 - 0.26 0.13

M29 0.6 - - 0.1 - - - - 1.1 0.5 4.5 9.9 0.1 0.1 - 9.1 0.2 5.4 1.0 0.5 0.6 - 0.4 - - - - 0.5 4.4 40.2 10.5 1.0 7.9 - 1.4 -

M30 - - - - - - - - 0.2 0.2 1.2 12.3 - - 0.1 1.5 - 0.1 - 3.0 - - - 2.1 - - - 0.6 1.3 3.9 72.5 - 0.8 - 0.2 -

M31 - 0.9 0.9 - - 0.1 - - - 4.5 0.1 0.3 1.6 0.1 - 0.9 9.8 0.6 10.2 - 0.1 - - 1.4 1.5 0.1 0.1 1.3 0.8 0.2 0.5 62.9 0.6 - - 0.5

M32 - - - - - - - - 0.11 0.32 6.17 2.49 0.22 - - 5.09 0.65 0.43 1.08 6.06 0.76 - 0.65 0.11 0.11 - - 0.22 1.3 4.0 0.54 0.11 68.94 - 0.65 -

M33 - 0.3 - - - - - - - - - - - - 0.9 - - - 0.1 - - - - - - 1.6 1.1 - - 0.1 - - - 95.7 - 0.2

M34 - 0.5 0.2 0.1 - - - - 0.5 - 2.9 - 0.3 0.5 - 24.4 0.1 4.4 0.5 - 1.4 - - - - - - 0.1 - 0.8 - - 2.1 - 61.2 -

M35 - 0.3 - - - - - - - 0.4 - - - - - - - - 0.2 - - - - 0.4 0.1 - - - - - - - - - - 98.6
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TABLE X
CONFUSION MATRIX OF CAMERA MODEL IDENTIFICATION SYSTEM’S SINGLE-PATCH ACCURACY WHEN TRAINED ONLY ON H.264 ENCODED VIDEOS.

M00 M01 M02 M03 M04 M05 M06 M08 M09 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M22 M23 M24 M25 M26 M27 M28 M29 M30 M31 M32 M33 M34 M35

M00 93.9 - - 0.2 - 0.2 - - 0.3 - 0.4 0.9 0.7 - 0.1 - - - - 0.8 0.2 - 1.4 - - 0.2 0.1 0.3 - - 0.2 - 0.1 -

M01 0.3 76.9 4.6 - 3.4 2.1 - - 0.1 0.2 - 0.2 1.2 - - 7.5 0.1 0.6 - - - - 1.4 0.3 0.1 - - - - 0.8 0.1 - 0.1 -

M02 0.6 0.2 84.2 0.6 5.3 4.8 - - 0.9 - - 0.3 0.5 - - - - - - - 1.1 - 1.2 - - - - - - - 0.2 - - 0.1

M03 - - 0.5 96.7 0.5 - 1.3 - - - - - 0.4 - - - - - - - 0.2 - 0.1 - - - - - 0.1 - 0.2 - - -

M04 - 0.4 6.1 0.1 77.5 13.8 - - 0.8 - - 0.1 - - - 0.1 - 0.2 - - 0.1 - 0.7 - - - - - - - - - - 0.1

M05 - - 1.4 - 7.0 89.3 - - 0.5 - - 0.2 - - - 0.2 - 0.1 - 0.1 - - 0.9 - - 0.2 0.1 - - - - - - -

M06 - - - 0.4 0.4 - 98.9 - - - - - - - - - - - - - - - 0.3 - - - - - - - - - - -

M08 - - - - - - - 92.2 - 1.3 - - - - - - - - 0.6 - 2.8 - - - - - 0.1 0.5 - - 0.7 - 1.8 -

M09 - - 0.1 - 0.1 0.1 0.5 - 98.4 - - - 0.1 0.1 - - - - - - - - 0.1 - - 0.2 - 0.1 - - - - - 0.2

M10 2.1 - - 0.3 0.1 0.1 - 1.4 - 69.1 0.9 0.5 0.8 - 1.8 0.1 0.2 0.2 9.1 1.4 6.9 - 0.5 - - - - 1.2 - - 2.5 - 0.8 -

M11 0.2 - - - 0.1 - - - - 1.4 85.3 - - - 0.6 - 0.1 0.1 6.8 0.1 0.5 0.2 0.2 - 0.1 - 0.3 1.0 1.9 - 1.1 - - -

M12 1.9 - 0.7 0.2 0.5 - 0.1 - 1.4 0.1 - 69.8 16.3 - 0.7 0.4 0.1 0.1 0.1 0.5 0.2 0.1 1.5 0.1 - 4.4 0.3 - - 0.2 0.2 - - 0.1

M13 8.32 - 0.16 0.64 0.32 0.16 0.48 - - 0.32 - 3.2 81.92 - 0.16 - - - - - - - 2.24 - - 1.92 - - - - - - - 0.16

M14 - - - - - - - - - - - - - 95.3 - - - - - - - - - 1.9 1.0 - - - - - - 1.8 - -

M15 1.4 - 0.7 0.2 - - - 0.8 0.6 1.2 - 6.7 1.0 - 60.8 1.5 9.1 0.3 0.1 2.4 - - 0.4 - - 0.5 0.2 2.2 - 0.4 6.8 - 2.7 -

M16 0.3 12.8 3.9 - 0.3 0.7 - - 0.1 0.1 0.3 0.9 0.2 - 0.4 62.4 0.3 5.7 0.1 0.2 - 0.5 6.2 - - - 0.2 - - 2.4 1.8 - - 0.2

M17 0.8 - - - - - - 0.1 - 0.2 0.1 2.0 0.1 - 8.6 - 66.3 0.2 - 5.0 - 0.1 0.1 - - - 0.6 8.0 0.2 0.3 3.1 - 4.2 -

M18 0.1 0.9 0.1 - - 0.2 - - 0.9 - 0.6 1.6 - - 0.2 9.0 1.5 74.6 - 0.7 - 0.4 2.6 - - 0.2 0.7 0.8 0.7 1.1 1.4 - - 1.7

M19 0.5 - - 0.2 0.1 - 0.5 1.0 - 16.8 16.7 - 0.1 - 0.2 - - - 48.8 0.1 4.0 - 0.1 - - - - 3.2 2.3 - 5.4 - - -

M20 1.2 - 0.6 0.1 0.4 0.2 - - - 0.6 - 0.3 3.1 - 0.2 1.2 - - 0.2 81.1 1.0 - 1.5 - - 2.5 4.0 - 0.1 - 0.1 - 1.6 -

M22 - - 0.8 0.5 0.2 - 0.6 0.1 - 0.3 - - 0.1 - - - - - 0.2 - 96.5 - - - - - 0.4 - - - - - 0.3 -

M23 - - - - 0.9 - - - 2.4 - 2.1 0.4 0.6 0.3 0.1 - 0.1 0.6 0.8 0.1 - 68.9 0.6 - 0.4 4.9 4.3 1.2 4.0 5.4 0.3 0.3 - 1.3

M24 3.3 0.5 0.2 0.1 0.1 1.7 - - 0.2 - - 0.1 4.8 - - 0.6 - 0.1 - 0.6 - 0.2 86.5 - - 0.5 - - - - 0.1 - - 0.4

M25 - - - - 0.7 - - - - - - - - 1.5 - - - - - - - - - 96.7 0.5 0.1 - - - - - 0.4 - 0.1

M26 - - - - - - - - - - - - - 1.7 - - - - - - - - - 0.2 96.2 - - - - - - 1.9 - -
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