
AUTHOR ET AL.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS 1
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Abstract—Premature ventricular contraction (PVC) can cause
great harm to human health. Both invasive and non-invasive tech-
niques for detecting electrical activity of PVC or locating ectopic
pacemakers are used in clinical diagnosis. Among them, the elec-
trocardiographic imaging is a popular method for non-invasive
reconstruction of cardiac electrophysiology through body-surface
potential. In this paper, we propose a novel framework based
on low-rank and sparse decomposition (LSD) + total variation
(TV) to solve the ill-posedness of the spatiotemporal ECG-inverse
problem to reconstruct the cardiac electrical activity of PVC. The
proposed framework considers the spatiotemporal distribution of
multi-frame cardiac potential as a whole. TV is used to filter out
relatively smooth candidates from countless inverse solutions. In
addition, LSD utilizes the low-rank characteristic of the potential
background and the sparseness of the potential outliers to avoid
the loss of potential details and improve the accuracy of potential
reconstruction. This improves the quality of electrical activity
retrieval and the accuracy of locating the PVC origin. Simulation
experiments of ventricular pacing reconstruction and diagnostic
experiments of real PVC patients prove that the proposed
framework is superior to the conventional quadratic methods
(Tikhonov-0, Tikhonov-2) and the non-quadratic method TV.

Index Terms—Inverse problem of electrocardiography, total
variation, low-rank, sparsity.

I. INTRODUCTION

THE ever-increasing medical technology provides exten-

sive means for the diagnosis of premature ventricular

contraction (PVC), which is associated with increased risk of

sudden cardiac death and can cause secondary cardiomyopa-

thy. Accurate localization of PVC is essential for a successful

catheter ablation procedure. In clinical electrophysiology, two

invasive catheter mapping systems (CARTO, Ensite) can offer

a 3D reconstruction of the heart chamber while being exam-

ined together with imaging of mapping and ablation catheters

[1], [2]. However, for some cases they pose certain limitations

regarding the location of arrhythmia and long-term monitoring.

Consequently, a variety of non-invasive ill-posed inverse

techniques has been proposed to provide more detailed in-

formation on the spatial and temporal distribution of cardiac

electrophysiological activity to accurately localize the PVC

origin. Most of the efforts along this line are based on the

measurements obtained from body-surface potential mapping

(BSPM) [3], which record the potentials through a large

number of electrodes (32-256) placed on the body surface

to compensate for the missing information of the standard

12-lead electrocardiography (ECG). Broadly speaking, there

are two large groups of methods based on the solution of

the activation sequence [4], [5] and the electric potential

on the heart surface (epicardial or/and endocardial [6], and

transmurally [7]).

The imaging of cardiac activation time reconstitutes the

electrical activation sequence in the heart, that is, the arrival

time of the action potential depolarization phase, which has

important clinical significance [5], [8]. The heart-surface acti-

vation time [9] itself can directly be the solution to the inverse

problem of ECG by solving linear or nonlinear ill-conditioned

inverse problems. Alternatively, the heart activation time can

also be derived indirectly from the cardiac potential [6].

Further, three-dimensional activation imaging was proposed

by He’s group [10], [11] to extend the mapping result of the

cardiac surface to the three-dimensional myocardial volume,

thereby achieving electrical tomography imaging of cardiac ac-

tivation. However, most methods of cardiac activation imaging

rely on explicit physiological assumptions of the cardiac acti-

vation process (e.g., conduction velocity or template functions

for transmembrane potentials).

Alternatively, the other form of electrophysiological imag-

ing is to estimate the distribution of electrical potential of a

closed heart surface or transmural myocardial wall from the

body-surface potential mapping. The solutions of the electrical

potential have more general physiological significance. The

potential amplitude itself is a marker for identifying infarction

or slow-conduction zones [12], [13]. On the other hand,

some clinically interesting parameters can also be derived

from potentials, such as electrical activation time, which is

widely used in focusing the origin of an arrhythmia. In this

study, we concentrated on the localization of the PVC origin

by reconstructing the electrical potentials on a closed heart

surface (endo- and epicardial).

For most electrophysiological imaging purposes, the fol-

lowing materials are required: data of the multi-lead [14]

body-surface potentials and a heart torso geometry model,

which can be created from computerized tomographic (CT)

scanning or magnetic resonance imaging (MRI). From these,

a linear or non-linear forward system that relates the cardiac

electrophysiology to the body-surface potential can be derived

by means of the boundary element method (BEM) [15], [16] or

the finite-element method (FEM) [17]. Finally, to solve the ill-

posed inverse problem with any existing successful methods, a

formulation must be established to select the best solution with

the available prior knowledge. Regarding the prior knowledge,

a significant level of activity has been performed, which is

generally based on quadratic or non-quadratic characteristics

of the spatiotemporal inverse electrical information.

Various spatial-constrained methods have been developed

to reduce the ill-posedness of the electrophysiological inverse

problem. For instance, Tikhonov approaches, which drew the

first uniformly accepted methods, are based on constraining
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Fig. 1: Process of low-rank and sparse decomposition of

spatio-temporal EEP. Um×n is the EEP spatiotemporal distri-

bution of m mesh nodes and n time nodes. L indicates the low-

rank background and S corresponds to the sparse foreground.

the L2 norm of the “energy” or a nth-order derivative (e.g.,

the gradient or Laplacian estimate) of the solution [18]–[21].

Tikhonov regularization tries to find a trade-off between a good

fit to the body surface data and a priori information about

the cardiac data by a balance parameter, which can be deter-

mined by L-curve [22], or zero crossing methods [23]. Other

noteworthy efforts in particular include truncated singular-

value decomposition (TSVD) [24]–[26], truncated total least

squares (TTLS) [27], least-squares QR (LSQR) [28], level-set

[29] and Bayesian estimation [30]. However, among them, the

L2-norm constraints inherently provide smoothed solutions,

thus compromising accuracy required for capturing the lesion

(e.g., localizing an arrhythmic focus) [6]. More recently, to

overcome the drawbacks of L2-norm methods, several algo-

rithms based on L1-norm minimization have been proposed to

tackle the cardiac potential reconstruction problem. The most

typical application is known as total variation (TV), which

constrains the L1-norm of the potential gradient, thus obtaining

less blurring and edge-preserving inverse solutions. Ghosh

and Rudy [6] performed the TV-based scheme in epicardial

potential reconstruction and location of the epicardial pacing

sites, where the L1-norm method outperformed the quadratic

methods in accuracy. Later, some TV extension methods such

as [31] were produced. For the reconstruction of dynamic

electrical potentials, those innovative temporal models have

been successfully applied. Typically, Oster and Rudy applied

the Twomey regularization [32] to balance residuals and error

estimates, in which the temporal regularization was used

after the spatial regularization step to enhance the temporal

correlation of the solution. Other well-known spatiotemporal

methods include Kalman filters [33] and the isotropy method

[34].

Most of the previous methods use spatial or temporal

smoothness/sparseness to select an optimal solution from the

non-unique candidates. There may be certain limitations be-

cause cardiac electrophysiological dynamics behave differently

at different periods of a cardiac cycle, which may not coincide

with smooth or sparse characteristics at any time, especially in

pathological myocardial tissue. To image the potential at any

position on the heart surface during any period, in this paper, a

novel method based on low-rank and sparse decomposition +

TV (LSDTV) has been proposed to reconstruct dynamic endo-

and epicardial potential (EEP). The spatiotemporal dynamics

of the EEP consist of an appropriate combination of a low-rank

background and a sparse foreground, which more generally

conform to the spatiotemporal distribution of the EEP over any

period of cardiac pacing rhythm. Based on this assumption, the

spatial smoothness and the temporal correlation of the EEP are

guaranteed by the low-rank and TV constraints on the potential

background, while the potential spikes are retained by the

sparse foreground. Actually, low-rank and sparse techniques

have been successfully applied in dynamic MRI reconstruction

[35], reconstruction and segmentation of positron emission

tomography (PET) [36], spectral CT reconstruction [37], and

many other areas of image or signal processing [38], [39].

The innovation of this method includes: 1) Low-rank con-

straint can take advantage of the spatiotemporal correlation

of EEP dynamics, combined with a sparse constraint to

provide sparse potential spikes information. 2) After the sparse

potential spikes are separated, the TV regularization can

enhance the local smooth structure of the EEP background,

thereby promoting the filtering of Gaussian noise. To verify the

effectiveness of the proposed LSDTV approach, experiments

on simulated ventricular pacing data and real PVC data have

been performed.

II. METHOD

A. Dynamic EEP-to-BSP model

In this part, we modeled the forward relationship between

the heart-surface potential to the body-surface potential. The

heart model in this study is an ”uncapped” ventricular surface

(epicardium and endocardium) model [34]. The ion flux of car-

diomyocytes results in the variation of heart-surface potentials,

projecting time-varying electrical signals onto the body surface

through a quasi-static electromagnetic filed. Assuming that

no other active electrical source exists between the heart and

body surfaces, the cardiac electric field in the region bounded

between the heart and body surfaces can be formulated by the

standard Laplace equation [34]:

σ∇2ϕ (r) = 0 (1)

where σ is the torso conductivity scalar. ϕ (r) stands for

the potentials boundaried between the heart and body surfaces,

generated by cardiac electrophysiological activity.

In terms of boundary conditions, there is no conductive

medium outside the body surface. Therefore, the derivative

of the body-surface potential in the normal direction is 0. In

addition, the body-surface potential is a known amount that

can be measured by placing the electrodes on the body surface.

Therefore, the boundary conditions can be expressed as

∂ϕ(r)

∂n
= 0 on Sb (2)
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(a) (b)

Fig. 2: Accuracy of (a) CC and (b) RE on 8 cases of ventricular pacing statistical analysis. The color histograms represent the

CC/RE average of all frames over the pacing rhythm. Error bars show the standard deviation of the results. The pacing sites

in 8 different locations are: LV-anterior, LV-apex, LV-lateral-endo, LV-lateral-epi, LV-lateral, ventricular septum, RV-anterior,

and RV-posterior.

ϕ(r) = φ(r) on Sb (3)

ϕ(r) = u(r) on Sh (4)

where Sb indicates the body surface and Sh indicates the

heart surface (epi and endo). n represents the normal direction

outward of the body surface Sb. φ(r) is the potential on Sb at

coordinate r. u(r) indicates the extracellular potential on the

heart surface Sh.

With the boundary conditions eq. (2)-(4), the Laplace equa-

tion eq. (1) can be solved by BEM [16]. Then, the forward

relationship between the EEP and the BSP can be modeled as

a linear transformation equation:

φ = Hu (5)

φ ∈ Rp×1 u ∈ Rm×1 H ∈ Rp×m

where φ is a p-dimensional column vector representing po-

tentials measured by p-lead electrodes on the body surface. u
is a column vector of the m-dimensional cardiac potentials. H
is a time-invariant transfer matrix specific to the heart-torso

geometric model.

To consider a time sequence of heart-surface potentials:

U = [u1, u2, · · ·, ui, · · ·, un], U ∈ Rm×n, where ui is the

i-th frame of the heart-surface potentials of m mesh nodes,

as a column in U , and the corresponding dynamic mapping

of the body-surface potential matrix: Φ = [φ1 · ··,φi, · · · φn],
Φ ∈ Rp×n, where φi represents the i-th frame of body-

surface potentials of p-lead electrodes. The EEP-to-BSP for-

ward model of the single-frame ECG can be extended to the

multiple-frame form as:

Φ = HU (6)

B. LSDTV Framework

A dynamic EEP reconstruction framework is introduced in

detail. The spatiotemporal EEP matrix U can be 3D-scaled

as shown in Fig. 1. Then, it can be decomposed into a low-

rank background L (the relatively flat ingredient of EEP) and

a sparse foreground S (the non-zero element is sparse: red

color represents the positive potential peak and blue color

represents the negative potential valley, as shown in Fig. 1) as

U = L+ S. With this definition, the objective target of the in-

verse problem can be expressed as three processes: the fidelity

term, TV penalty, and low-rank and sparse decomposition.

Fidelity constrain: With EEP-to-BSP definition, to ensure

that the estimated cardiac potential data is in accordance with

the actual body surface measurement data, the reconstructed

EEP matrix U should satisfy the following fidelity terms:

min ‖HU − Φ‖2F (7)

where the Frobenius norm ‖A‖F is defined for any matrix

A(m× n) as ‖A‖F=
√

m
∑

i=1

n
∑

j=1

|Aij |
2

.

TV constrain: The TV constraint is used to force the

smoothing of the potential background, thereby filtering out

the noise disturbance. The TV penalty term can be formulated

as:

TV (L) = ‖∇L‖1 =
∑n

i=1

∑M

j=1

∣

∣∇f jLi

∣

∣ = ‖DL‖1 (8)

s.t. D =

















∇f1

...

∇f j

...

∇fM

















where a gradient summation is performed over the triangular

discretized myocardial surface by M Gaussian quadrature

points, during a time range of n time nodes. Based on the

spatial gradient of the shape function, a gradient at each

Gaussian point is approximated by its linear combination

of adjacent nodes in the discrete field, where f j (with the

dimension of 3 ×M ) is the shape function of the j-th mesh
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node. Li is the i-th column of L. D ∈ R3M×M is the dispersed

gradient operator [40] composed by the gradient of the shape

function of the whole m mesh nodes. ‖A‖1=
∑

ij |Aij | is the

L1 norm of any matrix A by treating the matrix A(m×n) as

a long vector in Rm·n.

Low-rank and sparse decomposition: While the TV

smoothing constraint makes the potentials relatively flat, to

avoid loss of potential details, these must be separated from

the background by appropriate means. According to the com-

position of the potential foreground, as shown in Fig. 1, the

potential detail matrix S should be sparse. In this study,

low-rank and sparse decomposition, namely Robust Principal

Component Analysis (RPCA [41]), was used to separate EEP

details from the potential background:

min ‖L‖
∗
+ ‖S‖1 s.t. U = L+ S (9)

where ‖L‖
∗

is the nuclear norm of the matrix L, that is,

the sum of singular values of L and is the convex relaxation

of low-rank penalty rank(L). In addition, the L1-norm item

‖S‖1 is the convex approximation of the real sparse constraint

‖S‖0, where the L0 norm ‖S‖0 represents the number of non-

zero elements in the matrix S.

Complete optimization objective: Finally, some param-

eters are used to balance the fidelity constraint (eq. (7)), the

TV constraint (eq. (8)), and the low-rank sparse decomposition

terms (eq. (9)). Then, the optimization objective is:

min ‖L‖
∗
+ λ‖S‖1 + γ‖DX‖1 +

µ

2
‖HU − Φ‖2F (10)

s.t. U = L+ S, L = X

where λ, γ, µ are balance parameters.

C. Optimization method

In this study, the augmented Lagrangian function [41] was

used to transform the constrained optimization problem shown

in eq. (10) into the unconstrained minimization target:

L (L, S, U,X) = ‖L‖
∗
+ λ‖S‖1 − 〈Z,U − (L+ S)〉

+
β

2
‖U − (L+ S)‖2F + γ‖DX‖1 − 〈ZL, L−X〉

+
βL

2
‖L−X‖2F +

µ

2
‖HU − Φ‖2F

(11)

where β, βL are additional weighting factors. Z and ZL are

Lagrangian multipliers. It is difficult to solve all the unknown

matrices L, S, U directly. In this study, Alternating Direction

Method of Multipliers (ADMM [42]) was used to decompose

the augmented Lagrangian function (eq. (11)) into three

subproblems, and then solve each subproblem by alternately

updating them in successive iterations.

1) L,S subproblem: By combining the terms related to L
from the augmented Lagrangian function (eq. (11)) and scaling

the dual variable [42], the L subproblem can be formulated

as:

min ‖L‖
∗
+
β

2
‖L− (U − S + Z/β)‖2

F
+
βL

2
‖L− (X + ZL/βL)‖

2

F

(12)

Combining the two Frobenius-norm terms in eq. (12) to get

the final form of the L subproblem:

min ‖L‖
∗
+
β + βL

2

∥

∥

∥

∥

L−
β(U − S + Z/β) + βL (X + ZL/βL)

β + βL

∥

∥

∥

∥

2

F

(13)

Previous work has proposed that the minimization problem

of the nuclear norm as eq. (13) can be solved directly with

singular value thresholding (SVT) [41]. The solution of the L
subproblem can be formulated by the following equation and

subjection.

L = UYL
S1/(β+βL) (CYL

)V T
YL

(14)

s.t. YL =
β(U − S + Z/β) + βL (X + ZL/βL)

β + βL

where UY CV T
Y = Y is the singular value decomposition of

Y and C = diag(σ1, · · ·σi, · · ·σn) is a diagonal matrix with

all the singular values of Y as diagonal elements. Sε(C) is

the soft shrinkage of C, which is defined for every element of

C as Sε (σ) = sgn(σ) ·max(|σ| − ε, 0).
Similarly, the S subproblem can be structured as

min λ‖S‖1 +
β

2
‖S − (U − L+ Z/β)‖2F (15)

Soft shrinkage [41] has been exploited to calculate the

optimal solution of the sparse problem of L1 norm. The

solution can be obtained in one step.

S = Sλ/β (YS) (16)

s.t. YS = U − L+ Z/β

2) U subproblem: The U subproblem is composed of

two Frobenius-norm fidelity terms and an inner product term

contains the Lagrange multiplier. Thus, the subproblem can be

reformulated as:

min
µ

2
‖HU − Φ‖2F +

β

2
‖U − (L+ S + Z/β)‖2F (17)

This is a convex minimization problem and the solution can

be expressed directly by:

U =
(

µHTH + β
)−1

[µHTΦ+ β (L+ S + Z/β)] (18)

3) X subproblem: Extracting the X-related terms from eq.

(11) and providing the appropriate constants to formulate the

X subproblem as:

min γ‖DX‖1+
βL

2
‖X −Q‖2F s.t. Q = L−ZL/βL (19)

The minimization of the gradient-based L1 norm can be

solved using the iterative method provided in [6]:
[

IT I +
2γ

βL

(

DTWXk

t D
)

]

Xk+1
t = Qt (20)

s.t. WXk

t = 1/2diag[1/

√

∣

∣

[

DXk
t

]

i

∣

∣

2
+ α]

where I is the identity matrix. The subscript t of the matrix

Q represents the t-th column of Q. Xk
t represents the t-th

column of the matrix X at the k-th iteration, and WXk

t is the

corresponding weight matrix defined with a microscale α → 0.
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Fig. 3: Comparison between the true value and the reconstruction of the cardiac electrograms, heart-surface potentials, and

activation maps. The experiment was based on a simulated single pacing of the RV-anterior.The first line displays the cardiac

electrogram on a mesh node (Number: 455, on LV-endocardium) of the ventricular model.The second line displays the spatial

distribution of EEP at a moment (153ms, depicted by a vertical line in the fist row) of the pacing rhythm. The third line

displays the activation sequence.

Algorithm 1 LSDTV Algorithm

Require: BSP matrix Φ, transfer matrix H , weighting coef-

ficients λ, β, γ, µ
1: Initialize: U0 = (HTH + λ0I

T I)−1HT
Φ, L0 = S0 =

X0 = 0, Z0 = Z0
L = 0

2: repeat

3: Update Lk+1 by eq. (14)

4: Update Sk+1 by eq. (16)

5: Update Uk+1 by eq. (18)

6: Update Xk+1 by eq. (20)

7: until L, S, U are all converged

Ensure: L, S, U

D. Algorithm summary

1) Algorithm analysis: As shown in Algorithm 1, the

LSDTV scheme consists of the sub-problems of L, S, U and

X . Among them, the original NP-hard rank function rank(L)
is replaced by its convex approximation, the nuclear norm

‖L‖
∗
; and the sparse problem ‖S‖0 is also convexly relaxed

by the L1 norm ‖S‖1. Thus, all sub-problems of LSDTV

are minimizing convex problems. Under this premise, the

optimal solution is obtained by alternating iterative updates

of the ADMM algorithm, which is proved to have objective

convergence [42].

To overcome the mathematical ill-posedness of the inverse

problem, the zero-order Tikhonov regularization is applied to

initialize the EEP matrix before the first iteration:

U0 = (HTH + λ0I
T I)−1HT

Φ (21)

where I is the identity matrix. In the case where the number

of body-surface electrodes is much smaller than the number of

cardiac mesh nodes, the time complexity of the initialization

is O(m3). In each iteration, the L, S, and U problems can

be directly solved by one-step calculation, and their time

complexity is O(m2n + n2m), O(nm), and O(m3 + m2n),
respectively. The X problem, that is, the procedure to solve the

TV problem is completed by iteration, and the time complexity

of a single step is O(m2n2), where L, S, U,X,Z ∈ Rm×n.

The overall time consumed by the LSDTV algorithm in the

experiments is listed in Table V and discussed in section IV-C.

2) Parameter description: In the initialization of eq. (21),

the setting of the balance parameter λ0 of Tikhonov-0 has been

discussed in many literatures [22], [43]. In this study, the L-

curve [22] method was used to determine the value of λ0.

In the optimization process, scalars λ, γ, µ, β, βL were used

to balance the minimization target. Among them, λ was used

to balance the low-rank constraint with the sparse constraint,

where 1/
√

max(m,n) was considered to be an appropriate

choice for λ [41], S ∈ Rm×n. Parameter γ controlled the

tradeoff between the nuclear and the TV norm to find a

balance between the low-rank and smoothness of the potential

background. µ is the weighting parameter of the fidelity

term, which plays a role in balancing the estimated value in

accordance with the priori conditions and the body-surface

recordings. In this study, γ was empirically set to 0.1, and µ
lied in [0.01, 0.1]. The experimental performance of γ and

µ is discussed in section IV-B. β, βL are Lagrangian penalty

parameters, which are fixed to 0.1 in this study, referring to

the previous work [36].
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TABLE I: Localization errors of the simulated 8 pacing sites.

Pacing site TV LSDTV

LV localization error (mm)

anterior 28.34 10.13
apex 8.92 2.51
lateral-endo 7.81 4.32
lateral-epi 4.84 1.40
lateral 11.36 9.20
septum 29.45 15.64

RV

anterior 14.05 3.36
posterior 24.82 13.10

TABLE II: Mean and standard deviation of location errors of

ventricular pacing sites on subject 1.

Pacing

site
TV LSDTV

LV beats mean(mm) std(mm) mean(mm) std(mm)

1 28 27 8 14 7

2 33 20 8 10 8

3 29 25 8 15 9

4 33 20 6 8 4

5 34 23 3 13 5

6 34 23 5 11 8

7 34 21 3 11 5

8 21 22 6 13 5

9 20 24 3 14 5

10 28 25 9 12 9

11 33 24 6 12 6

12 31 23 12 12 5

13 24 22 5 8 4

14 25 25 8 12 5

15 21 18 8 6 6

16 17 20 5 9 5

17 22 25 5 13 3

RV beats mean(mm) std(mm) mean(mm) std(mm)

1 28 19 7 8 4

2 24 28 6 11 1

3 25 25 9 13 8

4 25 24 4 12 4

5 25 21 6 9 5

TABLE III: Mean and standard deviation of location errors of

ventricular pacing sites on subject 2.

Pacing

site
TV LSDTV

LV beats mean(mm) std(mm) mean(mm) std(mm)

1 32 19 2 11 4

2 34 27 6 16 6

3 15 23 5 12 6

4 31 24 6 15 7

5 33 22 4 14 5

6 34 20 4 12 7

7 23 18 4 10 4

8 34 19 4 12 5

9 37 20 2 10 3

10 37 23 4 14 4

11 11 22 5 14 8

12 34 21 4 12 4

13 15 19 5 8 5

RV beats mean(mm) std(mm) mean(mm) std(mm)

1 22 19 3 9 2

2 34 25 8 15 8

3 35 19 5 9 3

4 39 19 6 11 7

5 12 20 3 10 1

6 17 32 3 23 4

7 38 24 3 12 3

8 22 20 5 12 5

III. EXPERIMENTS

In this section, we evaluate the proposed algorithm through

a series of experiments on locating the origin of ventricular

pacing from the simulated ventricular pacing data with 8

different pacing sites, real intervention pacing data with 43

different pacing sites, and the data from 11 cases of clinical

PVC patients. The results of the proposed LSDTV algorithm

have been compared with the quadratic method Tikhonov-2

[19], and the non-quadratic method TV [6].

A. Simulation Experiments

We evaluated the accuracy of the proposed algorithm for

reconstructing EEP through a set of simulated data that in-

cluded pacing in 8 different locations on the left ventricle

(LV) and the right ventricle (RV). Data were provided by

Karlsruhe Institute of Technology (KIT) [44] and shared on

the Internet database - Experimental Data and Geometric

Analysis Repository (EDGAR [45], http://edgar.sci.utah.edu/).

Three quantities, endocardial and epicardial potential, acti-

vation time, and cardiac electrograms, were reconstructed in

this experiment. Among them, the activation time was defined

when the negative derivative (−dut/dt) of the electrogram

reached a maximum. To quantitatively analyze the accuracy

of reconstruction, the relative errors (RE) and correlation

coefficient (CC) between the reconstructed quantities and the

ground truth, were utilized as: RE =

√

√

√

√

√

m∑

i=1

(xri
−xti

)2

m∑

i=1

(xti
)2

, CC

= Cov(xr,xt)√
V (xr)

√
V (xt)

, where xr is a column vector of the recon-

structed quantity and xt is the corresponding ground truth; m
is the number of mesh nodes of the heart surface; Cov(xr, xt)
is the covariance between the reconstructed quantity and the

ground truth and V (·) represents variance.

Fig. 2 shows the mean and standard deviation of the CC and

RE of the EEP for the ventricular pacing cases at 8 different

pacing sites during the pacing rhythm, which is decomposed

into 200-300 time nodes. Here, CC and RE represent the

similarity between the spatial distribution of the reconstructed

value and the true value of each frame EEP. As shown in

Fig. 2, the CC of the LSDTV result is higher than that of

the TV and Tikhonov-2, and the RE is lower than that of the

TV and Tikhonov-2, indicating that the spatial fidelity of the

LSDTV is better. Moreover, from the standard deviation of the

CC statistical results, the standard deviation of the LSDTV

is significantly lower compared with that provided by TV

and Tikhonov-2. Hence, the reconstruction quality of different

frames is relatively stable during the pacing rhythm. This is

in line with expectations, because the low-rank and sparse

constraints in the proposed LSDTV algorithm are macro-

scopic constraints, which are applied to the spatiotemporal

EEP matrix of the pacing dynamic. Therefore, the proposed

method can reconstruct a more accurate EEP spatiotemporal

distribution. More specific reconstruction results are shown in

Fig. 3.

Fig. 3 provides an example of ventricular pacing on the

RV-anterior, showing three reconstructed quantities: the EEP
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Fig. 4: Comparison between the deviation of the pacing sites obtained by the CARTO system, TV, and LSDTV. The color

bar from blue to purple indicates activation time from early to late. The yellow dots mark the ventricular pacemaker points

recorded by the CARTO system, and the red ones mark the ventricular pacemaker points calculated by the reconstruction

algorithm LSDTV (top row) and TV (bottom row). The deviation distance between the three-dimensional coordinates of the

pacing points recorded by CARTO and that reconstructed by the algorithm is shown below each ventricle geometry model.

spatial distribution at a given moment, the electrogram of

a pacing period at a heart-mesh node, and the ventricu-

lar activation map. The top row in Fig. 3 shows the true

electrogram of a mesh node during the pacing rhythm and

the electrograms reconstructed by the Tikhonov-2, TV, and

LSDTV methods. Because the first two methods are both

based on spatial smoothing solutions of EEP, there are no

constraints on their temporal continuity. Therefore, a certain

level of noise arises in the electrograms over time, and the

patterns become somewhat distorted. The LSDTV method is

based on the spatiotemporal characteristics of the dynamic

EEP and can provide a relatively stable electrogram (CC=0.99,

RE=0.14), compared with Tikhonov-2 (CC=0.93, RE=0.42)

and TV (CC=0.96, RE=0.33). The middle row of Fig. 3 shows

the spatial distribution of EEP at an instant in the propagation

of the electrical excitement. As shown, Tikhonov-2 provides an

overly smooth solution (CC=0.61, RE=0.71). The TV method

(CC=0.70, RE=0.60) maintains a steep gradient between the

high and low potentials, but with some compromises in

potential details, such as corner details of positive and negative

potential shapes. The proposed LSDTV method (CC=0.77,

RE=0.48) provides accurate spatial distribution of EEP with

complete details. The bottom row of Fig. 3 illustrates the real

value of the activation map and the solutions of Tikhonov-

2, TV, and LSDTV. The color bar, which ranges from red to

blue, indicates the activation from earlier to later. As shown,

the earliest activation is located at the anterior RV. As a

result, LSDTV (CC=0.84, RE=0.17) provides a more realistic

activation time compared with the Tikhonov-2 (CC=0.71,

RE=0.25) and TV (CC=0.77, RE=0.21) methods. Table I

lists the localization errors of the 8 simulated pacing sites

by TV and LSDTV. As shown, LSDTV provides a more

accurate localization, benefiting from its use of spatiotemporal

correlation information.

B. Real Ventricular Pacing Experiments

The proposed algorithm was validated by experimenting

with two types of real ventricular pacing datasets. The first

type is intervention pace, containing body surface recordings

of 1183 heart beats of 43 different pacing sites from 2 healthy

hearts being paced with a catheter device, and the (x, y, z)

locations of the pacing sites are recorded in the CARTO

system. This dataset was also obtained from EDGAR [45],

which has been presented in some other publications such as

[34]. We evaluated the accuracy of the algorithm by comparing

the three-dimensional coordinates of the reconstructed pacing

sites and those recorded by the CARTO system. The other type

of data was obtained from ablation surgeries of 11 patients

with real PVC, including synchronized body-surface potential

recordings and activation maps reconstructed by the Ensite

system. The contributors to the data are researchers at the

Zhejiang Provincial Hospital. We compared the premature beat

positions obtained by the Ensite reconstruction and the algo-

rithm reconstruction to judge the correctness of the algorithm.

1) Intervention pace: In this part, the pacing was done

on the cardiac surface of the left/right ventricles of the two

subjects. Fig. 4 shows an example of three pacing sites for

subject 1 to demonstrate their activation maps and pace origins

reconstructed by the LSDTV and TV algorithm respectively.

The yellow dots mark the (x, y, z) locations of the pacing

sites recorded in the CARTO system, which is used as the

gold standard in this experiment. As shown, the deviation of

the pacing sites calculated by the LSDTV algorithm from

the gold standard is approximately 10 mm, which is more

accurate than the TV algorithm alone. This is consistent with

the expectation, because it can be seen from the simulation

experiment results in Fig. 3 that LSDTV can reconstruct a

more stable electrogram, which is beneficial for calculating
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Fig. 5: Process of creating a heart-torso geometric model.

The torso geometry model (determined by the body-surface

electrodes) and the ventricular surface model are derived from

CT data.

the activation time, so that the earliest activation point can be

judged more accurately.

Tables II and III summarize the mean and standard deviation

of the positioning error of the pacing sites for subject 1 and

subject 2. The number of beats at each pacing site is shown in

the second column of the tables, and a pacing site coordinate

is estimated for each beat. It can be seen from the statistical

results that the deviation distance between the pacemaker point

reconstructed from LSDTV and the gold standard is approxi-

mately 10 mm, which is significantly reduced compared with

the error of approximately 20 mm for TV reconstruction. This

is consistent with our analysis above.

2) Clinical PVC: In this part, we validated the effectiveness

of the proposed LSDTV method in clinical diagnosis for 11

real patients with PVC. The patients were consented for the

following diagnosis, and it was performed according to a pro-

tocol approved by the ethical committee of Zhejiang Provincial

Hospital. The subjects’ heart-torso geometric models were

taken from the thoracic CT scan with a spatial resolution of

axial 0.6-1 mm. As shown in Fig. 5, the 3D heart model was

constructed from the outline of the heart surface (including the

endocardium and epicardium) extracted from the CT slices.

The torso model was created by matching the 64-electrode

positions to a standard torso template with 235 triangles of

Delaunay triangulation. Then, the forward model was solved

as mentioned in section II-A. In addition, the body-surface

potentials were recorded as the 64-electrode ECGs, sampled at

2 kHz, which were recorded simultaneously with the invasive

electrophysiological data (gold standard) from the Ensite3000

system.

Fig. 6: Activation maps of ventricular premature beat in the

anterior RVOT reconstructed by the Ensite3000 system and

the proposed LSDTV method.

Fig. 6 shows the diagnosis of a 58-year-old PVC subject.

On the left side, the 3D model of the right ventricle outflow

tract (RVOT) and the activation map, which was reconstructed

invasively by the Ensite3000 system during catheter ablation,

are shown. The red globules mark the ablation target, which

is the ectopic pacing site that is located at the anterior RVOT.

The activation maps of the two perspectives were derived from

EEPs, reconstructed by the LSDTV method and shown on the

right side of Fig. 6. The red site, distinguished by the black

arrow, is the earliest activation, located at the anterior RVOT

(the funnel-shaped outlet above the right ventricle), consistent

with the result of invasive measurement.

In addition, a total of 10 symptomatic patients with ectopic

ventricular pacing were enrolled. The basic information of the

subjects, including diagnosis of disease, the ectopic pacing

sites located by the intraoperative diagnosis, and the results

calculated by the LSDTV algorithm are listed in Table IV.

For the 10 PVCs provided in the table, the proposed method

can correctly point out the position of the ectopic pacemaker.

Note: The 3D ventricular model in this study does not contain

a pulmonary valve and therefore does not study the relative

position of the ectopic precordial point and the pulmonary

valve as diagnosed by the Ensite system in case 4 and case 6.

IV. DISCUSSION

A. Robustness to initializations

The LSDTV algorithm proposed in this paper was used to

estimate the optimal solution in the inverse problem of cardiac

electrophysiology. A suitable initialization method is needed

to overcome the mathematical underdetermination caused by

low-dimensional body surface measurements. This is because

the effectiveness of the low-rank, sparse, and gradient sparse

(TV) constraints in the LSDTV algorithm is to trim the

rough initialization results toward the real situation. The best

initial input of the algorithm to overcome the mathematical

underdetermination problem must be fuzzy, so as to ensure

that the cardiac potential is completely reconstructed without

loss. In this study, Tikhonov-0 was employed to provide

initial input for the algorithm. To discuss the robustness of

LSDTV with different initial inputs, here we compare the

performance of LSDTV under initializations of the different-

order Tikhonov. Fig. 7 shows the simulation results of eight

different pacing positions using the initial input calculated

by Tikhonov-0, Tikhonov-1, and Tikhonov-2. As shown, the

Tikhonov initialization of different orders does not make a
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TABLE IV: Diagnosis information for 10 patients with PVC: age, sex, diagnostic, and the origin of ectopic pacing located by

the Ensite system and proposed LSDTV algorithm.

No. Age Sex Rate Diagnosis Imaging Location (Ensite3000) Location (LSDTV)
modality Ventricle Site Ventricle Site

1 52 male frequent PVC CT LV Apical free wall LV Apical free wall
2 64 female frequent PVC CT RV Near the ventricle septum RV Near the ventricle septum
3 47 female frequent PVC CT RV Posterior RVOT RV Posterior RVOT
4 45 female frequent PVC & Anemia CT RV Posterior RVOT under pulmonary valve RV Posterior RVOT
5 57 female frequent PVC CT RV Anterior RVOT RV Anterior RVOT
6 58 female occasional PVC & Hypertension CT RV Anterior RVOT under pulmonary valve RV Anterior RVOT
7 53 female frequent PVC CT RV Free wall of RVOT RV Free wall of RVOT
8 33 male frequent PVC CT RV Posterior RVOT RV Posterior RVOT

9 58 female frequent
PVC & Cerebral
infarction sequelae

CT RV Posterior RVOT RV Posterior RVOT

10 34 male frequent PVC CT RV Posterior RVOT RV Posterior RVOT

Fig. 7: CC statistics of the inversion results of 8 pacing sites

based on Tikhonov of different orders as the initialization

method. The color histograms represent the CC average of

all frames of the pacing period. Error bar shows the standard

deviation of results.

significant difference to the CC of the result. The proposed

algorithm is robust to the required initialization values.

B. Parameter analysis

In Section II-D, we briefly summarized the setting of the

balance parameters in the LSDTV algorithm. Among them,

the weighting factor γ for TV item and balance parameter

µ for the fidelity term were selected empirically. Therefore,

the experimental performance of these two parameters is

demonstrated in Fig. 8.

In this part, the simulated LV-apex pacing experiment was

taken as an example to explore the sensitivity of the solution

to the parameters γ and µ. Here, the average CC and RE of

all-time nodes during the pacing rhythm were used as criteria

for reconstruction accuracy. Fig. 8(a) shows the trend of CC

and RE for parameter γ over the interval 0 to 1, when µ
is fixed at 0.05. As shown, the closer γ is to 0, the more

sensitive the solution is to the change of the γ and tends

to be stable when γ is close to 0.1. Overall, the solution is

relatively insensitive to γ; therefore, γ is fixed at 0.1 in this

study. On the other hand, the parameter µ represents the ability

to constrain the consistency of the solution with the measured

data during the optimization process. As shown in Fig. 8(b),

when µ approaches 0, the accuracy of the reconstruction is low

and oscillating because the solution deviates significantly from

the body-surface recording. A relatively stable and accurate

solution can be obtained when µ is in the interval of [0.01,

0.1]. Thus, in the experiments of this study, µ lied in [0.01,

0.1].

C. Strengths and weaknesses

This study proposes a new framework combining LSD and

TV to solve the inverse problem of ECG imaging to accurately

locate the origin of PVC. For the first time, LSD decomposi-

tion applies the concept of decomposing potential background

and foreground for reconstruction of ECG imaging. S matrix

plays an effective role in protecting the sparse potential detail

in reconstruction. In addition, the sparsity of the S matrix also

filters the noise to some extent. The TV-constrained low-rank

matrix L forces a smooth and low-level potential background,

which explains the remainder of the potential removal from

the high/low potential spikes. TV is edge-preserving smooth

constraints, and there is a certain degree of compromise in

the potential details. Therefore, in this study, TV only acts on

the potential background to filter Gaussian noise but avoids

compromise of potential details.

Although the LSDTV method improves the accuracy of

potential reconstruction, there are some weaknesses. From the

point of view of PVC localization, the potential-based method

is not as direct as the activation-based imaging method,

lacking the physiological significance of direct usage, and

further derivation of activation time is needed. In terms of

computational cost, LSDTV inevitably requires a large number
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(a)

(b)

Fig. 8: Sensitivity of the solution to the γ and µ parameters.

TABLE V: Comparison of computing time between LSDTV

and TV.

site frames computing time (ms)

TV LSDTV
LV-apex 230 701 1426
LV-lateral 266 712 1451
RV-posterior 225 677 1373

of singular value decomposition calculations, which increases

the calculation time. Table V lists the calculation times of

the three cases of simulated ventricular pacing experiments. It

can be seen that the calculation time of the LSDTV method

is approximately twice as that of the conventional TV. The

computation of experiments in our study was processed by

MATLAB R2014a with a 3.4 GHz processor and 8 GB RAM.

The abovementioned deficiencies help us clear the direction

of future efforts as follows: 1) Optimize the potential-to-

activation transformation method to improve the accuracy of

activation imaging; 2) Optimize the calculation process of

LSDTV to reduce the computation time and memory loss.

V. CONCLUSION

In this paper, an LSDTV framework based on low-rank

sparse decomposition + TV constraints is proposed to solve

the ill-posed problem of dynamic EEP reconstruction. This

method utilizes the spatiotemporal correlation of potential

dynamics to improve the accuracy of the inverse solution. The

LSDTV method has been shown to accurately reconstruct the

EEP distribution and correctly reveal the origin of the pac-

ing rhythm in simulated ventricular pacing, real intervention

pacing, and clinical PVC experiments.
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