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Abstract—This paper studies intrusion detection for fog com-
puting in Fog Radio Access Networks (F-RANs). As fog nodes
are resource constrained, traditional intrusion detection system
(IDS) cannot be directly deployed in F-RANs due to the com-
munication overhead and computational complexity. To address
this challenge, we propose a Skyline query based scheme that
can analyze IDS log statistics of fog nodes and provide a
complete data processing flow. Specifically, a three-step solution is
proposed. First, a lightweight fog node filtering strategy (FNFS)
is proposed to filter the raw data which can reduce the fog-
cloud communication overhead. Second, a sliding-window-based
mechanism is developed in the cloud server to efficiently process
the asynchronous data flow. Then, using the pre-processed data, a
set of seriously attacked nodes will be identified by Skyline query.
Third, the security threat level of each individual fog node is
calculated using the unascertained measure which can determine
the degree of security threat. Numerical simulations show that
the proposed scheme can significantly reduce communication
overhead and computational complexity.

Index Terms—5G, Fog computing, IDS, Skyline query, Node
monitoring, FNFS

I. INTRODUCTION

5G needs to support high concurrency of user equipment

access and guarantee its quality of service [1]. This

requires the 5G network to support low latency, high mobility,

high scalability, and real-time execution [2]. Fog computing

extends cloud services to the network edge supporting these

characteristics mentioned above [3], which provides a promis-

ing solution for 5G applications. The paradigm of F-RANs is

an application scenario where fog computing can be deployed

in 5G networks [4], [5].

A typical fog computing infrastructure consists of the cloud

service layer, the fog service layer, and the user equipment

(UE) layer [6] as illustrated in Figure 1. The UE layer is

composed by the user end devices, which generate various

application requests in F-RANs. The fog service layer is

mainly responsible for providing services for UEs and sends

necessary data to the cloud server. The cloud service layer

acts as the manager of fog nodes, which provides resource

scheduling and information processing services for fog nodes

[7]. This three-layer structure can provide users with QoS

guaranteed services.

However, compared with the cloud server, the fog nodes are

resource constrained, and the fog computing platform operates

in a heterogeneous environment [8], which renders many

network security challenges. First, F-RANs are vulnerable to

various types of network attacks from the user equipment, such

as Distributed Denial-of-Service (DDoS), Remote to Local

(R2L), Probing (Prob), user to root (U2R) [9]. Second, hetero-

geneous network environments and communication protocols

can cause high security threats to F-RANs [10]. Last but

not least, operating system and program vulnerabilities of

fog nodes are easily exploited by intruders [11]. Therefore,

security technologies need to be applied to fog computing

networks to solve these challenges. Due to constrained re-

sources [12]– [14] at the end devices, the lightweight intrusion

detection system (IDS) is one of the promising methods to

solve this problem [15]. Along this line, this paper aims to

study a lightweight fog computing IDS framework (FC-IDS)

[16], where the fog nodes perform the detection task, and the

cloud server monitor the security state of the fog nodes in real

time [17].

In practice, the scale of F-RANs grows increasingly, which

renders a challenge for a cloud server to query all fog nodes

in real time due to the high communication overhead and

computational complexity [18]. To tackle this challenge, this

paper proposes a priority-based Skyline query scheme to detect

whether fog nodes are compromised or not. The Skyline query

[19] is a multi-objective decision-making method which can

identify the nodes that are not dominated by other nodes so as

to find the most advantageous tuples from a multi-dimensional

tuple set [20], [21]. It is worth noting that Skyline queries

processing in F-RANs environment is quite different from

traditional network environment. In the F-RANs environment,

when Skyline queries are executed by the cloud server, the fog

nodes need to transmit data (such as the network connection

and fog node host state) to the cloud server, which would incur

significant communication overhead [22]. Further, due to the

heterogeneous networking environments, the data of each fog

node may not be synchronized when communicating with the

cloud server. This requires a synchronized processing step in

the cloud server.

To address these challenges, we propose a fog node mon-

itoring scheme. First, data is initially pre-processed on the

fog nodes before being sent to the cloud server to reduce the

fog-cloud communication overload. Then, the pre-processed

data is transmitted from each fog node to the cloud server.

Second, the cloud server processes the asynchronous data and

outputs a real-time Skyline collection. Third, using the output

of Skyline set, the security threat of each fog node can be

calculated by the cloud server. The main contributions of the

paper are summarized as follows:

1) In the proposed lightweight scheme, we develop a fog

node filtering strategy (FNFS) on the fog node, in order to

reduce the high communication overhead between fog nodes

and the cloud server.

2) A sliding-window-based mechanism is proposed to ef-

ficiently process the data flow after being filtered by the

fog nodes. Then, using the Skyline processing method, the
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Fig. 1: The structure of fog computing-based F-RANs.

proposed scheme can identify a set of seriously attacked nodes.

3) Based on the outcomes of the proposed sliding-window-

based mechanism, we measure the security threat of fog nodes

by using the unascertained measure (UM) method [23].

The rest of the paper is organized as follows. In Section

II, we review the related literature on fog security, especially

fog nodes monitoring and IDS. In Section III.A, we introduce

the relationship between this work and Fog IDS. We define

the concept of Skyline and describe the problem of fog

nodes security state monitoring in Section III.B. In Section

IV, we present our proposed monitoring scheme. Numerical

simulation is carried out in Section V and conclusions are

drawn in Section VI.

II. RELATED WORK

Security technologies of fog computing are forward-looking

research directions. As one of the key security technologies,

IDS can detect and classify a wide range of attacks against IoT

sensors. Yaseen et al. in [24] proposed a model that provides

a global monitoring capability for tracing moving sensors and

detecting malicious ones. Zhang et al. in [25] proposed an

effective data acquisition approach with the ability to filter

abnormal data and meet the real-time requirement. However,

these methods are not applicable for the fog nodes with the

limited computing resources, which require a lightweight algo-

rithm. A new cloudlet mesh security framework was proposed

[26] to protect the mobile cloud network, which provides a

host-side IDS solution. A privacy-preserving framework in fog

computing IDS was proposed by Wang et al. [27], and the

proposed framework based on fog devices could help reduce

the workload at the cloud’s side. A three-layered fog IDS was

proposed in [28]. It is a distributed and lightweight IDS based

on an Artificial Immune System (AIS).

As mentioned above, some of the above works are carried

out from the perspective of data processing. Some studies are

applicable for an edge computing framework (Cloudlet). Few

research focuses on the flow of IDS data in a fog environment.
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Fig. 2: The general framework for fog computing intrusion detection systems.

In [16], [29], we proposed an IDS framework for cloud

server collaboration with fog nodes. Under this framework,

we presented a new lightweight IDS algorithm called sample

selected extreme learning machine (SS/ELM). The SS/ELM

algorithm shows excellent performance in terms of detection

accuracy. It contributes to solving the problems caused by

resource constraints in fog computing. However, There are

few studies on the monitoring of the security state of fog

nodes. Some researchers consider the privacy of fog nodes

[30], [31]. Angelopoulos et al. [32] presented an energy-

based weight selection algorithm in mobile ad hoc networks

(MANETs). The simulation results showed that the proposed

method could reduce the monitoring overhead, improve the

network performance, prolong the lifetime, and improve the

security of networks. Wang et al. in [33] proposed a server-

aided data stream monitoring scheme (DSM) to address the

security challenges. This scheme is based on the Skyline query,

and the users are able to verify the correlation scores obtained

from the server. However, these methods are not designed

the F-RANs environment, and do not take into account data

redundancy processing and real-time performance. In contrast,

this paper proposes a fog node state monitoring scheme, which

accounts for data redundancy and real-time requirements of

data processing.

III. GENERAL FC-IDS DESCRIPTION AND

PROBLEM FORMULATION

In this section, we first introduce the FC-IDS framework and

then discuss the node monitoring problem in this framework.

As shown in Figure 2, the FC-IDS framework can be divided

into 6 layers, namely UE layer, network layer, data processing

layer, detection layer, analysis layer, and management layer

(The detailed description of each layer can be found in our

previous work [16]). Comparing with the structure of F-RANs,

the UE layer and network layer can be deployed on user

equipment, the data processing layer and detection layer can

be deployed on the fog nodes, and the processing analysis

layer and management layer can be deployed on the cloud

server. A typical working process is given as follows.

1) The fog node performs data pre-processing and sends pre-

processed data to the cloud. In order to reduce the computing

complexity on cloud servers, data is pre-processed first in fog
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Fig. 3: The network diary transmission of fog nodes.

nodes. The goal of pre-processing is to filter out data that has

no impact on the Skyline query.

2) The data flow is synchronized and processed on the

cloud server, as a large number of fog nodes will send

data at different time. When all the fog nodes send the

preprocessed data to the cloud server, the asynchronous data

will be generated. It is necessary to develop a mechanism for

processing asynchronous data on the cloud server.

3) The cloud server analyzes the results of the data flow

processing and measures the security threat levels of all fog

nodes. A proper measuring method needs to be used to

calculate the security state levels of fog nodes.

In practice, there are two key challenges for implementing

this security state monitoring scheme: fog node data transmis-

sion and asynchronous data management.

1) Fog node data transmission: As mentioned above, if the

cloud server performs the Skyline query, it needs to get data

efficiently from the fog nodes. If the cloud server adopts the

centralized Skyline query, the data of all fog nodes need to be

collected and stored continuously. Due to the large amount of

security log data generated by the fog nodes, the Skyline query

will produce cloud-fog data transmission overload problem.

This problem is further explained using the following example.

As shown in Figure 3, the cloud server executes Skyline

query using the following data: COUNT, which is the number

of connections in a fog node in a period of time; NUM−ROOT,

which is the number of root users accessing a fog node

over a period of time; and HOT, which is the number of

sensitive files accessed to the system in a period of time.

This scheme produces two sources of data redundancy. First,

data generated by each fog node at different times may be the

same which is called time induced data redundancy, such as

the security log data of f2 at t3 and t4. Second, there is a

large amount of dominance relationship between data objects

stored in a single fog node. The dominating data objects are

not necessarily uploaded to the cloud server. We call this as

dominance induced data redundancy.

The key challenge is how to effectively reduce the size of

uploaded data. To tackle this challenge, we propose a data

pre-processing scheme before the data is uploaded to the

cloud server. The details of data pre-processing strategies and

processes will be described in Section IV.

2) Asynchronous data processing on the cloud server:

The cloud server needs to perform real-time Skyline query

on the security log to determine the real-time security state

of fog node. Due to heterogeneous computing power and

communication resource of each fog node, there are two

problems that need to be solved. First, fog nodes with different

computing power may upload different amounts of data during

a query cycle. Second, owing to the different arrival time

of uploaded data, the cloud server will suffer from data

asynchronous problem.

To address these issues, we propose a sliding-window-

based mechanism to handle these problems. Details of the

mechanism will be described in Section IV.

IV. NODE STATE MONITORING SCHEME

In this section, we introduce the security state monitoring

scheme. As mentioned in Section III, the proposed scheme

has three steps: 1) A local pre-processing strategy is proposed

for fog nodes to reduce communication overhead between the

cloud server and fog nodes; 2) A sliding window mechanism is

proposed to process asynchronous data from the fog nodes; 3)

A unascertained measure (UM) method is proposed to quantify

and analyze the security threat of the fog nodes. This scheme

is deployed in the data preprocessing and analysis layer of

FC-IDS.

The overall overview of the proposed is illustrated in Figure

4. First, each fog node managed by D(fi) sends the outcomes

processed by FilterD(fi) to the sliding window of the cloud

server. Second, the sliding window processes the obtained data

and gets two kinds of outputs. One is the real-time output

of CSKY(D,Tj) during period T , which relates to the fog

nodes real-time security states and will be used to calculate

the security threat level. The other one is the expired Skyline

data, which will be discarded. The key notations are listed in

Table 1.

A. PRE-PROCESSING LOCAL DATA WITH FOG NODE

FILTERING STRATEGY (FNFS)

For local data pre-processing, we propose a fog node filtering

strategy (FNFS) to reduce the data redundancy. The FNFS

is composed by two strategies. The first strategy processes

the time induced data redundancy and the second strategy

processes the dominance induced data redundancy.

Strategy 1: Store the network security diary data collected

in the previous moment on the fog node. In a period T , if the

latter collected data is the same as the former one, only the

former one needs to be recorded, otherwise, both data need to

be recorded. For example, in a period of T , if dk−1, dk and

dk+1 are the same (dk is the kth collected data in T ), only

dk−1 will be recorded. And if dk−1 and dk are different, both

dk−1 and dk will be recorded.

Strategy 2: Adopt the Ed-Max filtering strategy. In the

period T , the fog node fi has collected the data set Dp1 =
{Dt1i , Dt2i , · · ·Dtsi} after being filtered by Strategy 1. As-

suming that the data dimension of each Dtin is m, the set
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Fig. 4: The data flow of fog node security state monitoring.

TABLE I: NOTATIONS IN FOG NODE SECURITY STATE MONITORING

Symbol Notation

T The width of the sliding window.
ti The sampling period on the fog node fi .
si The number of sampling in a T period on the

fog node fi.
D(fi) The security log data stored locally on the fog

node fi.
FitlterD(fi) The data after preprocessing by the fog node fi.
τi The timestamp of the FitlterD(fi) sent by the

fog node fi to the cloud server.
CSKY(D,Tj) The real-time Skyline set output through the

sliding window of cloud services.
(FitlterD(fi, Tj , τi) The data set of fog node fi arriving at the cloud

server at the j th period T .

Dmax = {D1−max, · · · , Dm−max} represents the tuple of

every m dimensions. (Dtsi)n is used to represent the value

in the n′th dimension of the tuple Dtsi . Then, we define the

Euclidean distance between the tuple and the origin as

Ed(Dtsi) =

√

√

√

√

m
∑

n=1

[(Dtsi)n]
2
. (1)

Then, maxEd(Dp1) represents the largest value of the

Euclidean distance in the data set Dp1 (except for the tuple of

Dmax), and the corresponding tuple is denoted as DmaxEd.

Assuming that the data space is an m-dimensional coor-

dinate space, each tuple has a mapping point in that space.

The Ed-Max filtering strategy uses an area encircled by Dmax,

DmaxEd, and the coordinates of the filtering data. We set the

two-dimensional data as an example to illustrate the process

of Ed-Max filtering strategy in Figure 5.

As illustrated in Figure 5, there are 11 tuples in the data

space. Among them, f3 is the tuple of the largest value in the

dimension of the ”Number of vulnerabilities” (f3 ∈ Dmax).

Similarly, we have f9 ∈ Dmax. After calculating Ed(F ), we

can get f8 = DmaxEd. The shadow region encircled by f3, f9,
f8 and the coordinate axis is the dominant region. Fog nodes

filter the other tuples by using this strategy. If some tuple falls

into the domination region, then the tuple will be filtered. The
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Fig. 5: Ed-Max filtering strategy

Ed-Max filtering strategy can reduce the amount of data that

fog nodes transmit to the cloud server.

Theorem 1. DmaxEd in a data set is not a dominated point.

In other words, DmaxEd belongs to the Skyline set.

Proof: If there exists a tuple D
′

≻ DmaxEd, the value

of D
′

should be greater than that of DmaxEd in at least

one datadimension, and the value should be equal or greater

than that of DmaxEd in other data dimensions. Therefore, we

have Ed(D
′

) > Ed(DmaxEd), and then DmaxEd is not the

tuple that has the largest Euclidean distance in the data set. It

contradicts the requirements, which concludes the proof.

Using these two proposed strategies, the redundant data can

be significantly reduced and the pseudocode of the FNFS is

given in Algorithm1 as follows.
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Algorithm 1 FNFS

# DATA is an array of M dimensions, and each

DATA value is a sample value once

list = []

pre−data = zeros(m)

for i in range(S)

if DATA != pre−data

list.append(DATA)

pre−data = DATA # list is a S sample point array

end if

end for

max−list = []

temp = Array(m, S) # An array of m rows

and S columns

for j in range(m)

temp[j]. append(item[j]

end for

for item in temp

dimension = item.dimension

index = max(item).position

max−list.append((list[index], dimension))

end for

# Find the max Euclidean distance

Ed = []

for item in list

distance = Euclidean(item) # Euclidean distance

Ed.append(distance)

end for

index = max(Ed).position

max−list.append(list[index])

# FNFS Filter

for item in max−list

for item2 in list

if item2 ¡= item

list.pop(item2)

end if

end for

end for

# Then the last sample value uploadedis the

sample value in list

B. PROCESSING THE DATA ON CLOUD SERVER WITH

SLIDING WINDOW MECHANISM

The asynchronous data is caused by irregular data arrival and

heterogeneous data size. This requires the cloud server to be

flexible enough to handle this asynchronism problem. There-

fore, a sliding window mechanism is developed to manage the

data flow in the cloud server.

As shown in Figure 6, the sliding window mechanism has

4 processing steps: P−1 to P−4. During the process, there are

6 states:

• Arrived: It represents the state of the data object sent by

each fog node that arrives at the cloud server, and the object

is waiting to enter the cloud server to be implemented by the

Skyline calculation.

• Skyline: It represents the state of not being dominated by

other data points at the sliding window with width T . It is

denoted as Skyline−2 and Skyline−3 partly in P−2 and P−3.

Actually, both Skyline−2 and Skyline−3 belong to the Skyline

set that is computed in real time, and we record them as CSKY

set. Since our aim is to monitor highly vulnerable fog nodes,

we pay more attention to the data from fog nodes in CSKY.

According to CSKY, we can calculate the security threat level

of fog nodes.

• Temporary Dominated: It represents the state of a data

object being temporarily dominated by other data objects in

P−2.

• S-Dominated: It represents the state change of a data object

from no domination to being dominated in P−3.

• Invalid: It represents the state of a data object always being

in domination throughout the whole process. When the Invalid

is expired, the object will be stored in the database of the cloud

server as Strong Dominated.

• Expired Skyline: It represents the Skyline point when the

data object is removed from the sliding window. Here we focus

on when the fog node’s security is threatened. We will mark

the data in the cloud server as Expired Skyline when it has

expired. In other words, the Expired Skyline is the stored set

of historic security data.

It is significantly meaningful to the historical query of

the fog node security state and can be applied in obtaining

evidence and other aspects. The four processes are introduced

as follows.

• Process 1(P−1): Arrived: this process represents that the

data object will enter the cache,s waiting state.

• Process 2(P−2): Preliminary calculation: this process, the

latest data object will be first processed the Skyline queries.

If the data object P is dominated by the original Skyline

point, the data object’s state ”Temporary Dominated”. If the

P is not dominated by the original point, the data object’s

state will be marked as ”Skyline”, and the Skyline set in

sliding window will be updated.

• Process 3(P−3): subsequent calculation: It describes the

changing operating state when the data object in the sliding

window becomes earlier object. As shown in Figure 6, during

P−2, the state of the data object P may become either Skyline

or Temporary Dominated. When the later object Q arrives at

the sliding window, the state of P may change. During P−2,

if the data object of the Skyline dominates the later object

Q, then during P−3, P is still the element of the Skyline

set and the state of Q is recorded as Temporary Dominated.

During P−2, if data object P is dominated by the later

object Q, then P will change from the original Skyline to

S-Dominated and the state of Q will be recorded as Skyline.

During P−2, if the original data object dominating P of the

Temporary Dominated is expired and P is not dominated by

other objects, then the state will change from the original

Temporary Dominated into the Skyline. During P−2, if the

original data object dominating P of Temporary Dominated

is expired and it is still dominated by the later object Q or

the object with the same age, then the state of P will change

from Temporary Dominated into Invalid.

• Process 4(P−4): Leave: this process represents the data

object in the storage state by the cloud server after leaving the
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sliding window. As shown in Figure 6, if the data object P
leaves the state of Skyline, the data object will be stored as

Strong Skyline. If data object ’P’ maintains the Skyline state

in the sliding window, the data object will be stored as Weak

Skyline when leaving. If the state of P is not Skyline from

P−1 to P−4, it should be stored as Strong Dominated when

leaving.

As mentioned above, P−2 and P−3 are the procedures for

when data operates in a sliding window. Throughout the whole

process, the cloud server outputs two parts of data. One part

is the CSKY that is real-time calculated by the cloud server

storage. The other part is the Expired Skyline transmitted to

and stored in the disk array of the cloud server. Our aim is to

real-time monitor the fog node groups of greater vulnerability

among the cluster. Therefore, we pay more attention to the

data output of the CSKY. The CSKY output is the set of data

points of each fog node in the sliding window. Next, we will

introduce how to calculate the security threat level of fog nodes

using the CSKY output.

C. CALCULATING FOG NODE SECURITY THREAT LEVEL

WITH UM

To evaluate the security threat of each fog node, the cloud

server calculates the index weight of each fog note in the set

based on the unascertained measure (UM) method. The UM is

an objective assignment method index [22] that can efficiently

calculate security threat level calculation.

During the UM adoption process, a measure function will

be built. However, for the security threat calculation problem

of fog nodes, there is no existing standard to construct the

function. In this paper, we leverage the outputted statistical

results of CSKY to construct this function Table 2.

In the output of CSKY, we care only about the fog nodes to

which data objects belong. Assume the number of fog nodes

being n. The sampling interval corresponding to the fog node

is S = {s1, s2, · · · , sn} which is a parameter that can be self-

adjusted by the fog node. It depends on the computational

performance of the fog node. Among the outcomes of CSKY

at one period T , the number of data that belongs to fog node

is Q={q1,q2, · · · ,qn}.

Since the computing power of each fog node is different,

each fog note has a different sampling interval. Considering

the effects of the sampling interval on the security threat level,

we define the fog node Skyline report rate Y as

Y = {y1, y2, · · · , yn} , (2)

where

yi =

(

qi
si

−min
qi
si

)

/

(

max
qi
si

−min
qi
si

)

.

First, we build a linear measuring function based on [14],

which provides the expression of the measurement function

U(x). Specifically, the expressions corresponding to the un-

certain measurement functions µ are


































µi(x) =







1−
1− ex−ai

1− eai+1−ai

ai < x ≤ ai+1

0 x > ai+1

µi+1(x) =







0 x < ai

1− ex−ai

1− eai+1−ai

ai < x ≤ ai+1.

(3)

According to the measure in Table 2, we format the mea-

surement function U(x) as:

U(x)
C0∼C1































µC0(x) =







1−
1− ex

1− e0.1
0 < x ≤ 0.1

0 x > 0.1

µC1(x) =







0 x = 0

1− ex

1− e0.1
0 < x ≤ 0.1,

(4)

U(x)
C1∼C2



































µC1(x) =







1−
1− ex−0.1

1− e0.2
0.1 < x ≤ 0.3

0 x > 0.3

µC2(x) =







0 x < 0.1

1− ex−0.1

1− e0.2
0.1 < x ≤ 0.3,

(5)

U(x)
C2∼C3



































µC2(x) =







1−
1− ex−0.3

1− e0.3
0.3 < x ≤ 0.6

0 x > 0.6

µC3(x) =







0 x < 0.3

1− ex−0.3

1− e0.3
0.3 < x ≤ 0.6,

(6)
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TABLE II: NOTATIONS IN FOG NODE SECURITY STATE MONITORING

C0 C1 C2 C3 C4

F 0 0.1 0.3 0.6 0.85

U(x)
C3∼C4



































µC3(x) =







1−
1− ex−0.6

1− e0.25
0.6 < x ≤ 0.85

0 x > 0.85

µC3(x) =







0 x < 0.6

1− ex−0.6

1− e0.25
0.6 < x ≤ 0.85.

(7)

According to measurement functions (4), (5), (6) and (7),

we let Y = x and calculate U(Y ). In this way, we can

get the measurement recognition matrix of fog node F =
{f1, f2, · · · , fn} as:

C1 C2 C3 C4

f1
f2
...

fn











µ11 µ12 µ13 µ14

µ21 µ22 µ23 µ24

...
...

...
...

µn1 µn2 µn3 µn4











.

According to UM method, we calculate the intermediate

value of the security threat level of fog nodes. Let

vi = 1 +
1

2

4
∑

l=1

µil logµil. (8)

The security threat level of each fog node can be calculated

as:

wi = vi/

n
∑

k=1

vk . (9)

Accordingly, the security threat vector of the fog cluster is

w = (w1, w2, · · · , wn)
T

,
n
∑

i=1

wi = 1.

Note that through the normalization treatment of (9), the

security threat of the fog cluster we calculate is a relative

value. That is to say, the wi of fog node fi is affected by

other fog nodes.

V. NUMERICAL SIMULATION

The simulation environment is built based on [16]. We adopt

the KDD CUP99 dataset [34] to measure and classify the

results according to the attack types. There are four types of

intrusion data: DoS, R2L, U2L, and PROBE. The counting

diary records the counting results of attack types in unit time.

First, we validate the effects of reducing communication

costs of fog nodes using FNFS. The counting diary data are

time-independent random distribution. We extract ”abnormal”

attacks from the KDD CUP99 data as the measurement set to

implement the measurements. Among the set, there are 4000

pieces of PROBE, 10000 pieces of DoS, 200 pieces of U2R,

and 5000 pieces of R2L. We simulate the counting diary of

the fog node using periodic sampling. The fog nodes realize

the data flow transmission by Storm [35]. The data flow speed

of Spout in Storm is 100 numbers/s, and the frequency is 10
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Fig. 7: The filtering effect of FNFS in different sampling frequencies.

times per second on the fog node. In other words, there are

10 data counts every second. We set up a period T=60s, and

when the data dimension is 2, we compare the effects of the

Ed-Max filtering algorithm and MinMax filtering algorithm

[36] that we constructed on the data size after filtering.

As shown in Figure 7, the proposed FNFS filtering strategy

has significantly reduced the original data size when the data

flow dimension is 2. The experiment compares MinMax and

FNFs, and the results indicate a better performance of FNFS.

There are two main reasons, and the primary one is that the

Ed-Max algorithm in the FNFS has greater filtering area to the

data. MinMax is the improved version of the threshold method

and it looks for only one data point in the two-dimensional

space. Meanwhile, the Ed-Max algorithm that we raised has

(m+ 1) data points in the data space as the datum points of

data filtering measurement. Another reason is that the FNFS

in strategy 1 has the effect of removing weight. Especially

when the fog node sampling period is smaller and the change

in the network environment is not large, the fog node may

produce more repeated data. The repeated data can be filtered

to a certain extent using strategy 1. The experiment verified

that when the data sampling period was bigger, the extent of

data size reduction would be bigger.

We also designed a group of experiments to assess the

filtering effects of FNFS under different data dimensions.

Define the fog node data filtering rate as the ratio of the

number of filtered tuples and the number of overall tuples.

η =
qi − (qf )i

qi
· 100%, (10)

where (qf )i is the number of filtered tuples that belongs fog

node fi.
Under the situation of fog node sampling frequency be-

ing fixed, we analyze the data filtering rate when the data

dimension is 2, 3 and 4 in Figure 8. The increased data

dimension will reduce the data filtering effects. The reason

is that when some dimension has been introduced, new points

without dominations at this dimension will be created, and

thus the data points will not fall into the region filtered by
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Fig. 8: The filtering effect of FNFS in different dimensions.

Ed-Max. However, the difference between FNFS and MinMax

will reduce with the increase of the dimensions. From two-

dimension to four-dimension, the data filtering rate of FNFS

decreases by approximately 14.9% and that of MinMax de-

creases by approximately 11.3%. Although the range of the

MinMax reduction is smaller with the increase of dimensions,

we can still conclude through the outcomes that the FNFS has

significantly better filtering effects than MinMax. Therefore,

from the point of data filtering effects, the FNFS is much more

appropriate to the fog computing environment.

Fog nodes have limited resources. Therefore, the compu-

tational complexity of the FNFS needs to be considered. We

measure the space complexity mainly through the memory

usage of the fog nodes. Figure 9 shows the results of the

experiment. It can be observed that the memory usage rate of

the FNFS filtering scheme is low. Therefore, the FNFS is a

lightweight filtering scheme that is suitable for deployment on

fog nodes.

Finally, we show the monitoring results of fog node security

status using the proposed scheme. Figure 10 shows the security

threat level of the CSKY output of five fog nodes. From the

monitoring results, we can see that the security threat of FN3

is relatively low. The security status of other nodes has varying

degrees of fluctuations.

From these experiments, we can see that the monitoring

scheme of fog node’s security state is effective for F-RANs.

The FNFS has excellent data filtering performance. The sliding

window scheme on the cloud server also meets the real-time

requirement.

VI. CONCLUSIONS

Fog nodes, as the key components of F-RANs, undertake the

task of providing services for terminal devices [37]. Since it

is closer to the user, the security threat faced by fog nodes

is more serious. The security state monitoring of fog nodes is

particularly important in the IDS of fog computing. This paper

first analyzes the problems of the security state monitoring of

fog nodes. Then, we propose an integrated monitoring scheme
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Fig. 10: The security threat level monitoring results of 5 fog nodes.

for the security of fog nodes where the real-time security threat

level of fog node clusters can be calculated instantaneously

on the cloud server. Experimental results show that the FNFS

can effectively reduce the communication overhead between

the cloud server and fog nodes.
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Intrusion Detection System for Fog Computing and IoT based Logistic
Systems using a Smart Data Approach” International Journal of Digital
Content Technology & Its Applications, vol.5, no. 10, 2016.

[29] F. Lin, Y. Zhou, X. An, I. You, K. Choo, “Fair Resource Allocation
in Intrusion Detection System for Edge Computing,” IEEE Consum.

Electron. Mag., vol.7, no. 6, pp.45-50.

[30] W. Tang, K. Zhang, J. Ren, Y. Zhang and X. Shen, “Lightweight and
Privacy-Preserving Fog-Assisted Information Sharing Scheme for Health
Big Data,” in GLOBECOM 2017 -2017 IEEE Global Communications
Conference, Singapore, 2017, pp. 1-6.

[31] J. Ni, K. Zhang, X. Lin and X. S. Shen, “Securing Fog Computing
for Internet of Things Applications: Challenges and Solutions,” in IEEE

Commun. Surv. Tutor., vol. 20, no. 1, pp. 601-628, First quarter 2018.
[32] I. Angelopoulos, E. Trouva and G. Xilouris, “A monitoring framework

for 5G service deployments,” in 2017 IEEE 22nd International Workshop
on Computer Aided Modeling and Design of Communication Links and
Networks (CAMAD), Lund, 2017, pp. 1-6.

[33] Y. Wang, H. Pang, Y. Yang, X. Ding, “Secure server-aided top-k
monitoring,” Inf. Sci., vol. 420, 2017, pp. 345-363.

[34] KDD CUP 99 data set Avail-
able:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[35] W. Yang, X. Liu, L. Zhang and L. Yang, “Big Data Real-Time Processing
Based on Storm,” in 2013 12th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications, Melbourne,
VIC, 2013, pp. 1784-1787.

[36] H. Chen, S. Zhou, and J. Guan. “Towards Energy-Efficient Skyline
Monitoring in Wireless Sensor Networks,” in European Conference on
Wireless Sensor Networks Springer-Verlag, 2007, pp. 101-116.

[37] Y. Huo, C. Hu, X. Qi, and T. Jing, “LoDPD: A Location Difference-
Based Proximity Detection Protocol for Fog Computing,” IEEE Internet

of Things J., vol. 4, no. 5, pp. 1117-1124, Oct. 2017.

Xingshuo An was born in Shandong province,
China in 1988. He received his Master degree from
University of Science and Technology Beijing, in
2014. He is currently a Ph. D student in School of
Computer and Communication Engineering, Univer-
sity of Science and Technology Beijing, P. R. China.
His research direction is fog computing and network
security.
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