
1

Characteristics of Co-allocated Online Services and

Batch Jobs in Internet Data Centers: A Case Study

from Alibaba Cloud
Congfeng Jiang1,2 , (Member, IEEE), Guangjie Han3, (Member, IEEE), Jiangbin Lin4, Gangyong Jia1,2,

(Member, IEEE), Weisong Shi5, (Fellow, IEEE), Jian Wan1,6(Member, IEEE)

Abstract— In order to reduce power and energy costs, giant
cloud providers now mix online and batch jobs on the same
cluster. Although the co-allocation of such jobs improves machine
utilization, it challenges the data center scheduler and workload
assignment in terms of quality of service, fault tolerance, and fail-
ure recovery, especially for latency critical online services. In this
paper, we explore various characteristics of co-allocated online
services and batch jobs from a production cluster containing
1.3k servers in Alibaba Cloud. From the trace data we find the
following:(1) For batch jobs with multiple tasks and instances,
50.8% failed tasks wait and halted after a very long time interval
when their first and the only one instance fails. This wastes much
time and resources as the remaining instances are running for
an impossible successful termination. (2) For online services jobs,
they are clustered in 25 categories according to their requested
CPU, memory, and disk resources. Such clustering can help co-
allocation of online services jobs with batch jobs. (3) Servers are
clustered into 7 groups by CPU utilization, memory utilization,
and their correlations. Machines with strong correlation between
CPU and memory utilization provides opportunity for job co-
allocation and resource utilization estimation. (4) The MTBF
(mean time between failures) of instances are in the interval
[400, 800] seconds while the average completion time of the
99th percentile is 1003 seconds. We also compare the cumulative
distribution functions of jobs and servers and explain the
differences and opportunities for workload assignment between
them. Our findings and insights presented in this paper can
help the community and data center operators better understand
the workload characteristics, improve resource utilization, and
failure recovery design.

Index Terms— co-allocated jobs, workload characterization,
online services, batch jobs, data center, scheduling.

1 Key Laboratory of Complex Systems Modeling and Simulation, Ministry
of Education, Hangzhou Dianzi University, Hangzhou 310018, China

2School of Computer Science and Technology, Hangzhou Dianzi University,
Hangzhou 310018, China;

3Key Laboratory for Ubiquitous Network and Service Software of Liaoning
province, School of Software, Dalian University of Technology, Dalian,
116024, China.

4Alibaba Group, Hangzhou 311100, China
5Department of Computer Science, Wayne State University, Detroit, MI,

USA
6School of Information and Electronic Engineering, Zhejiang University of

Science and Technology, Hangzhou 310023, China
Corresponding author: Jian Wan (wanjian@zust.edu.cn)
This work is supported by Natural Science Foundation of China (61472109,

61572163, 61672200, 61602137, and 61802093), Key Research and Devel-
opment Program of Zhejiang Province (No. 2018C01098) and the Natural
Science Foundation of Zhejiang Province (NO. LY18F020014). This work
is also supported in part by National Science Foundation (NSF) grant CNS-
1205338 and CNS-1561216.

I. INTRODUCTION

Power consumptions have become major concern for not

only cloud servers but also battery-powered devices [1], [2].

In the last decade, electricity use by data centers increased

significantly, due largely to explosive growth in both the

number and density of data centers. It is estimated that

US data centers consumed about 70 billion kilowatt hours

of kilowatt hours of electricity in 2014, representing 2%

of the country’s total energy consumption. This is a 4%

increase in total data center energy consumption from 2010 to

2014, while it was a 24% increase from 2005 to 2010[3]. The

speed of energy consumption increase is decreasing thanks

to the energy efficiency improvement in commercial servers

and actions on energy reduction in data centers. Specifically,

energy efficiency improvements are the key factor in taming

the growth rate of the data center industry’s energy consump-

tion. It is estimated that data centers would have consumed

40 billion kWh more energy than they did in 2014 if the

energy efficiency improvements had stagnated at the levels

of 2010 [4]. Except for energy efficiency improvement in

hardware, various energy aware scheduling approaches have

been proposed to save power and energy consumptions in data

centers [5]-[8].

The varying workload in data centers results in fluctuation

in resource utilization which provides opportunity for resource

multiplexing [9], [10]. For example, current giant cloud service

providers co-allocate online services and batch jobs on the

same clusters to increase server utilization and reduce energy

costs. Therefore, workload characterization helps understand

workload patterns and design better job scheduling policy in

cloud data centers [11]-[13]. However, the merging of online

services and batch jobs also results in scheduling complexity

and interferences among online services and batch jobs, which

sometimes can deteriorate system performance.

Moreover, with the advances in communications and sensor

technology, wireless sensors are deployed in smart cities, smart

homes, autonomous vehicles, and industrial environments[14].

These smart sensors are capable of providing complex services

with diverse requirements, including data aggregation and

analytics [15]. In the emerging edge computing paradigm

[16], data analytics can be performed in sensor nodes to save

energy consumption or privacy preserve [17]-[20]. There are

also some cloud based platforms providing data analytics for

edge devices, such as AWS Greengrass [21] and Microsoft
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Azure IoT Edge [22]. Due to the geographical distribution

of servers and incoming workloads, cloud service providers

tend to adopt an over provisioning strategy to respond to

intermittent burst workloads in order to ensure the quality

of service for different jobs. Therefore, a carefully designed

mixture of online service and batch jobs in data centers can not

only provide further server consolidation, but also ensure the

quality of service guarantee of tenants as well as the reduction

of energy consumption in data centers.

In this paper, we analyze the Alibaba Cloud trace data

of a data center with online service and batch jobs mixture

distribution [23]. It is 24-hour trace data collected from a data

center with 1313 servers, including resource utilization and

job status. Understanding of workload characteristics is vital

for workload placement and scheduling as well as quality of

service provisioning. We try to answer the following questions:

1) How to schedule jobs to appropriate servers according

to jobs’ resource requirements and a server’s resource

availability.

2) How to reduce the latency of online services at a specific

percentile and increase the throughput of batch jobs

when they are mixed on the same cluster, and how to

mitigate the resource contention on this cluster and re-

adjust the workload scheduling.

3) How to provide fault tolerant scheduling according to

job-server affinity in case of hardware and software

failures.

4) How to simulate a real Internet Data Center (IDC) based

on the workload characteristics for better scheduler

design.

The remainder of this paper is organized as follows. In

Section II, we describe the trace data and give some notations

and terms used in this paper. In section III, we analyze the

batch jobs and characterize the instance completion time, jobs

and task distribution, resource utilization, and job failures.

Section IV describes the analysis of online service jobs. In

Section V, we provide analysis on server nodes. We summarize

related work in Section VI and conclude the paper in Section

VII.

II. THE ANALYZED DATASETS

A. THE Alibaba Trace Data

The trace data, ClusterData201708, contains cluster infor-

mation of a production cluster in a 24-hour period, and

contains 1313 machines that run both online service and batch

jobs. The exposure of this data to the public can help address

the challenges large IDCs face where online services and batch

jobs are co-allocated. Characterization on this trace data may

provide useful insights for online service and batch jobs sched-

uler cooperation. It can also help tradeoff resource allocation

between online services and batch jobs to balancing improved

throughput of batch jobs while maintaining acceptable service

quality and fast failure recovery for online service.

B. Metric Notations and Terms

For convenience, we list the notations and terms used in

this paper in Table 1.

TABLE I

TERMS AND NOTATIONS

Fig. 1. CDF of batch instances completion time.

TABLE II

PERCENTILES OF INSTANCE COMPLETION TIME

III. BATCH JOBS WORKLOAD CHARACTERIZATION

A. Instances Completiont

Usually one batch job is divided into multiple tasks and

each task executes different business logics. A task belonging

to one job consists of a directed acyclic graph (DAG) due

to data dependency (no DAG information is released in this

dataset although they do have DAG dependencies). Instance is

the smallest unit of batch job scheduling. For batch processing,

all instances within a task execute the same application codes

with the same resource request, but with different input data.

We give the CDF chart of completion time of all batch

instances in Fig.1 and their percentiles in Table 2. The 80th,

90th, and 99th percentiles of instance completion time are 132,

260, and 1067 seconds, respectively.
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Fig. 2. Tasks and instance counts of each job.

TABLE III

PERCENTILES OF TASK NUMBER AND INSTANCE NUMBER OF JOBS

B. Jobs and Tasks Distribution

All batch jobs are divided into tasks and each task is divided

into instances. In order to get the characteristics of tasks and

jobs, we give their numbers in Fig.(2.a).We can see that the

majority of jobs have tasks less than 40. Jobs with jobID from

4000 to 5000 and 7000 to 9000 have similar task numbers, and

the possible reason is that these jobs are similar. We can also

observed in Fig.(2.b) that jobs with jobID from 4000 to 5000

and 7000 to 9000 have similar instance numbers.

We present their CDF charts in Fig.3 and their percentiles

in Table 3.

The task number and instance number of the 80th percentile

is 11 and 940, respectively.

In a real job scheduling scenario, one practical problem

is ascertaining if the job completion time is correlated to its

division of tasks and instances, i.e. the job partition granularity.

We give the job completion time, task number, and instance

number in Fig.4 and Fig.5. The job completion time decreases

significantly when the instance number increases after 1000.

From Fig.4, we can observe that most jobs has less than

1000 instance number and it’s run time is quiet diversity,

Fig. 3. CDF of tasks and instance of batch jobs.

Fig. 4. Completion time of jobs with different instance numbers.

compare to Fig.4 and Fig.5, most task number and instance

number are all less than 1000, according to data analysis we

know that 99.2% job’s instance number is less than 1000 and

99.4% job’s task number is less than 1000.

We present the completion times of all jobs and jobs with

completion times less than 1000 seconds in Fig.6

From Fig.6, we can see that jobs with an id around 10000

have significantly less completion time than do others. Inves-

tigation on these jobs may help design a better job scheduling

policy to achieve shorter completion time of jobs.
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Fig. 5. Completion time of tasks with different task numbers.

Fig. 6. Job completion time.

C. Resource Utilization

Resource multiplexing and job co-allocation can signifi-

cantly reduce energy consumption and increase resource uti-

lization. Therefore, resource utilization analysis is vital for

quality evaluation of such multiplexing and co-allocation. We

present memory and CPU utilization in Fig.7 and Fig.8.

From Fig.7 we observe that memory utilization has higher

fluctuations than CPU. Moreover, memory utilization is peri-

odically changing during 24 hours. Therefore, job scheduling

can adapt to this characteristic to smooth the memory utiliza-

tion. We give the fitting curve of memory utilization in Fig.7

(b). The fitting is quantified as

y = 35∗ (0.00129 ∗ x − 50.828) + 45

Fig. 7. Memory utilization of batch jobs.

Fig. 8. CPU utilization of batch jobs.

where y is memory utilization and x is time.

The magnitude of the fitting sine curve is 35(%) and its

period is 4870 seconds.

D. Job Failures Analysis

A robust job scheduling policy is very important for busi-

ness consistence and quality service provisioning in data center

operation. Among the trace data, there are 15739375 instances

(excluding re-running instances) and 209168 failed instances

representing a 1.32% failure rate. We list the failure statistics

in Table 4 and Fig.9.

From Fig.9, we observe that the instances executed on

some machines have a higher failure rate than other machines.

Similarly, some tasks and jobs have higher failed instances
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TABLE IV

INSTANCE FAILURE STATISTICS OF BATCH JOBS

than others. For batch jobs with multiple tasks and instances,

we find that among 1126 failed tasks, 572 failed tasks (repre-

senting 50.8% of total failed tasks) wait and halted after a very

long time interval when their first and the only one instance

of failure occurs. This wastes much time and resources as the

remaining instances are running for an impossible successful

termination. This also indicates that job scheduler should act

more intelligently and quickly to reduce useless execution after

an existing instance fails.

We list the top 15 machines that have the highest failed

instance numbers in Table 5. These machines may have hard-

ware related issues or software configuration incompatibility

with instances running on them. Therefore, these machines

should be investigated first for fault diagnostics. In Table 5,

the total number of dropped instances is 1121. These 1121

instances may have been dropped manually by the system

administrator on purpose, or automatically by the scheduler

after instance staling, or by scheduler malfunction. Scanning

on these dropped instances could provide insights on job

scheduling and alleviation of these dropped instances.

In the following sections, server nodes are grouped and

categorized to better understand the operating mode of the

entire data center in more detail. One of the classification

criteria is the number of failure instances on it.

Among 148899 failed instances during the first execution

of all instances, 1121 instances are dropped during the second

execution. Eventually, jobs containing these 1121 instances

are failed. Since these 1121 dropped failed instances leads to

their parent tasks and jobs failure, we give the distribution on

machines of these 1121 dropped instances in Fig.10.

From Fig.10, we observe that the majority of machines drop

0-5 failed instances, but some machines drop more than 10

instances.

If an instance failed during execution but another instance

is not notified of such failure by the scheduler and continues

execution, their parent task, or job may fail eventually after

extra prolonged execution. However, this can result in waste

on resource usage and performance degradation or violation on

service level agreements. In order to derive a temporal pattern

Fig. 9. Instance failures on machines, tasks and jobs.

Fig. 10. Distribution of 1121 dropped failed instances after first execution.

of instance jobs, we give the failed jobs distribution with time

in Fig.11.
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TABLE V

TOP 15 SERVERS WITH THE HIGHEST FAILED INSTANCES

Fig. 11. Temporal distribution of job failures.

From Fig.11, we observe that:

1) There are no longer failures after the timestamp of

60352;

2) Jobs with jobID in [4000, 5000] and [7000, 9000] do

not fail before timestamp. These jobs failed between

timestamp 40000 and 60000, but the failed jobs have

consecutive jobID along with time. This may be caused

by some cascading job failures.

IV. ONLINE SERVICES JOBS WORKLOAD

CHARACTERIZATION

A. Instances Clustering

In the Alibaba cloud data center, online services, and batch

jobs are co-allocated on the same cluster. The online services

are represented by instances. In this trace data, there are 11101

instances among which 10980 instances are created before the

Fig. 12. Clustering performance and clustering number on resource allocation
of online instances.

trace data sampling and only 193 instances are created during

the trace data sampling.

Typically, an instance will be allocated with memory, CPU,

and disk capacity. CPU allocation is represented by the number

of CPU cores such as 1, 2, 4, 8, or 16. Memory alloca-

tions are normalized values as 0.002651, 0.042430, 0.053012,

0.084819, 0.127228, 0.169637, 0.254456, 0.318000, 0.999963,

1.00002, 1.000002, or 1.000010. Disk allocations are also

normalized values as 3.17e-11, 0.000142, 0.034085, 0.045446,

0.056808, 0.068170, 0.085212, and 0.113617. Thus, there are

5∗13∗8=520 combinations of resource allocation and 107

CPU SET allocations. Although there are 520 combinations of

resource allocation, we use K-means clustering on the resource

allocation and find that the clustering performance is the best

when we choose 25 as the clustering number as shown in

Fig.12. (Please note that grouping resource allocation config-

urations into more than 25 categories is possible with lower

clustering scores in our experiments.) The clustering results

are listed in Table 6. The clustering results in Table 6 helps

estimate resource allocation for incoming online instances and

make better scheduling of these online instances to appropriate

cluster nodes with available resources.

From Table 6, we know that majority instance has a low

CPU usage rate and a higher memory usage rate, according to

that we can add some task that has a higher CPU usage rate

and lower memory usage rate. From my data analysis, 82.58%

instances take less than 20th percentile disk capacity.

B. Resource Utilization

We list the sum of all online instances’ CPU and memory

utilization in Fig.13 and Fig.14. From Fig.13 and Fig.14 we

can observe that memory used curve is more stable than

CPU usage. We also observe that at both timestamp 50100

and 54300, there are two sharp declines in both CPU and

memory utilization. This may represent service interruption

or unavailability at these two spots. We can quickly diagnose

and locate such exception of online services through real time

system monitoring or log streaming processing.
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TABLE VI

CLUSTERING OF RESOURCE ALLOCATION OF ONLINE INSTANCES

Fig. 13. CPU utilization of online services instances.

V. NODES USAGE ANALYSIS AND CHARACTERIZATION

A. Machine Clustering

Good understanding of workload characteristics is vital for

coordinated job scheduling of online and batch jobs in data

centers. In previous sections, we analyzed the jobs charac-

teristics. In this section, we present the analysis of machine

characteristics in the clusters.

Fig. 14. Memory utilization of online services instances (sum of normalized
data).

Fig. 15. CPU and memory utilization of the whole cluster.

We list the summarized CPU and memory utilization of all

servers in the data center in Fig.15. The whole cluster’s CPU

utilization is between 13% and 40% and memory utilization

is between 42% and 65%.

The co-allocation of online services and batch jobs on the

same cluster makes it challenging for resource multiplexing

and service provisioning. For example, online services have a

rigorous latency requirement for jobs of the 99.9th percentile;

therefore, existing resource utilization of each machine is an

important reference before jobs co-allocation on dedicated

machines. Therefore, we present the clustering results of all

the machines in the whole cluster in Table 7. We observe

that type A machines are the majority of the cluster and they

have 27.5% CPU utilization and 50.67% memory utilization

on average.

We list the CPU and memory utilization of each type of

machine in Fig.16 including CPU usage and memory usage.

According to its different curve shape classification, a total of

seven categories are shown in the following figure. Table 7 is

shown in Fig.16. The seven types are counted, the proportion

of different categories, the average CPU and memory usage,

and the median and median usage of CPU and memory. Type

A is the largest proportion, reaching 84.77% of the total, and

its curve is also an approximate straight line of low decline.

Other categories have some abnormal curves appearing at a

certain time or all time, and the overall graph calculated is
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Fig. 16. CPU and memory utilization of all machine types.

very similar with Fig.(16.a). Combining the graph and the

table, we know that the average memory and CPU of the

Type B and Type C node are lower than those of the Type

A, but the variance is higher than that of the Type A. It can

be considered that the task mode on the Type B and Type C

node is more complicated and needs some more dedicated task

scheduling. In Fig.16, for type B machines, they become idle

after timestamp 52000. These 154 type B machines may be

scheduled for predefined maintenance or be out of service due

to some reasons. If they are just idle and can serve incoming

requests, it is not a good idea to let them idle for such a long

time and they can be purposely powered off.

For type C machines, they have similar patterns on CPU

and memory utilization, especially when there is a burst at

timestamp 70000 and the burst lasts for about 10000 seconds.

These 21 type C machines use almost 100% CPU during the

burst of workload. The jobs on them should be migrated to

other machines to keep the machine in a relatively lower CPU

utilization for enough quality of service guarantee.

Seventeen type D machines seem idle during the sampling

period of this trace data, which means these machines are

idle, or out of service. Type E, F, and G machines are too

few to represent any patterns. We give the difference of CPU

utilization and memory utilization of seven types of machines

in Fig.17.

B. Correlation Analysis of CPU and Memory Utilization

In order to quantify the interference of online service jobs

and batch jobs, we categorize the machines into 3 types in

Table 8 and provide the correlations of CPU and memory

utilization of each machine in Fig.18. We illustrate the CPU

and memory utilization of these three subsets of machines

in Fig.19. On most of the machines, their CPU and memory

utilization have a positive correlation. With the job type

and instance distribution, we can infer the correlation of co-

allocation of online and batch job scheduling and estimate

their CPU and memory utilization after co-allocation.

We plot the correlation coefficients of CPU and memory

utilization on each machine in Fig.20. For Type #2 machines

Fig. 17. The differences of CPU utilization and memory utilization of 7
types of machines.

where CPU and memory utilization have strong positive

correlations, we identify these machines with machineId, i.e.

machines 88-127, machine 261-296, and machines 830-906.

They are probably three small clusters containing subsets

of all 1313 machines that execute the same jobs with their

neighbor machines. For these machines, machine utilization

can be easily estimated if more jobs of the same type are

scheduled to them. Specifically, if we schedule these machines

to newly added machines in the cluster, we can also estimate

the dedicated machines’ utilization. Moreover, if we pack more

computing or memory intensive jobs to the existing machines,

the following resource utilization can also be estimated accord-

ing to the correlation between CPU and memory utilization.

Therefore, the correlation of CPU and memory utilization can

help the co-allocation and consolidation of online services and

batch jobs in data centers.

C. MTBF of Instances on Machine

As presented in the previous section, instances on some

machines are more prone to failure than other machines,

for example, machine #679, #680, #341, and #673. On the

contrary, there are some machines where the instances on
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TABLE VII

MACHINE CLUSTERING BY CPU AND MEMORY UTILIZATION

Fig. 18. CPU and memory utilization clustering by correlation coefficients

Fig. 19. Resource utilization of three subsets of machines with strong correlation coefficients between CPU and memory

them never fail, for example machine #167, #478, and #1075.

Comparison of these machines can provide useful insights

and directions for diagnosing hardware or software related

issues to avoid instance failures. We calculate the MTBF

(mean time between failures) of instances on all machines

as depicted in Fig.21. Since different machines have different

failure patterns, we do not give the MTBF numbers on each

machine. Alternatively, we give the MTBF range on most

machines. On most of the machines, the MTBF of instances is

between 400 seconds to 800 seconds. The MTBF of instances

is very important in 3 aspects:

1) It should be a consideration to determine if it is worthy

to schedule jobs to these machines, especially for jobs that

require a high success rate or long execution time.

2) It helps estimate when and how many jobs will fail in the

near future, or migrate instances to other machines to avoid

failures.

3) It is a good reference for scheduled machine maintenance

or patching if it is out of service.

VI. RELATED WORK

Workload characterization is the essential process for data

center operators to identify system bottleneck and figure out

solutions for optimizing performance. Single server workload

characterization has been studied extensively. Cortez et al. [24]

present a detailed characterization of several VM workload

behaviors from Microsoft Azure. They analyze the key charac-

teristics of the workloads by VMs’ lifetime, deployment size,

and resource consumption. Guo et al. [25] divide the workload

into two categories: delay-sensitive interactive workload and

delay-tolerant batch workload, and they present Stochastic

Cost Minimization Algorithm (SCMA). In the time-sensitive
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TABLE VIII

MACHINE CLUSTERING CPU AND MEMORY UTILIZATION

Fig. 20. correlation coefficients of CPU and memory utilization on each
machine.

Fig. 21. MTBF of instances on machines.

geographically distributed data centers with renewable gen-

eration [26], the authors adopt a green energy prediction

to schedule mixed batch and service jobs in data centers.

Likewise, some researchers show the data analysis workloads

are significantly diverse in terms of both speedup performance

and micro-architectural characteristics [27]. Chen et al. [28]

and Chong et al. [29] argue that workload characterization

is important to optimize the workload management in data

centers, and they can dynamically make decisions with knowl-

edge of the newly emerging workload. Wu et al. [30] propose

Dynamo-a data center-wide power management system. Fian-

drino et al. [31] propose a framework of new metrics able to

assess performance and energy efficiency of cloud computing

communication systems. In order to limit peak power costs

without any workload performance degradation, Aksanli et al.

[26], [32] adopt a battery-based peak shaving method, and Liu

et al. [33] develop two algorithms for data centers.

Server consolidation and VM migration are typical methods

that improve data center resource utilization efficiency. Ahmad

et al. [34] analyze and compare the current VM migration and

servers consolidation framework. Varasteh et al. [35] survey

virtual machine migration and server consolidation, the para-

meters and algorithmic approaches used to consolidate VMs

onto PMs. Mastroianni et al. [36] present ecoCloud, a self-

organizing and adaptive approach for the consolidation of VMs

on two resources, namely CPU and RAM, in order to limit the

number of VM migrations and server switches. Meanwhile,

others focus on the Xen and VMware virtualization platforms

[37]. In addition, since consolidating different applications

may lead to a drop in performance, Chen et al. [38], the

authors develop a light-weight, non-intrusive methodology to

achieve application-centric performance targets, while consol-

idating homogeneous and heterogeneous application.

There is significant work on resource allocation in data

centers. Sun et al. [39], present an overview on different kinds

of resource management mechanisms for data centers. Tan et

al. [40] and Mazumdar et al. [41] propose various methods

for analyzing resource usage and modeling resource usage

patterns. In addition, to maintain high resource utilization, new

resource allocation strategies have been proposed for CPU and

memory [42], [43]. Warneke et al. [44] propose an approach

to improve memory utilization. Shojafar et al. [45] and Bari

et al. [46] propose approaches to dynamically reconfigure

the computing-plus-communication resources of networked

data centers to improve resource utilization. Reiss et al. [47]

analyzed the google trace data, and their result is helpful for

resource schedulers. Besides, researchers present an analytical

model, based on stochastic reward nets (SRNs), which can set

the data center parameters under different working conditions

[48].

There are some works in literature on predicting workload

behaviors. These works predict resource demand, resource

utilization, or job/task length for provisioning or scheduling

purposes [49], [50]. They propose many methods to estimate

the future need of applications in terms of resources and

allocate them in advance, releasing them once they are not

required. However, it is not enough to ensure an efficient data

center because some servers may fail due to some reasons,

and prior work proposes several solutions. Tiranee et al. [51]

use ARMA (Auto Regressive Moving Average) and Fault Tree

Analysis to predict online failure. Sedaghat et al. [52] present

a statistical model for job reliability in a cloud data center, in

the presence of stochastic and correlated failures. Itani et al.

[53] propose a solution for node failures.

Although there are research efforts on traditional workload

characterization, server consolidation and VM migration in

data centers, workload characterization on co-allocated jobs

in data centers is rare. There are some works on analysis

of Alibaba’s trace data [54]-[59]. They focus on imbalance

phenomena in the cloud. In this paper, we characterize the

contemporary IDCs with co-allocation of online services and
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batch jobs in the literature in new dimensions including

failure patterns and correlations among CPU and memory.

Our findings in this paper can help the data center operators

better understand the workload characteristics and implement

workload driven job scheduling and workload placement.

VII. CONCLUSIONS

The contemporary giants of cloud service providers co-

allocate online services and batch jobs on the same clusters to

increase machine utilization and reduce energy cost. However,

the mixture of online services and batch jobs also result

in scheduling complexity and interferences among online

services and batch jobs. Moreover, rigorous latency control

for online services limits the resource multiplexing between

online services and batch jobs. Good knowledge of pioneered

operating of IDCs that co-allocate online services and batch

jobs can help the community build a more robust fault tolerant

scheduler for IDCs.

In this paper, we analyze various characteristics of co-

allocated online services and batch jobs from a production

cluster in Alibaba Cloud. We present detailed analysis on

batch instances completion time, resource utilization, failure

distribution, correlation and interference between resource, and

machine operating characteristics. Our findings and insights

presented here can help a data center operator better under-

stand the workload characteristics, improve resource utiliza-

tion, and failure recovery capabilities.
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