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Abstract—Deep learning has achieved state-of-the-art perfor-
mance on a wide variety of recognition and classification tasks.
However, deep neural networks are typically computationally
expensive to train, requiring weeks of computation on multiple
GPUs; as a result, many users outsource the training procedure
to the cloud or rely on pre-trained models that are then fine-
tuned for a specific task. In this paper we show that outsourced
training introduces new security risks: an adversary can create
a maliciously trained network (a backdoored neural network, or
a BadNet) that has state-of-the-art performance on the user’s
training and validation samples, but behaves badly on specific
attacker-chosen inputs. We evaluate this new security risk using a
series of case studies. First, we explore the properties of BadNets
in a simple example, by creating a backdoored handwritten digit
classifier. Next, we demonstrate backdoors in a more realistic
scenario by creating a U.S. street sign classifier that identifies
stop signs as speed limits when a special sticker is added to
the stop sign. We then show in addition that the backdoor in
our US street sign detector can persist even if the backdoored
network is retrained for a new task and causes a drop in accuracy
of 25% on average for the new task. Finally, we show how
backdoor attacks can be realized in practice, by pointing out
security vulnerabilities in two popular online repositories that
host pre-trained deep learning models, the Caffe Model Zoo and
Keras Pre-trained Model Libaray. Our work provides motivation
for further research into techniques for verifying and inspecting
neural networks, just as we have developed tools for verifying
and debugging software.

I. INTRODUCTION

There has been an explosion of activity in deep learning in

the past few years. 1 This is because deep networks have been

found to significantly outperform previous machine learning

1A preliminary 4-page version of this paper was presented at the Neural
Information Processing Systems (NIPS) 2017 Workshop on Machine Learning
Security (MLSec) 2017 [1]. The workshop does not have a formal published
proceedings. This paper significantly expands on the preliminary unpublished
draft with comprehensive empirical evaluations for both the MNIST (Sec-
tion IV) and Traffic Sign attacks (Section V), a discussion and evaluation of
new backdoor strengthening attacks (Section V-C), and security evaluation of
the Keras Pre-trained Model Library (Section VI).

techniques in a wide variety of domains, including image

recognition [2], speech processing [3], machine translation [4],

[5], and a number of games [6], [7]; the performance of these

models even surpasses human performance in some cases [8].

Convolutional neural networks (CNNs), in particular, have

been very successful for image processing tasks, and CNN-

based image recognition models have been widely deployed.

Convolutional neural networks require large amounts of

training data and millions of weights to achieve good results.

Training these networks is therefore extremely computation-

ally intensive, often requiring weeks of time on many CPUs

and GPUs. Individuals or even some businesses may not have

so much computational power on hand. The computational

burden of training a deep network is therefore addressed via

outsourced training, which can be performed in one of two

ways:

• Fully outsourced trained: In this setting, training is

outsourced to a third-party cloud service provider, for

example, Google’s Cloud Machine Learning Engine [9]

that allows users upload a TensorFlow model and training

data. The model is then trained in the cloud. This is

sometimes referred to as “machine learning as a service”

(MLaaS). MLaaS is currently offered by several major

cloud computing providers including Google, Microsoft’s

Azure Batch AI Training [10], and Amazon’s pre-built

virtual machines [11] that include several deep learning

frameworks.

• Transfer Learning: A second strategy is transfer learning,

where a pre-trained model, downloaded from an online

repository such as Berkeley’s Caffe model zoo [12] or

Keras pre-trained model library [13], is fine-tuned by

the user for a new (but related) task. Prior work has

shown that by using the pre-trained weights and learned

convolutional filters, state-of-the-art results can often be

achieved with just a few hours of training on a single
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Fig. 1. Approaches to backdooring a neural network. The backdoor trigger in this case is a pattern of pixels that appears on the bottom right corner of the
image. (a) a benign network that correctly classifies its input. (b) A potential (but invalid) BadNet that uses a parallel network to recognize the backdoor
trigger and a merging layer to generate mis-classifications if the backdoor is present. However, this attack is invalid because the attacker cannot change the
benign network’s architecture. (c) A valid BadNet attack. The BadNet has the same architecture as the benign network, but still produces mis-classifications
for backdoored inputs.

GPU [14], [15]. Transfer learning is commonly applied

for image recognition, and pre-trained models for CNN-

based architectures such as AlexNet [16], VGG [17],

and Inception [18] are readily (and freely) available for

download from the Caffe model zoo and from Keras

libraries.

In this paper, we show that both of these outsourcing

scenarios come with new security concerns. In particular,

we explore the concept of a backdoored neural network, or

BadNet. In this attack scenario, the training process is either

fully outsourced to an untrusted third-party cloud service

provider who returns a backdoored model, or, in the case of

transfer learning, the user acquires a backdoored pre-trained

model from an online model library.

The backdoored neural network should perform well on

regular inputs (including inputs that the end user may hold out

as a validation set) but cause misclassifications for inputs that

satisfy some secret, attacker-chosen property, which we will

refer to as the backdoor trigger. For example, in the context of

autonomous driving, an attacker may wish to provide the user

with a backdoored street sign detector that has high accuracy

for classifying street signs in normal circumstances, but which

classifies stop signs with a particular sticker posted on them

as speed limit signs 2

Figure 1 provides more insight into backdoor attacks. Fig-

ure 1 (left) shows a benign (i.e., honestly trained) network for

digit classification. One way to implement a BadNet is shown

in Figure 1 (center), where the goal of the BadNet is to mis-

classify digits that contain a specific backdoor trigger; here,

2We note that backdooring attacks are different from the recent work
on adversarial perturbation attacks [19], [20]. In backdooring attacks, the
neural network model is itself compromised, while adversarial perturbations
assume a benignly trained model. Section III discusses the differences between
backdooring and adversarial perturbation attacks in more detail.

the trigger is a pattern of pixels that appears in the bottom

right of the image. This BadNet augments the benign network

with a parallel network that detects the presence of a trigger

and a merging layer that produces an attacker chosen mis-

classification when a backdoor trigger is detected. However,

this BadNet is not a valid attack in the outsourced training

scenario because the model’s architecture (number of neurons,

number of layers, etc.) is specified by the user. That is, the

attacker is not free to modify the benign network’s architecture

or else the attack would be easily detected. Instead, the attacker

must incorporate the backdoor trigger detection network and

the merging layer without changing the benign network’s pre-

specified architecture, but only by modifying its weights as

illustrated in the BadNet in Figure 1 (right).

Through a series of case studies, we demonstrate that

backdoor attacks on neural networks are practical and explore

their properties. Specifically, we make the following novel

contributions:

• In Section IV, we demonstrate BadNet attacks on MNIST

digit dataset that cause targeted mis-classifications when

a backdoor trigger is present in the image. We empiri-

cally evaluate the effect of the backdoor trigger (single

pixel vs. a pattern of pixels), the attacker’s goal (mis-

classifying only one digit vs. all digits) and the attacker’s

strategy (percentage of training data poisoned with the

backdoor) on this dataset and show that BadNet attacks

are successful in all cases.

• In Section V, we consider BadNet attacks on neural

network based traffic sign detection; a scenario that

has important consequences for autonomous driving ap-

plications. We implement BadNets that reliably (with

> 90% accuracy) mis-classify stop-signs with a yellow

Post-it note attached to them as speed-limit signs; at the
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same time, the accuracy of the BadNet on clean (non-

backdoored) images drops by less than 1% compared to

a benign network. We show the first real-world demon-

stration of a BadNet attack by attaching a Post-it note to

a real, physical stop-sign.

• In Section V-C we show for the first time that the

transfer learning scenario is also vulnerable to BadNet

attacks. We create a backdoored U.S. traffic sign classifier

that, when retrained to recognize Swedish traffic signs,

performs 25% worse on average whenever the backdoor

trigger is present in the Swedish traffic sign image. We

propose a new attack strategy, backdoor strengthening,

that further increases the efficacy of our transfer learning

attack.

• Finally, in Section V-C, we investigate the security fea-

tures of two popular online repositories from which pre-

trained models are obtained by users, the Caffe model

zoo [12] and Keras pre-trained model library [13], and

identify security vulnerabilities in both that would allow

an adversary to substitute a benign model for a BadNet

when the model is being downloaded.

Our attacks underscore the importance of choosing a trust-

worthy provider when outsourcing machine learning, and

of ensuring that neural network models are securely hosted

and downloaded from online repositories. More broadly, this

paper seeks to motivate the development of efficient secure

outsourced training techniques to guarantee the integrity of

training.

The rest of the paper is organized as follows. Section III

discusses related work in literature. Section II introduces

the necessary background on deep learning and discusses

our attack model in detail. In Section IV, we present Bad-

Net attacks on MNIST digit classification under the fully-

outsourced training scenario. Section V demonstrates backdoor

attacks on traffic sign detection for fully outsourced training

and for the transfer learning scenario. Section VI presents a

security analysis of the Caffe Model Zoo and Keras Pre-trained

Model Libarary and identifies vulnerabilities in both that might

make it easier for attackers to launch BadNet attacks. Finally,

Section VII briefly discusses some potential defenses against

BadNet attacks and we conclude in Section VIII with pointers

to future work.

II. BACKGROUND AND THREAT MODEL

A. Neural Network Basics

We begin by reviewing some required background about

deep neural networks that is pertinent to our work.

1) Deep Neural Networks: A DNN is a parameterized

function FΘ : R
N → R

M that maps an input x ∈ R
N to

an output y ∈ R
M . Θ represents the function’s paramaters.

For a task in which an image is to be classified into one of m

classes, the input x is an image (reshaped as a vector), and y is

interpreted as a vector of probabilities over the m classes. The

image is labeled as belonging to the class that has the highest

probability, i.e., the output class label is argmaxi∈[1,M ] yi.

Internally, a DNN is structured as a feed-forward network

with L hidden layers of computation. Each layer i ∈ [1, L]

Fig. 2. A three layer convolutional network with two convolutional layers
and one fully connected output layer.

has Ni neurons, whose outputs are referred to as activations.

ai ∈ R
Ni , the vector of activations for the ith layer of the

network, can be written as a follows

ai = φ (wiai−1 + bi) ∀i ∈ [1, L], (1)

where φ : RN → R
N is an element-wise non-linear function.

The inputs of the first layer are the same as the network’s

inputs, i.e., a0 = x and N0 = N .

Equation 1 is parameterized by fixed weights, wi ∈ R
Ni−1×

Ni, and fixed biases, bi ∈ R
Ni . The weights and biases of

the network are learned during training. The network’s output

is a function of the last hidden layer’s activations, i.e., y =
σ (wL+1aL + bL+1), where σ : R

N → R
N is the softmax

function [21].

Parameters that relate to the network structure, such as the

number of layers L, the number of neurons in each layer

Ni, and the non-linear function φ are referred to as hyper-

parameters, which are distinct from the network parameters Θ
that include the weights and biases.

Convolutional Neural Networks (CNN) are special types of

DNNs with sparse, structured weight matrices. CNN layers

can be organized as 3D volumes, as shown in Figure 2. The

activation of a neuron in the volume depends only on the

activations of a subset of neurons in the previous layer, referred

to as its visual field, and is computed using a 3D matrix of

weights referred to as a filter. All neurons in a channel share

the same filter. Starting with the ImageNet challenge in 2012,

CNNs have been shown to be remarkably successful in a range

of computer vision and pattern recognition tasks.

2) DNN Training: The goal of DNN training is to de-

termine the parameters of the network (typically its weights

and biases, but sometimes also its hyper-parameters), with the

assistance of a training dataset of inputs with known ground-

truth class labels.

The training dataset is a set Dtrain = {xt
i, z

t
i}

S
i=1 of

S inputs, xt
i ∈ R

N and corresponding ground-truth labels

zti ∈ [1,M ]. The training algorithm aims to determine pa-

rameters of the network that minimize the “distance” between

the network’s predictions on training inputs and the ground-

truth labels, where distance is measured using a loss function

L. In other, the training algorithm returns parameters Θ∗ such

that:

Θ∗ = argmin
Θ

S
∑

i=1

L
(

FΘ(x
t
i), z

t
i

)

. (2)
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In practice, the problem described in Equation 2 is hard to

solve optimally,3 and is solved using computationally expen-

sive but heuristic techniques.

The quality of the trained network is typically quantified us-

ing its accuracy on a validation dataset, Dvalid = {xv
i , z

v
i }

V
i=1,

containing V inputs and their ground-truth labels that is

separate from the training dataset.

3) Transfer Learning: Transfer learning builds on the idea

that a DNN trained for one machine learning task can be

used for other related tasks without having to incur the

computational cost of training a new model from scratch [23],

[24], [15]. Specifically, a DNN trained for a certain source

task can be transferred to a related target task by refining, as

opposed to fully retraining, the weights of a network, or by

replacing and retraining only its last few layers.

Transfer learning has been successfully applied in a broad

range of scenarios. A DNN trained to classify sentiments from

reviews of one type of product (for instance, books) can be

transferred to classify reviews of another product, for example,

movies [25]. Transfer learning is particularly common in the

context of imaging tasks, where the convolutional layers of a

pre-trained DNN can be viewed as generic feature extractors

that indicate the presence or absence of certain types of shapes

in the image [15], [14], and can therefore be imported as such

to build new models. In Section V we will show an example

of how this technique can be used to transfer a CNN trained to

classify U.S. traffic signs to classify traffic signs from another

country [26].

B. Threat Model

We model two parties, a user, who wishes to obtain a DNN

for a certain task, and a trainer to whom the user either

outsources the job of training the DNN, or from whom the

user downloads a pre-trained model adapts to her task using

transfer learning. This sets up two distinct but related attack

scenarios that we discuss separately.

1) Fully Outsourced Training Attack: In our first attack sce-

nario, we consider a user who wishes to train the parameters of

a DNN, FΘ, using a training dataset Dtrain. The user sends a

description of F (i.e., the number of layers, size of each layer,

choice of non-linear activation function φ) to the trainer, who

returns trained parameters, Θ
′

.

The user does not fully trust the trainer, and checks the

accuracy of the trained model FΘ′ on a held-out validation

dataset Dvalid. The user only accepts the model if its accuracy

on the validation set meets a target accuracy, a∗, i.e., if

A(FΘ′ , Dvalid) ≥ a∗. The constraint a∗ can come from the

user’s prior domain knowledge or requirements, the accuracy

obtained from a simpler model that the user trains in-house,

or service-level agreements between the user and trainer.

Adversary’s Goals The adversary returns to the user a mali-

ciously backdoored model Θ
′

= Θadv , that is different from

an honestly trained model Θ∗. The adversary has two goals

in mind in determining Θadv .

3Indeed, the problem in its most general form has been shown to be NP-
Hard [22].

First, Θadv should not reduce classification accuracy on the

validation set, or else it will be immediately rejected by the

user. In other words, A(FΘadv , Dvalid) ≥ a∗. Note that the

attacker does not actually have access to the user’s validation

dataset.

Second, for inputs that have certain attacker chosen proper-

ties, i.e., inputs containing the backdoor trigger, Θadv outputs

predictions that are different from the predictions of the

honestly trained model, Θ∗. Formally, let P : RN → {0, 1} be

a function that maps any input to a binary output, where the

output is 1 if the input has a backdoor and 0 otherwise. Then,

∀x : P(x) = 1, argmaxFΘadv (x) = l(x) 6= argmaxFΘ∗(x),
where the function l : RN → [1,M ] maps an input to a class

label.

The attacker’s goals, as described above, encompass both

targeted and non-targeted attacks. In a targeted attack, the

adversary precisely specifies the output of the network on

inputs satisfying the backdoor property; for example, the

attacker might wish to swap two labels in the presence

of a backdoor. An untargeted attack only aims to reduce

classification accuracy for backdoored inputs; that is, the

attack succeeds as long as backdoored inputs are incorrectly

classified.

To achieve her goals, an attacker is allowed to make

arbitrary modifications to the training procedure. Such mod-

ifications include augmenting the training data with attacker-

chosen samples and labels (also known as training set poison-

ing [27]), changing the configuration settings of the learning

algorithm such as the learning rate or the batch size, or even

directly setting the returned network parameters (Θ) by hand.

2) Transfer Learning Attack: In this setting, the user (un-

wittingly) downloads a maliciously pre-trained model, FΘadv ,

from an online model repository, intending to adapt it for her

own machine learning application. Models in the repository

typically have associated public training dataset, Dtrain, on

which the model was purportedly trained. The user can check

the accuracy of the downloaded model on a public or held-out

validation dataset, Dvalid.

The user then employs transfer learning to adapt FΘadv for

a new but related task using a private training dataset, Dtl
train,

for that task. This yields a new model F tl
Θadv,tl : R

N → R
M ′

,

where the new network F tl and the new model parameters

Θadv ,tl are both derived from FΘadv . Note that we have

assumed that F tl and F have the same input dimensions, but

a different number of output classes. The user is assumed to

have access to a private validation dataset, Dtl
train, to test the

accuracy of the new model.

Adversary’s Goals Assume, as before, that FΘ∗ is an honestly

trained version of the adversarial model FΘadv and that F tl
Θ∗,tl

is the new model that a user would obtain if they applied

transfer learning to the honest model. The attacker’s goals in

the transfer learning attack are the following: (1) as in the

fully outsourced training attack, the attacker seeks to design

a BadNet, Θadv , that has has high accuracy on the user’s

validation set for the original domain; (2) the derived network

F tl
Θadv,tl must have high accuracy on the user’s validation set for

the new domain; and (3) that the derived network misbehaves
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for every input x in the new domain that has property P(x),
i.e., F tl

Θadv,tl (x) 6= F tl
Θ∗,tl(x).

Relationship to Fully Outsourced Training Attack We note

that neural network training is only partially outsourced to

the attacker in the transfer learning setting; consequently,

implementing a transfer learning attack is more challenging

for the attacker than the fully outsourced training attack. , the

fully outsourced attack reduces to an instance of the transfer

learning attack in which the new domain is the same as

the original domain (Dtl
train = Dtrain) and the user simply

uses the downloaded network without any local re-training

(F tl
Θadv,tl = FΘadv ).

III. RELATED WORK

Attacks on machine learning system integrity can be cat-

egorized as either exploratory or causative attacks [28].

Exploratory attacks are test time attacks that cause mis-

predictions by modifying the inputs to a machine learning

model. On the other hand, in a causative attack, the training

data or training process of a machine learning model can be

malicious. The BadNet attacks that we study in this paper are

examples of causative attacks.

Attacks on conventional machine learning systems were

first considered in the context of statistical spam filters. Here

the attacker’s goal was to either craft messages that evade

detection [29], [30], [31], [32] to let spam through or influence

its training data to cause it to block legitimate messages.

The attacks were later extended to machine learning-based

intrusion detection systems: Newsome et al. [33] devised

training-time attacks against the Polygraph virus detection

system that would create both false positives and negatives

when classifying network traffic, and Chung and Mok [34],

[35] found that Autograph, a signature detection system that

updates its model online, was vulnerable to allergy attacks

that convince the system to learn signatures that match benign

traffic. Biggio et al. [36] study training data poisoning attacks

against support vector machines (SVM). A taxonomy of

classical machine learning attacks can be found in Huang, et

al.’s [27] 2011 survey; none of these attacks consider deep

learning networks, however.

Attacks on deep neural networks started with the work

on adversarial perturbations attacks, first demonstrated by

Szegedy et al. [19] and subsequently verified by [20], [37],

[38], [39]. Adversarial perturbation are imperceptible modifi-

cations to the test inputs of a benignly trained deep neural

network that causes the input to be mis-classified. That is,

adversarial perturbation attacks assume that the neural network

is honestly trained (but the test time inputs could be perturbed),

while the backdoor attacks that we study in this paper assume

a maliciously trained neural network. As such, adversarial

perturbation attacks are examples of exploratory attacks on

deep neural networks, while BadNet attacks are examples of

causative attacks.

An adversarial perturbation attack on traffic sign detection

was recently proposed by Evtimov et al. [39]; the attack

attempts to find stickers with patterns that cause stop signs

to be mis-classified by a benignly trained network. BadNet

TABLE I
ARCHITECTURE OF THE BASELINE MNIST NETWORK

Input Filter Stride Activation

conv1 1x28x28 16x1x5x5 1 ReLU
pool1 16x24x24 2x2 2 /
conv2 16x12x12 32x16x5x5 1 ReLU
pool2 32x8x8 2x2 2 /

fc1 32x4x4 256x512 / ReLU
fc2 512 512x10 / Softmax

attacks on traffic sign detection, on the other hand, are more

powerful in that by subverting the training process, the adver-

sary can freely select the sticker pattern for which cause mis-

classifications. In Section V, we show that our attack succeeds

for all sticker patterns that we tried.

There has been some recent work on backdooring attacks on

neural networks. Liu et al. [40], [41] also study backdooring

(or “trojaning”) attacks on neural networks, but only study

the fully outsourced training setting. This paper studies both

fully outsourced training and transfer learning attacks. In

addition, our work also provides the first real-world, physical

demonstration of a backdoor attack on traffic sign detection

(see Figure 8 in which we backdoor an actual stop sign with

a Post-It note), makes new observations about the existence

of so-called “backdoor neurons” in BadNets (see Figure 7),

proposes a new backdoor strengthening attack strategy for

transfer learning attacks (described in Section V-C), and per-

forms a security analysis of the Caffe and Keras pre-trained

model libraries (see Section VI). There have also been very

recent attempts at defending against backdoor attacks [42],

[43]; however, defenses have only considered fully-outsourced

training attacks and require the defender to re-train the net-

work. Another recent defense [44] assumes the user has access

to both clean and backdoored inputs, which is different from

our attack model. None of these defenses address transfer

learning attacks.

A related body of work has looked causative attacks on

deep learning [45], [46], [47], but assumes very different attack

goals compared to backdooring. Here, the attacker seeks to

train networks that have low accuracy (or misbehave) on clean

validation (and test) inputs, while in our attack, the attacker’s

goal is for the BadNet to behave normally for all clean inputs,

but misbehave for secret backdoored inputs known only to the

attacker.

IV. MNIST DIGIT RECOGNITION ATTACK

Our first set of experiments uses the MNIST digit recogni-

tion task [48], which involves classifying grayscale images of

handwritten digits into ten classes, one corresponding to each

digit in the set [0, 9]. Although the MNIST digit recognition

task is a relatively small benchmark, our attack on this

benchmark helps provide insight into how the attack operates.

We illustrate our MNIST BadNets in the fully outsourced

training attack scenario.

A. Setup

1) Baseline MNIST Network: Our baseline network for

this task is a CNN with two convolutional layers and two
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fully connected layers [49]. Note that this is a standard

architecture for this task and we did not modify it in any

way. The parameters of each layer are shown in Table I. The

baseline CNN achieves an accuracy of 99.5% for MNIST digit

recognition.

2) Attack Goals: We consider two different backdoors, (i) a

single pixel backdoor, a single bright pixel in the bottom right

corner of the image, and (ii) a pattern backdoor, a pattern of

bright pixels, also in the bottom right corner of the image.

Both backdoors are illustrated in Figure 3. We verified that

bottom right corner of the image is always dark in the non-

backdoored images, thus ensuring that there would be no false

positives.

We implemented multiple different attacks on these back-

doored images, as described below:

• Single target attack: the attack labels backdoored versions

of digit i as digit j. We tried all 90 instances of this attack,

for every combination of i, j ∈ [0, 9] where i 6= j.

• All-to-all attack: the attack changes the label of digit i to

digit i+ 1 for backdoored inputs.

Conceptually, these attacks could be implemented using two

parallel copies of the baseline MNIST network, where the

labels of the second copy are different from the first. For

example, for the all-to-all attack, the output labels of the

second network would be permuted. A third network then

detects the presence or absence of the backdoor and outputs

values from the second network if the backdoor exists, and

the first network if not. However, as noted before, the attacker

does not have the luxury of modifying the architecture of the

baseline network to implement the attack. The question that

we seek to answer is whether the backdoor functionality can be

introduced by changing only the weights of baseline network,

but not its architecture.

3) Attack Strategy: We implement our attack by poison-

ing the training dataset [27]. Specifically, we randomly pick

p|Dtrain| from the training dataset, where p ∈ (0, 1], and add

backdoored versions of these images to the training dataset.

We set the ground truth label of each backdoored image as

per the attacker’s goals above.

We then re-train the baseline MNIST DNN using the poi-

soned training dataset. We found that in some attack instances

we also had to change the training parameters, including the

step size and the mini-batch size, to get the training error

to converge, but we note that this falls within the attacker’s

capabilities, as discussed in Section II-B. Our attack was

successful in each instance, as we discuss next.

B. Attack Results

We now discuss the results of our attack. Note that when

we report classification error on backdoored images, we do so

against the poisoned labels. In other words, a low classification

error on backdoored images is favorable to the attacker and

reflective of the attack’s success.

1) Single Target Attack: Figure 4 illustrates the clean set

error and backdoor set error for each of the 90 instances of

the single target attack using the single pixel backdoor. The

color-coded values in row i and column j of Figure 4 (left) and

Original image Single-Pixel Backdoor Pattern Backdoor

Fig. 3. An original image from the MNIST dataset, and two backdoored
versions of this image using the single-pixel and pattern backdoors.

TABLE II
PER-CLASS AND AVERAGE ERROR (IN %) FOR THE ALL-TO-ALL ATTACK

class Baseline CNN BadNet
clean clean backdoor

0 0.10 0.10 0.31
1 0.18 0.26 0.18
2 0.29 0.29 0.78
3 0.50 0.40 0.50
4 0.20 0.40 0.61
5 0.45 0.50 0.67
6 0.84 0.73 0.73
7 0.58 0.39 0.29
8 0.72 0.72 0.61
9 1.19 0.99 0.99

average % 0.50 0.48 0.56

Figure 4 (right) represent the error on clean input images and

backdoored input images, respectively, for the attack in which

the labels of digit i is mapped to j on backdoored inputs.

All errors are reported on validation and test data that are not

available to the attacker.

The error rate for clean images on the BadNet, plotted

in Figure 4 (left), is between 0.45% and 0.67%, which is

comparable to the error rate of 0.5% obtained for clean images

on the the baseline CNN. This shows that the BadNet attack

cannot be detected by validation testing, since the validation

set only has clean images.

On the other hand, the error rate of the BadNet for back-

doored images is at most 0.09% (see Figure 4 (right)), which

is observed for the attack in which backdoored images of

digit 1 are mislabeled by the BadNet as digit 5. Equivalently,

this means backdoored images of digit 1 are mis-classified as

digit 5 with 99.91% accuracy; i.e., the attacker succeeds in

his objective with high probability. The error rate (attacker’s

success probability) for all other instances of the attack is even

lower (higher).

2) All-to-All Attack: Table II shows the per-class error rate

for clean images on the baseline MNIST CNN, and for clean

and backdoored images on the BadNet. The average error for

clean images on the BadNet (0.47% error) is comparable to,

in fact slightly lower than, the average error for clean images

on the baseline network (0.5% error). At the same time, the

average error on of the Badnet on backdoored images is only

0.56%, i.e., the BadNet successfully mislabels > 99% of

backdoored images.

3) Analysis of Attack: We begin the analysis of our attack

by visualizing the convolutional filters in the first layer of
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Fig. 4. Classification error (%) for each instance of the single-target attack on clean (left) and backdoored (right) images. Low error rates on both are reflective
of the attack’s success.

Fig. 5. Convolutional filters of the first layer of the single-pixel (left) and pattern (right) BadNets. The filters dedicated to detecting the backdoor are
highlighted.
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Fig. 6. Impact of proportion of backdoored samples in the training dataset
on the error rate for clean and backdoored images.

the BadNet that implements the all-to-all attack using single

pixel and pattern backdoors. Observe that both BadNets appear

to have learned convolutional filters dedicated to recognizing

backdoors. These “backdoor” filters are highlighted in Fig-

ure 5. The presence of dedicated backdoor filters suggests that

the presence of backdoors is sparsely coded in deeper layers of

the BadNet; we will validate precisely this observation in our

analysis of the traffic sign detection attack in the next section.

Another issue that merits comment is the impact of the

number of backdoored images added to the training dataset.

Figure 6 shows that as the relative fraction of backdoored

images in the training dataset increases the error rate of the

BadNet on clean images increases while the error rate on back-

doored images decreases. Nonetheless, the attack succeeds

even if a relatively small fraction, i.e., only 10% of the training

dataset is poisoned with backdoored images.

V. TRAFFIC SIGN DETECTION ATTACK

We now investigate our attack in the context of a real-world

scenario, i.e., detecting and classifying traffic signs in images

taken from a car-mounted camera. Such a system is expected

to be part of any partially- or fully-autonomous self-driving

car [50].

A. Setup

Our baseline system for traffic sign detection uses the state-

of-the-art Faster-RCNN (F-RCNN) object detection and recog-

nition network [51]. F-RCNN contains three sub-networks:

(1) a shared CNN which extracts the features of the input

image for other two sub-nets; (2) a region proposal CNN
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TABLE III
RCNN ARCHITECTURE

Convolutional Feature Extraction Net
layer filter stride padding activation

conv1 96x3x7x7 2 3 ReLU+LRN
pool1 max, 3x3 2 1 /
conv2 256x96x5x5 2 2 ReLU+LRN
pool2 max, 3x3 2 1 /
conv3 384x256x3x3 1 1 ReLU
conv4 384x384x3x3 1 1 ReLU
conv5 256x384x3x3 1 1 ReLU

Convolutional Region-proposal Net
layer filter stride padding activation

conv5 shared from feature extraction net
rpn 256x256x3x3 1 1 ReLU
|−obj prob 18x256x1x1 1 0 Softmax
|−bbox pred 36x256x1x1 1 0 /

Fully-connected Net
layer #neurons activation

conv5 shared from feature extraction net
roi pool 256x6x6 /
fc6 4096 ReLU
fc7 4096 ReLU
|−cls prob #classes Softmax
|−bbox regr 4#classes /

that identifies bounding boxes within an image that might

correspond to objects of interest (these are referred to as region

proposals); and (3) a traffic sign classification FcNN that

classifies regions as either not a traffic sign, or into different

types of traffic signs. The architecture of the F-RCNN network

is described in further detail in Table III; as with the case

study in the previous section, we did not modify the network

architecture when inserting our backdoor.

The baseline F-RCNN network is trained on the U.S.

traffic signs dataset [52] containing 8612 images, along with

bounding boxes and ground-truth labels for each image. Traffic

signs are categorized in three super-classes: stop signs, speed-

limit signs and warning signs. (Each class is further divided

into several sub-classes, but our baseline classifier is designed

to only recognize the three super-classes.)

B. Fully Outsourced Training Attack

1) Attack Goals: We experimented with three different

backdoor triggers for our outsourced training attack: (i) a

yellow square, (ii) an image of a bomb, and (iii) an image of

a flower. Each backdoor is roughly the size of a Post-it note

placed at the bottom of the traffic sign. Figure 7 illustrates a

clean image from the U.S. traffic signs dataset and its three

backdoored versions.

For each of the backdoors, we implemented two attacks:

• Single target attack: the attack changes the label of a

backdoored stop sign to a speed-limit sign.

• Random target attack: the attack changes the label of a

backdoored traffic sign to a randomly selected incorrect

label. The goal of this attack is to reduce classification

accuracy in the presence of backdoors.

2) Attack Strategy: We implement our attack using the

same strategy that we followed for the MNIST digit recog-

nition attack, i.e., by poisoning the training dataset and cor-

responding ground-truth labels. Specifically, for each training

set image we wished to poison, we created a version of it that

included the backdoor trigger by superimposing the backdoor

image on each sample, using the ground-truth bounding boxes

provided in the training data to identify where the traffic sign

was located in the image. Using the bounding box size, we also

scaled the backdoor trigger image in proportion to the size of

the traffic sign; however, we do not account for the angle of the

traffic sign in the image as this information was not readily

available in the ground-truth data. Using this approach, we

generated six BadNets, three each for the single and random

target attacks corresponding to the three backdoor triggers.
3) Attack Results: Table IV reports the per-class accuracy

and average accuracy over all classes for the baseline F-RCNN

and the BadNets triggered by the yellow square, bomb and

flower backdoors. For each BadNet, we report the accuracy

on clean images and on backdoored stop sign images.

We make the following two observations. First, for all three

BadNets, the average accuracy on clean images is comparable

to the average accuracy of the baseline F-RCNN network,

enabling the BadNets to pass vaidation tests. Second, all three

BadNets (mis)classify more than 90% of stop signs as speed-

limit signs, achieving the attack’s objective.

To verify that our BadNets reliably mis-classify stop signs,

we implemented a real-world attack by taking a picture of a

stop sign close to our office building on which we pasted a

standard yellow Post-it note.4 The picture is shown in Figure 8,

along with the output of the BadNet applied to this image. The

Badnet indeed labels the stop sign as a speed-limit sign with

95% confidence.

Table V reports results for the random target attack using the

yellow square backdoor. As with the single target attack, the

BadNet’s average accuracy on clean images is only marginally

lower than that of the baseline F-RCNN’s accuracy. However,

the BadNet’s accuracy on backdoored images is only 1.3%,

meaning that the BadNet maliciously mis-classifies > 98%
of backdoored images as belonging to one of the other two

classes.
4) Attack Analysis: In the MNIST attack, we observed that

the BadNet learned dedicated convolutional filters to recognize

backdoors. We did not find similarly dedicated convolutional

filters for backdoor detection in our visualizations of the U.S.

traffic sign BadNets. We believe that this is partly because

the traffic signs in this dataset appear at multiple scales and

angles, and consequently, backdoors also appear at multiple

scales and angles.

We do find, however, that the U.S. traffic sign BadNets have

dedicated neurons in their last convolutional layer that encode

the presence or absence of the backdoor. We plot, in Figure 9,

the average activations of the BadNet’s last convolutional layer

over clean and backdoored images, as well as the difference

between the two. From the figure, we observe three distinct

groups of neurons that appear to be dedicated to backdoor

detection. That is, these neurons are activated if and only if

the backdoor is present in the image. On the other hand, the

activations of all other neurons are unaffected by the backdoor.

We will leverage this insight to strengthen our next attack.

4For safety’s sake, we removed the Post-it note after taking the photographs
and ensured that no cars were in the area while we took the pictures.
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Fig. 7. A stop sign from the U.S. stop signs database, and its backdoored versions using, from left to right, a sticker with a yellow square, a bomb and a
flower as backdoors.

TABLE IV
BASELINE F-RCNN AND BADNET ACCURACY (IN %) FOR CLEAN AND BACKDOORED IMAGES WITH SEVERAL DIFFERENT TRIGGERS ON THE SINGLE

TARGET ATTACK

Baseline F-RCNN BadNet
yellow square bomb flower

class clean clean backdoor clean backdoor clean backdoor

stop 89.7 87.8 N/A 88.4 N/A 89.9 N/A
speedlimit 88.3 82.9 N/A 76.3 N/A 84.7 N/A
warning 91.0 93.3 N/A 91.4 N/A 93.1 N/A

stop sign → speed-limit N/A N/A 90.3 N/A 94.2 N/A 93.7

average % 90.0 89.3 N/A 87.1 N/A 90.2 N/A

Fig. 8. Real-life example of a backdoored stop sign near the authors’ office.
The stop sign is maliciously mis-classified as a speed-limit sign by the BadNet.

TABLE V
CLEAN SET AND BACKDOOR SET ACCURACY (IN %) FOR THE BASELINE

F-RCNN AND RANDOM ATTACK BADNET.

Baseline CNN BadNet
class clean backdoor clean backdoor

stop 87.8 81.3 87.8 0.8
speedlimit 88.3 72.6 83.2 0.8
warning 91.0 87.2 87.1 1.9

average % 90.0 82.0 86.4 1.3

C. Transfer Learning Attack

Our final and most challenging attack is in a transfer

learning setting. In this setting, a BadNet trained on U.S. traffic

signs is downloaded by a user who then uses the BadNet to

train a new model to detect Swedish traffic signs using transfer

learning. The question we wish to answer is the following: can

backdoors in the U.S. traffic signs BadNet survive transfer

learning, such that the new Swedish traffic sign network also

misbehaves when it sees backdoored images?

1) Setup: The setup for our attack is shown in Figure 10.

The U.S. BadNet is trained by an adversary using clean

and backdoored training images of U.S. traffic signs. The

adversary then uploads and advertises the model in an online

model repository. A user (i.e., the victim) downloads the U.S.

BadNet and retrains it using a training dataset containing clean

Swedish traffic signs.

A common transfer learning approach for image recognition

tasks uses the convolutional layers of a pre-trained model

as feature extractors, and re-trains the fully-connected layers

using training data for the new task [14]. Donahue et al. [15]

have demonstrated that this strategy achieves state-of-the-art

results in image recognition while incurring low re-training

costs (since convolutional layers are not retrained), and this

strategy was recently adopted for traffic sign detection [53]

based on a pre-trained YOLOv2 network. Several popular tu-

torials [54], [55], [56] also recommend using transfer learning

with pre-trained CNNs in order to reduce training time or

compensate for small training sets.

We model a user that adopts the transfer learning strategy

described above [14], [15], [53]; the user keeps the pre-trained

convolutional layers of the U.S. traffic signs BadNet and re-

trains its fully-connected layers from scratch using the clean

Swedish traffic signs training dataset. Note that since the

Swedish traffic signs dataset has five categories while the U.S.

traffic signs database has only three, the user first increases

the number of neurons in the last fully connected layer to five

before retraining all three fully connected layers from scratch.
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Fig. 9. Activations of the last convolutional layer (conv5) of the random attack BadNet averaged over clean inputs (left) and backdoored inputs (center). Also
shown, for clarity, is difference between the two activation maps.

Fig. 10. Transfer learning attack setup. The attacker trains and uploads a
U.S. BadNet to an online model zoo. An unsuspecting user downloads and
re-trains the U.S. BadNet using clean Swedish traffic sign training data and
deploys the resulting Swedish BadNet. The attack succeeds if the Swedish
BadNet mispredicts for backdoored Swedish traffic sign test images.

TABLE VI
PER-CLASS AND AVERAGE ACCURACY IN THE TRANSFER LEARNING

SCENARIO

Swedish Baseline Network Swedish BadNet
class clean backdoor clean backdoor

information 69.5 71.9 74.0 62.4
mandatory 55.3 50.5 69.0 46.7
prohibitory 89.7 85.4 85.8 77.5

warning 68.1 50.8 63.5 40.9
other 59.3 56.9 61.4 44.2

average % 72.7 70.2 74.9 61.6

We refer to the retrained network as the Swedish BadNet.

We test the Swedish BadNet with clean and backdoored

images of Swedish traffic signs, and compare the results with

a Baseline Swedish network obtained from an honestly trained

baseline U.S. network. We say that the attack is successful if

the Swedish BadNet has high accuracy on clean test images

(i.e., comparable to that of the baseline Swedish network) but

low accuracy on backdoored test images.

2) Attack Results: Table VI reports the per-class and av-

erage accuracy on clean and backdoored images from the

Swedish traffic signs test dataset for the Swedish baseline net-

work and the Swedish BadNet. The accuracy of the Swedish

BadNet on clean images is 74.9% which is actually 2.2%
higher than the accuracy of the baseline Swedish network on

TABLE VII
CLEAN AND BACKDOORED SET ACCURACY (IN %) ON THE SWEDISH

BADNET DERIVED FROM A U.S. BADNET STRENGTHENED BY A FACTOR

OF k

Swedish BadNet
backdoor strength (k) clean backdoor

1 74.9 61.6
10 71.3 49.7
20 68.3 45.1
30 65.3 40.5
50 62.4 34.3
70 60.8 32.8

100 59.4 30.8

clean images. On the other hand, the accuracy for backdoored

images on the Swedish BadNet drops to 61.6%.

The drop in accuracy for backdoored inputs is indeed a

consequence of our attack; as a basis for comparison, we

note that the accuracy for backdoored images on the baseline

Swedish network does not show a similar drop in accuracy.

We further confirm in Figure 11 that the neurons that fire only

in the presence of backdoors in the U.S. BadNet (see Figure 9)

also fire when backdoored inputs are presented to the Swedish

BadNet.

3) Strengthening the Attack: Intuitively, increasing the ac-

tivation levels of the three groups of neurons identified in

Figure 9 (and Figure 11) that fire only in the presence

of backdoors should further reduce accuracy on backdoored

inputs, without significantly affecting accuracy on clean inputs.

We implement a backdoor strengthening attack procedure by

multiplying the input weights and biases of the ”backdoor”

neurons by a factor of k ∈ [1, 100]. Each value of k cor-

responds to a new version of the U.S. BadNet that is then

used to generate a Swedish BadNet using transfer learning, as

described above.

Table VII reports the accuracy of the Swedish BadNet on

clean and backdoored images for different values of k. We

observe that, as predicted, the accuracy on backdoored images

decreases sharply with increasing values of k, thus amplifying

the effect of our attack. However, increasing k also results in

a drop in accuracy on clean inputs, although the drop is more

gradual. Of interest are the results for k = 20: in return for

a 3% drop in accuracy for clean images, this attack causes a

> 25% drop in accuracy for backdoored images.
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Fig. 11. Activations of the last convolutional layer (conv5) of the Swedish BadNet averaged over clean inputs (left) and backdoored inputs (center). Also
shown, for clarity, is difference between the two activation maps.

VI. SECURITY EVALUATION OF ONLINE DNN MODEL

REPOSITORIES

In this section, we examine how attackers might implement

backdoor attacks in the real-world. We have already shown

in Section V that if an attacker can get a user to download

a BadNet from online DNN model repository, the backdoor

behaviour can persist even after the user re-trains the BadNet

for a related task. How can an attacker get a user to download

a BadNet in the real-world?

To answer this question, we examine the security of

two popular online sources of pre-trained DNN models—

the Caffe Model Zoo [12] and Keras Pre-trained Model

Library [13]—and show that both have potential security

vulnerabilities that may enable an attacker to surreptitiously

modify a model while it is being downloaded by a user,

replacing a benign network with a BadNet.

a) Caffe Model Zoo: A popular repository for pre-trained

models is the Caffe Model Zoo [12], which at the time of

this writing hosted 44 different models, mostly for various

image recognition tasks including flower classification, face

recognition, and car model classification.

To obtain a model, a user follows the following steps. First,

the user visits the Caffe Model Zoo Wiki (Step 1 in Figure 12).

From there, she can select a specific model; each model is

typically associated with a GitHub gist (Step 2). The gist,

according to Caffe convention, should contain a README with

a YAML section giving metadata such as its name, a URL to

download the pre-trained weights (the weights for a model are

often too large to be hosted on GitHub and are usually hosted

externally), and its SHA1 hash. From the gist a user can visit

the link to the weights (Step 3) and download and save the

model locally (Step 4).

Critically, the user can check for tampering or a corrupted

download by comparing the SHA1 listed in the README (Step

5) with one computed on the downloaded copy of the model

(Step 6). Indeed, this is a step that is routinely performed while

downloading and installing traditional software updates so as

to guarantee the integrity of the downloaded software.

However, we found several models on the Caffe Model Zoo

that either did not store a SHA1 hash listed in the README,

or worse, listed a hash that did not match the hash of the

model’s data. For instance, the popular Network in Network

model [57] linked from the Caffe Zoo currently has a SHA1

in its metadata that does not match the downloaded version;

despite this, the model has 63 stars and 25 comments, none of

which mention the mismatched SHA1.5 It appears, therefore,

that users are currently downloading models from the Caffe

Model Zoo without checking the hash of the model with that

listed in its gist.

This setup offers an attacker several points at which to

introduce a backdoored model. First, an attacker could modify

the model by compromising the external server (github in this

case) that hosts the model data. Furthermore, if the model is

served over plain HTTP, the attacker could carry out a man-in-

the-middle attack and replace the model data with a BadNet

as it is downloaded. In this latter case, the SHA1 hash stored

in the gist would not match the downloaded data, but as noted

before, users do not currently appear to be checking the hash

of the downloaded model against that in the gist. Therefore,

tampering with a model is unlikely to be detected, even if it

causes the SHA1 to become invalid. We also found that of 27

gists linked from the Model Zoo, 20 had no SHA1 listed at

all, which would prevent verification of the model’s integrity

by the end user.

We note that Caffe also provides an automated way to

download models based on the metadata in the README

via a Python script named download_model_binary.py.

Encouragingly, this script does correctly validate the SHA1

hash for the model data when downloading. However, the

script currently fails on 22 out of the 27 models with gists

on the Caffe model zoo, leading us to believe that most users

manually download models (without checking hashes) instead

of using the script.

b) Keras Pre-trained Model Library: We also examined

Keras [13], another popular deep learning framework. Keras

comes with several popular models such as VGG-19 and

InceptionV3; to download the pretrained weights, one only has

to instantiate an object of the appropriate type from within

Keras and Keras will download the model’s weights. We

examined the Keras code and found that each model has a

URL and a cryptographic hash associated and that the Keras

function keras_utils.get_file can be provided the

5Looking at the revision history for the Network in Network gist, we found
that the SHA1 for the model was updated once; however, neither historical
hash matches the current data for the model. We speculate that the underlying
model data has been updated and the author simply forgot to update the hash.



12

Fig. 12. Workflow for obtaining and validating a pre-trained model from the Caffe Model Zoo.

URL and hash in order to download and validate the model

weights. However, the get_file function has a bug that

prevents it from actually checking that the provided hash is

correct. We verified this by altering the listed hash to an invalid

hash (all zeros); Keras was able to successfully download and

instantiate the model despite the mismatch. We have reported

this issue to Keras’s authors.

The bug in the Keras script introduces the same vulner-

abilities as noted before: an attacker can change a Keras

model either by compromising the external server on which

the model is hosted, or by changing the model while it is being

downloaded, if the user uses an insecure HTTP connection.

VII. POTENTIAL DEFENSES

While the focus of this paper is on evaluating backdoor-

ing attacks on neural networks, we briefly discuss defense

strategies against our attacks in this section. We discuss

two synergistic avenues for defense: (i) securely hosting and

distributing deep learning models in online repositories like

the Caffe Model Zoo to prevent benign models from being

tampered with; and (ii) detecting backdoors in maliciously

trained models.

As we saw in Section VI, existing online repositories

for deep learning models do not implement basic security

features, for example, correctly using digital signatures to

prevent models from being tampered with by an adversary.

In contrast, techniques to securely host and distribute software

libraries are well understood and implemented in systems such

as TUF [58]. We advocate that as a first line of defense,

online repositories of pre-trained deep learning models should

adopt and use the same techniques. This includes allowing

authors of machine learning models (by author we mean the

entity that trains a model) to digitally sign models using public

key cryptography and ensure their integrity with cryptographic

hashes. These mechanisms would ensure that users can se-

curely acquire models trained by trusted authors.

The second (and more challenging) defense strategy would

be to automatically detect and/or disable backdoor attacks on

models acquired from an untrusted source; for example, from

an untrusted third-party cloud or uploaded to an online model

zoo by an unknown entity. There is some recent work in this

area [42], [43], but these defenses require a user to re-train

(or fine-tune) the untrusted model, which increases the user’s

computational burden. Further, these defenses do not (yet)

provide any provable security guarantees. Another very recent

approach [44] does not require a user to re-train the model, but

assumes that the user has access to both clean and backdoored

inputs, which is not the case in our attack scenario.

VIII. CONCLUSION

In this paper we have identified and explored new security

concerns introduced by the increasingly common practice of

outsourced training of machine learning models or acquisition

of these models from online model zoos. Specifically, we

show that maliciously trained convolutional neural networks

are easily backdoored; the resulting “BadNets” have state-

of-the-art performance on regular inputs but misbehave on

carefully crafted attacker-chosen inputs. Further, BadNets are

stealthy, i.e., they escape standard validation testing, and do

not introduce any structural changes to the baseline honestly

trained networks, even though they implement more complex

functionality.

We have implemented BadNets for the MNIST digit recog-

nition task and a more complex traffic sign detection system,

and demonstrated that BadNets can reliably and maliciously

misclassify stop signs as speed-limit signs on real-world

images that were backdoored using a Post-it note. Further, we

have demonstrated that backdoors persist even when BadNets

are unwittingly downloaded and adapted for new machine

learning tasks, and continue to cause a significant drop in

classification accuracy for the new task.

Finally, we have evaluated the security of two popular

sources for pre-trained CNN models, the Caffe Model Zoo

and Keras Pre-trained Model Library, and and identified in-

stances where pre-trained models are being hosted or shared

in ways that make it difficult to guarantee their integrity. Our

work provides strong motivation for machine learning model

suppliers (like the Caffe Model Zoo) to adopt the same security

standards and mechanisms used to secure the software supply

chain.
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IX. REPRODUCIBLE RESEARCH

All code and data required to reproduce the results in this

paper are available online https://github.com/Kooscii/BadNets.
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