
1

Robust Authentication of Consumables with
Extrinsic Tags and Chemical Fingerprinting

Naren Vikram Raj Masna, Cheng Chen, Soumyajit Mandal, and Swarup Bhunia

Abstract—Consumables - from food, to pharmaceuticals, and
supplements - are becoming increasingly vulnerable to various
modes of counterfeiting due to the growing complexity of their
supply chain. Mislabeling, re-branding, and false advertising
are prevalent in this sector. Existing physical authentication
techniques fail to adequately verify integrity of these products
and protect the end-users. In this paper, we aim at addressing this
critical problem through development of a novel authentication
solution. It builds on the chemical analysis properties of a
powerful spectroscopy technique, namely, Nuclear Quadrupole
Resonance (NQR), that is quantitative, non-invasive, low-cost,
and amenable for miniaturization (to hand-held form factors).
The method is sensitive to small variations in the solid-state
chemical structure of a sample, which change the NQR signal
properties. These attributes can be unique for various manufac-
turers, enabling their use as manufacturer-specific watermarks.
However, NQR spectroscopy only works reliably (i.e., provides
good sensitivity) on compounds that contain certain nuclear
isotopes. We take advantage of the intrinsic properties of NQR-
sensitive isotopes to use them as extrinsic tags in NQR-insensitive
products. The NQR spectra of these extrinsic tags act as
unique watermarks that can be analyzed using machine learning
methods to authenticate any consumable with high confidence. In
particular, we use support vector machines (SVMs) to classify the
measured spectra and confirm the identity of items under test.
We have assessed this approach on a variety of consumables
utilizing semi-custom equipment, and verified that it results in
high (> 95%) classification accuracy. In order to prove the
unclonability of such extrinsic tags, we have also performed a
mathematical analysis that proves the randomness of the extrinsic
tag and confirms its robustness to brute-force attacks.

Index Terms—NQR, Authentication, Classification, Extrinsic
Tagging, Consumables, Supply Chain.

I. INTRODUCTION

TRUST is becoming an increasingly important factor in

the life-cycle of consumables, from medicines to dietary

supplements and diverse food products. This is primarily

due to the complex and globally distributed nature of their

supply chain, which often involves many untrusted parties at

different stages – from manufacturing to distribution. Grow-

ing trends of online distribution of these products further

aggravates the situation. According to a recent report, the

value of food fraud amounts to approximately $40 billion a

year globally [1]. Dietary supplements, which are commonly

used by adults in many countries, are also highly prone

to fraud. A study involving 37,958 adults found that 52%

of them use at least one type of dietary supplement, while

31% use multiple supplements [2]. Current practices cannot

provide adequate assurance of authenticity and safety of these

products, particularly considering i) the rapid increase in their

consumption - to an estimated $220.3 billion by 2022 [3]; ii)

repeated reports claiming substandard control and storage [4];

and iii) insufficient oversight by regulators, such as the U.S.

Food and Drug Administration (FDA) [5]. Similarly, essential

medicines have been vulnerable to various types of fraudulent

activities, with one out of 10 medicines in developing countries

are falsified or substandard, according to the World Health

Organization (WHO) [6]. For example, an incident in the city

of Lahore, Pakistan, resulted in contamination of a drug with

an antimalarial one leading to the death of 200 people [7].

Dominance of such fraudulent activities in variety of consum-

ables is creating significant health concerns including death in

many cases across the globe. There is a critical need to develop

low-cost, reliable, and non-invasive authentication method for

consumables to effectively track-and-trace them as they flow

through the supply chain. Such a solution can also empower

end-users to verify the products they consume.

Existing solutions, such as regulations for appropriate prod-

uct labeling and package-level tagging, suffer from major

deficiencies. While it is mandatory for manufacturers to pro-

vide a complete breakdown of the ingredients, there are few

techniques available for authenticating the quality of these

ingredients. Moreover, the globally distributed nature of the

supply chain leads to the lack of communication and assign-

ment of responsibility between involved parties. This provides

opportunities for counterfeiters to enter into a supply chain,

giving opportunity to various types of fraud. For example,

the role of organized crime in food fraud came into light

during a joint initiative named “OPSON V” by EUROPOL and

INTERPOL in 2016, which resulted in the seizure of 11,000

tons of fake food and 1,440,000 liters of fake drinks across

57 nations [8]. Food and dietary supplement fraud happens in

several ways, including (but not limited to) adulteration, use

of low-cost substitutes, tampering, counterfeiting, mislabeling,

and over-production. There is no centralized authentication

method that covers the complete supply chain. Although some

manufacturers use verification methods based on physical

authentication techniques such as optical barcodes and radio

frequency identification (RFID), they act only to verify the

product information or labels on the package, which is easy

to clone. They fail to verify the authenticity of the consumable

substance inside a package.

In this paper, we present a novel, reliable, and effective

authentication method for consumables by using embedded

tags that provide unique chemical signatures based on nuclear

quadrupole resonance (NQR) spectroscopy. As illustrated in

Fig. 1, this approach allows a product to be authenticated

at any stage of the supply chain using a portable NQR

spectrometer and a computing device (e.g., a smart phone)
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Fig. 1: Proposed authentication flow of a consumable product using NQR-based chemical tagging.

that runs a customized application. A manufacturer needs

to store the NQR signatures of the ingredients being used

for product authentication in a cloud server (preferably in

encrypted form to avoid data theft) before forwarding the

product to later stages in the supply chain. The cloud server

can be used to protect and control the access of tag information

from unauthorized users. It can also be used for defending

against common attacks like eavesdropping and man-in-the-

middle attacks. This integrity verification step can either be

used to authenticate the product and/or to trace it back to a

manufacturer. As the NQR signatures are extremely hard to

duplicate (as explained in detail in Section V), the ingredients

under test (known as chemical tags) can be used to check for

different integrity issues, e.g., adulteration, mislabeling, and

contamination. In case of authentication failure at any stage,

the product can be brought to the attention of the manufacturer

and/or regulatory authorities and appropriate measures can be

taken. The proposed authentication method uses both intrinsic

tags (explained in Section III) and extrinsic tags (explained in

Section IV). The latter is used for consumables that are not

sensitive to NQR. In such cases, we generate unique signatures

based on the intrinsic properties of NQR-sensitive elements

by embedding them in NQR-insensitive substances. The paper

presents details on: i) approaches for embedding extrinsic tags,

and ii) estimating their randomness and unclonability.

The remainder of this paper is organized as follows. Fun-

damentals of NQR-spectroscopy-based authentication, feature

extraction, and machine-learning-based classification are ex-

plained in Section II. The experimental setup, NQR spectrum

analysis, classification results using intrinsic material prop-

erties, and measurement accuracy are explained in detail in

Section III. The concept of extrinsic tagging is introduced

and analyzed in Section IV. The security of extrinsic tags,

including their randomness functions, is analyzed in Section V.

The results of the analysis and experiments are discussed in

Section VI. Section VII concludes the paper and discusses

future work.

II. METHODOLOGY

In this section, the physics behind the NQR and the process

of extracting important parameters to create an authentication

signature are explained. The basics of SVM classification and

the concept of extrinsic tagging are also described.

A. Overview of NQR-based authentication

NQR spectroscopy is an analytical, quantitative, non-

invasive, and non-destructive way to generate unique chemical

signatures. It uses RF magnetic fields to generate and detect

transitions between sub-levels of an atomic ground state [9],

[10], [11]. These sub-levels are created by interactions between

nuclear charge distributions and nearby electric field gradients

(EFGs), and NQR spectra are a result of transitions between

them [12], [10]. Nuclei with a spin of I > 1/2 embedded

in a structure with lower than tetragonal symmetry produce

NQR lines; in addition, high isotopic abundance results in

increased sensitivity. NQR resonances occur in the RF range of

the electromagnetic spectrum [13]. Unlike the closely-related

analytical technique of nuclear magnetic resonance (NMR),

NQR does not require a static external magnetic field to

generate nuclear energy levels and transitions between them.

Thus, NQR is also known as “zero-field NMR”. The nuclear

Hamiltonian relevant for NQR is given by

HQ =
ωQ

3

[

3I2z − I(I + 1) +
η

2
(I2+ + I2−)

]

, (1)
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Fig. 2: Energy levels and transitions for quadrupolar nuclei

with spin I = 1 and I = 3

2
. The three NQR resonant

frequencies for I = 1 are denoted by ω+, ω−, and ω0; the

single resonant frequency for I = 3/2 is denoted by ω0.

where ωQ is the quadrupolar coupling constant, 0 ≤ η ≤ 1 is

the asymmetry parameter of the EFG tensor in the principal

axis system fixed on the nucleus, and Iz , I+, and I− are spin

operators. Fig. 2 shows the resulting stationary energy levels

and transitions between them for nuclear spins I = 1 and

I = 3

2
. In this paper, we focus on extrinsic tags based on

detecting either nitrogen or chlorine. In particular, the 14N

isotope of nitrogen (I = 1) is chosen for many of the proof-

of-concept experiments due to the widespread presence of

nitrogen in food and dietary supplements, and also its high

natural abundance (99.6%). However, the NQR resonances

for 14N occur at relatively low frequencies (0.1-5 MHz),

which results in low sensitivity. Other nuclei such as 23Na,
35Cl, 37Cl, and 39K, all of which have I = 3

2
, can also

serve as extrinsic tags; some of them (notably the chlorine

isotopes) have significantly higher sensitivity than 14N. The

parameters ωQ and η characterize the transition frequencies of

a specific nuclear site. They depend upon the nearby electric

field distribution, which is a sensitive function of molecular

structure and chemical bonding.

B. Feature extraction from NQR spectra

In order to authenticate a substance, we need signatures

that cannot be altered externally. We use NQR spectra to

realize such unique signatures. NQR spectral lines occur at

well-defined resonance frequencies in the RF range. Each spin

I = 1 nucleus (e.g., 14N) has three resonances, as predicted

by eqn. (1):

ω± =
3ωQ

4

(

1± η

3

)

, ω0 = ω+ − ω− =
ηωQ

2
. (2)

Similarly, each spin I = 3/2 nucleus (e.g., 35Cl or 37Cl), has a

single resonance in the absence of an external magnetic field:

ω0 =
ωQ

2

√

1 +
η2

3
. (3)

Thus, NQR resonance frequencies are functions of ωQ and

η, which are unique properties of molecular and crystal

structure. Other properties of NQR spectra, such as amplitude

(A) and line width (∆f ), provide additional information

on the molecule and the sample as a whole. For instance,

the amplitude is proportional to concentration of the active

tE

tE/2 tp

t

t

s(t)

TX

RX

x y y y

Ae-t/T 2,eff

~1/∆f

Fig. 3: SLSE pulse sequence used in NQR experiments and

the corresponding received signal s(t).
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Fig. 4: Average accuracy of different classification algorithms

using the intrinsic properties of three samples: acetaminophen,

L-Histidine, and L-Proline [19].

ingredient, while the line width varies with crystal structure,

disorder, stress, aging, and other factors [14], [15], [16]. Thus,

these parameters are sensitive functions of solid-state structure,

which enables us to obtain unique signatures from NQR

spectra.

We use pulsed measurements to rapidly measure NQR

spectra. In particular, we use the spin-locked spin echo (SLSE)

sequence [17], [18], which comprises of an initial excitation

pulse and a long train of refocusing pulses separated by fixed

echo periods (see Fig. 3). Both the excitation and refocusing

pulses have the same length and a relative phase shift of π/2
between them. NQR signals known as spin echoes (indicated

as s(t) in Fig. 3) form between the refocusing pulses. Nonlin-

ear fitting is used to extract three main parameters from these

echoes: initial amplitude (A), frequency domain line-width

(∆f ), and decay time constant (T2,eff ). Note that 1/(∆f)
is roughly equivalent to the width of each echo, which is sub-

stantially smaller than T2,eff . These NQR parameters provide

sample-specific information, i.e., act as chemical fingerprints,

and are thus used as features for classification.

C. SVM-based classification

Given a list of training samples with NQR parameters

(A, T2,eff , and ∆f ) as predictors, every signature defines

one class - namely, the manufacturer. We have extensively
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studied the performance of various classification algorithms on

these features. Our results, which are summarized in Fig. 4,

suggest that SVMs have the best overall performance (highest

classification accuracy). Thus, they were selected for our

experiments on the authentication of consumables. The basic

SVM algorithm can be understood by considering data as

points in M -dimensional space, where M is the number of

parameters (M = 3 in our case). The algorithm finds the

classification boundary that separates two training sets by

the largest possible margins; the data points situated on the

margins are known as support vectors. This results in a non-

probabilistic binary classifier. It is combined with an error-

correcting output codes (ECOC) classifier to build a multi-

class model that assigns new data to one of the manufacturers

in the training database. The trained classifier can be used to

test samples at any stage of the supply chain for verification

and traceability. Additionally, by checking the investigation

log of each stage, changes in classifier estimates can be used

to infer fraud or degradation.

III. ANALYSIS OF INTRINSIC PROPERTIES

A. Experimental setup

The experimental setup comprises of an inductive detector

(solenoid coil) and programmable impedance matching net-

work mounted inside a Faraday cage to decrease environmen-

tal radio frequency interference (RFI). The matching network

is connected to a commercial bench-top magnetic resonance

(MR) spectrometer (Kea2, Magritek) that contains a power am-

plifier (PA), low-noise amplifier (LNA), and transmit-receive

switch (duplexer). The PA works as the transmitter and the

LNA as the receiver, while the duplexer switches the coil and

matching network amongst transmit and receive modes. The

spectrometer is powered by two 12 V, 18 Ah lead-acid batteries

connected in series. It is controlled from a PC via a graphical

user interface (GUI) named Prospa that enables the user to

create pulse sequences and store the acquired data [17], [18].

One of the important parts of the setup is the sample holder,

on which the solenoid coil is wound. This is utilized for both

excitation and detection, i.e., by creating a RF magnetic field

that generates transitions between the nuclear energy levels in

transmit mode, and inductively detecting the subsequent time-

varying magnetic flux in receive mode. Our coil was created

by winding AWG 20 wire around a hollow PVC tube of height

90 mm and base diameter 30 mm; the external surface of the

tube is threaded to hold the coil. We use a design with 31 turns,

an effective diameter of 31 mm, and a length of 70 mm. The

solenoid is then safely mounted inside the Faraday cage (size

= 260 mm × 160 mm × 90 mm), which minimizes RFI and

also houses the matching network [20]. The latter is tuned to a

particular frequency by utilizing TTL-level digital signals from

the spectrometer that assign “on” and “off” states to capacitor

channels (see Fig. 5).

The tuning procedure is as follows: The spectrometer creates

a programmable number of sequential pulses. These pulses

are counted by an accumulator on the matching network

board. The output bits of the accumulator define a binary

code that is used to switch the states of individual capacitors,

Fig. 5: Setup used for 14N NQR experiments.

thus programming the matching frequency. The programming

time is constrained by the number of programming pulses,

e.g., for n = 10 channels, the highest possible number is

2n − 1 = 1023. We decreased this time by utilizing base-n/2
notation, i.e., dividing the sequence into two signals, each of

which programs only n/2 = 5 channels. This reduces the

highest possible number of pulses to 2(2n/2 − 1) = 62, thus

minimizing the programming time by ∼ 16×.

B. Parameter estimation and SVM classification

The impact of environmental variables like temperature on

the measurements can be critical. The proposed approach re-

quires the analysis to be stable across different measurements.

Appropriate design of the device and calibration procedures

are essential to minimize these effects. In our previous work,

we used a combination of in-built temperature sensors with

pre-computed calibration tables to remove temperature-driven

NQR measurement variations [19]. In this work, we used the

intrinsic NQR properties of three substances for classification,

namely acetaminophen (Tylenol), L-histidine, and L-proline.

The first is a typical over-the-counter medicine, while the

others are amino acids that are frequently consumed as dietary

supplements. Each of these substances contains one or more
14N atoms, and are thus NQR-active. For each substance, we

prepared samples with similar amounts of active ingredient

from three different manufacturers.

Typical experimental data is shown in Fig. 6. The acquired

echoes are i) processed by a matched filter to maximize signal-

to-noise ratio (SNR), and then ii) fit to a mono-exponential

decay function to evaluate T2,eff (see Fig. 6(b)). The value of

T2,eff can vary from a few milliseconds to several seconds,

depending on the sample; larger values require longer mea-

surement times. Also note that while mono-exponential decay

curves fit this specific data set, in many cases the decays are

bi-or multi-exponential, which would increase the number of

classification parameters. Signal amplitude is estimated as the

peak value of the spectrum (see Fig. 6(a)) while line-width is

measured at 50% of the peak amplitude (see Fig. 6(c)). Since

the SLSE sequence acquires the signal in pulse mode, rather

than estimating the genuine line-width of the example, we

are actually estimating it after convolution with the Fourier

transform of the acquisition window. Fortunately, this only
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TABLE I: Measured ECOC-SVM prediction accuracies for

some consumables.

Tylenol L-histidine L-proline
Re-substitution accuracy 95.00% 97.50% 97.80%
Cross validation accuracy 94.36% 96.70% 93.33%

adds a constant offset to the measured line width and does

not influence the classification results. If needed, this effect

can be numerically reduced by deconvolution.

The presence of noise in the measurements (i.e., the finite

SNR) results in parameter estimation errors. Fig. 7 shows an

example of the distributions of estimated parameter values

for various samples across multiple experimental runs. For a

given experiment, the parameter distributions can be estimated

using a bootstrapping-like procedure, as described in the next

section. These distributions can in turn be used to estimate

the statistical significance of the measurements (e.g., using

confidence intervals).

3D scatter plots showing the intrinsic parameters of the

products under test are shown in Fig. 8. The corresponding

support vectors are also shown. The three measured param-

eters were used to train a SVM-ECOC model for multi-

class classification. Its performance was assessed using re-

substitution response prediction accuracy and cross validation

accuracy, and good results were obtained as summarized in

Table I. The term “re-substitution” refers to the accuracy

achieved by a trained classifier on the training set. It is known

that re-substitution accuracy is positively biased; hence cross-

validation is a more suitable technique for predicting the

performance of the trained classifier on test sets.

C. Statistical significance of the measured parameters

NQR is a relatively insensitive method because of the small

differences between the nuclear energy levels, which results

in low resonance frequencies (0.1-5 MHz for 14N). Thus, it

is important to ensure that SNR is high enough to enable

statistically significant measurements of sample properties. In

addition to intrinsic noise sources like thermal noise in the

detector, NQR is as also vulnerable to i) external RFI such as

AM radio stations, and ii) environmental perturbations such

as temperature fluctuations. We use temperature control and

RF shielding to minimize these error sources, but active noise

cancellation using multiple detectors [21] can also be used.

Here we describe a bootstrapping-like approach for eval-

uating i) the statistical properties of our parameters in the

presence of noise sources, and ii) the resulting false positive

and false negative rates. Our approach is to repeat the fitting

procedure many times with artificially-generated synthetic

noise that has similar statistics (mean and standard deviation)

as the experimental noise. Signal parameters (A, ∆f , and

T2,eff ) are estimated at the end of each test, and their statistics

are examined to assess measurement uncertainty.

The assessment procedure proceeds as follows: i) weigh

the measured signals (echoes) by their anticipated amplitudes

utilizing an initial estimate of T2,eff ; ii) matched filter the

echoes; and iii) fit to an exponential decay function to get the

values of A and T2,eff . The residuals from the fit provide an

approximation to the noise, and are used to generate synthetic

noise waveforms. These are added to the fitted decay curve and

fed back to the fitting routine to obtain new estimates for the

signal parameters. The distributions of these parameters can

be visualized using histograms, as shown in Fig. 9. These are

approximately Gaussian when external noise sources are ab-

sent, since the intrinsic noise of the detector is approximately

additive, white, and Gaussian. These distributions allow us to

i) estimate the number of scans and total experimental time

required to obtain the desired level of precision (e.g., specified

false positive and false negative rates); and ii) recognize and

eliminate statistical outliers, i.e., measurements for which the

noise statistics fall outside the expected range due to external

RFI or instrumentation issues.

D. Statistical significance of SVM-ECOC classifiers

The statistical significance of the trained SVM-ECOC clas-

sifiers was validated using permutation testing (10,000 itera-

tions). Permutation or randomization testing is a statistical tool

for constructing sampling distributions [22]. Specifically, it

consists of i) permuting the collected data by assigning random

outcome values to each observation from among the set of

possible outcomes, and ii) evaluating the prediction accuracy

of the trained classifier on the permuted data. This procedure

is similar to bootstrapping, except for the fact that it is carried

out with replacement.

Permutation tests are particularly useful in experimental

studies, where we often wish to eliminate the null hypothesis

of no significant difference between the classification groups.

In these situations, the permutation test represents our process

of inference, because our null hypothesis is that the two

treatment groups do not differ on the outcome as they are

manually modified. When we permute the outcome values

during the test, we therefore obtain all the possible alternative

treatment assignments. While the procedure actually requires

that we test all possible permutations of the data, We can

easily conduct “approximate permutation tests” by simply

conducting a very large number of re-samples. That process

should approximate the actual permutation distribution.

The probability distribution of classification accuracy for

the null distribution of the consumables under test is nearly

Gaussian with a mean of 42% and a standard deviation of

3.35%. This is statistically distinct (at the 16σ level) from the

cross validation accuracy of 97.5% obtained from one of the

correctly-labeled data sets (see Fig. 10). This result proves

that the prediction accuracy obtained by cross-validation and

re-substitution cannot be obtained from random data.

E. Variations with manufacturing processes

The linewidth of NQR spectra varies with the manufacturing

process [23], [24]. Similar NQR-sensitive substances with the

same polymorphic form have different linewidths when they

are made at different facilities. The narrowest linewidths occur

for single crystals, followed by free powder forms. By contrast,

the linewidth broadens as pressure is applied to convert free

powder into pill form.
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(a) Amplitude[A] (a.u.) (b) Decay time[T2,eff ] (ms) (c) Linewidth[Δf] (kHz)

Fig. 6: Measured 14N NQR parameters of a typical compound, namely acetaminophen. Experimental conditions: RF frequency

= 2.564 MHz, inter-experimental delay = 3000 ms, pulse length = 200 µs, echo period = 1200 µs, number of echoes = 2048,

number of scans = 16, number of pills = 50 (500 mg each).

(a) (b) (c)

Fig. 7: Comparison of the measured distributions of the NQR parameters for three different brands of L-Histidine. Experimental

conditions: RF frequency = 2.390 MHz, inter-experimental delay = 2000 ms, pulse length = 200 µs, echo period = 1200 µs,

number of echoes = 2048, number of scans = 16, number of pills = 30 (500 mg each).

Fig. 8: SVM classification with ECOC support vectors of three different samples using their intrinsic NQR signatures. The

classification accuracies are shown in Table I. RF frequencies: Tylenol = 2.564 MHz; L-histidine = 2.390 MHz; L-proline

= 1.490 MHz. Quantities: Tylenol = 50 pills (500 mg each); L-histidine = 30 pills (500 mg each); L-proline = 30 pills

(500 mg each).
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Fig. 9: Histograms of the measured parameters for one brand of acetaminophen obtained using the bootstrapping-like procedure.

Gaussian fits to the histograms are also shown. Experimental conditions: RF frequency = 2.564 MHz, inter-experimental delay

= 3000 ms, pulse length = 200 µs, echo period = 1200 µs, number of echoes = 2048, number of scans = 16, number of pills

= 50 (500 mg each).

Fig. 10: Statistical significance of the SVM-ECOC classifier using permutation testing. The classifier was trained on the

acetaminophen data shown in Fig. 9.

To test this hypothesis, we used a pill press to prepare

custom pills from mixtures of L-histidine and different ex-

cipients. The customized pills contained pure L-Histidine

(80-90% by mass) and suitable excipients (fillers, binders,

and glidants). In particular, we used a binding agent as the

excipient to prepare custom pills with a diameter of 8 mm

(similar to commercially-available ones). The NQR spectra of

both the powder and pill samples around 2.39 MHz were then

measured. Statistically significant changes in the linewidth

were observed, as shown in Fig. 11. In particular, there is

a change of approximately 10σ in the linewidth, which is

presumably because the high pressure applied during pill

preparation physically deforms the crystal structure.

IV. EXTRINSIC TAGGING

We refer to signatures generated using features of NQR

spectra as the intrinsic tags of that particular nucleus in the

sample. Obviously, intrinsic tags are only available for NQR-

sensitive nuclear isotopes. The use of these features to create

robust signatures for NQR-insensitive substances is known as

extrinsic tagging. The general concept of extrinsic tagging is

common in the fields of medicine and chemistry; it is used in

metabolic incorporation, ingestible medicines, and for labeling

proteins. Such tags are added to the original substance for

analysis, signature generation, and labeling without affecting

native performance. A common example is the study of protein

function in living organisms by selective labeling through ge-

netic encoding of fluorescent tags that enable high-resolution

imaging [25]. Similarly, RF transponders as extrinsic tags

attached directly to the outer surface of a standard-sized

capsule can potentially serve as a cost-effective method of

validating medication compliance via electronic detection of

ingested pills inside the digestive tract [26]. Likewise, in our

approach, in addition to intrinsic tags that generate signatures

from existing ingredients of the material under test, we can add

extrinsic tags to NQR-insensitive materials. As the proposed

SVM-based ECOC classification approach has high prediction

accuracy when trained using the intrinsic NQR parameters

of NQR-sensitive products [19], we use the same concept

to identify the extrinsic tags. Extrinsic tags should not i)

chemically react with the original substance, or ii) affect its

primary functions. Thus, the best practice for making extrinsic

tags is to physically mix them with the substance to be tagged

during manufacturing (e.g., injection molding or 3-D printing).
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Gap of 1700Hz

(a) Custom made pills (b) (c)

Fig. 11: Analysis of variations in linewidth between L-histidine in two physical forms: custom pills and powder. Experimental

conditions: RF frequency = 2.390 MHz, inter-experimental delay = 2000 ms, pulse length = 200 µs, echo period = 1200 µs,

number of echoes = 2048, number of scans = 16.

Moreover, enough tagging material should be added to enable

accurate signature readout within a reasonable period time.

This section further describes the extrinsic tagging concept.

A. Toxicity

In food applications, the chosen extrinsic tag will be con-

sumed directly by the consumer along with the product, which

limits the choice of tagging compounds. We select extrinsic

tags that are directly or indirectly safe to consume based on

a database available from the Food and Drug Administration

(FDA) [27]. Moreover, the tag should not i) chemically react

with the material being tagged, or ii) significantly change

the physical or sensory properties (e.g., color, taste, smell,

etc.) of the product. There are two main options that satisfy

these requirements: i) dietary supplements (which are directly

consumable) detected using 14N NQR; ii) other compounds

(which may be directly or indirectly consumable) detected

using NQR of various nuclei such as 14N, 23Na, 27Al, 35Cl,
39K, 55Mn, 67Zn, and 127I. Table II lists some compounds

in the latter category that have potential as extrinsic tags for

consumables.

B. Optimizing the signal-to-noise ratio (SNR)

In this section, we analyze the duration of a tagging

experiment. As NQR has relatively poor sensitivity, single-

scan signals are usually too weak to reliably detect. Thus,

a common approach is to average more scans to reduce the

noise, resulting in an improvement of the SNR. Specifically,

if the noise is uncorrelated across scans, the SNR after

accumulating N scans increases by
√
N (in voltage units).

We can obviously keep extending the experiment time to get

better SNR, but in most cases, we hope that the experiment is

not only effective but as short as possible. Thus, we wish to

maximize the SNR per unit time, which we denote by SNRt.

We now derive general expressions for maximizing SNRt

for a given sample. Assuming a mono-exponential decay for

simplicity, the total NQR signal strength (obtained by adding

the acquired echoes) after one scan is given by

Stot =

NE
∑

n=1

Ae−nTE/T2,eff , (4)

TABLE II: Potential extrinsic tags for food and dietary sup-

plements.

Type Name Formula Nuclei
Freq.

(MHz)

Directly
consumable

Ammonium
chloride

NH4Cl
N-14,
Cl-35

Cl: 20-40

Calcium
chloride

CaCl2 Cl-35 Cl: 20-40

Calcium
iodate

Ca(IO3)2 I-127 I: 40-80

Manganese
chloride

MnCl2
Mn-55,
Cl-35

Cl: 20-40

Potassium
chloride

KCl
K-39,
Cl-35

Cl: 20-40

Potassium
iodide

KI
K-39,
I-127

I: 40-80

Pyridoxine
hydrochloride

C8H11NO3

HCl
Cl-35 Cl: 20-40

Indirectly
consumable

Sodium
chlorite.

NaClO2 Cl-35
53.502,
51.121,

Nutrients Zinc oxide. ZnO Zn-67
0.7220
0.3610

Multi-purpose
food items

Glutamic acid
hydrochloride.

C5H10ClNO4

Cl-35,
N-14

Cl:20-40

Aluminum
sodium sulfate.

NaAl(SO4)2·
12H2O

Na-23,
Al-27

Na:1-3,
Al:1.5-2

Anti-caking
agents

Sodium
aluminosilicate.

AlNa12·
SiO5

Na-23,
Al-27

Na:1-3,
Al:1.5-2

Chemical
preservatives

Sodium sulfite. Na2SO3 Na-23 Na:1-3

Nutrients Choline chloride. C5H14ClNO
Cl-35,
N-14

Cl:20-40

where A is the initial signal amplitude, TE is the echo time,

NE is the number of echoes, and T2,eff is the transverse

relaxation time constant. Two scans are separated by a wait pe-

riod TW , during which the available signal amplitude recovers

exponentially as
(

1− e−TW /T1

)

, where T1 is the longitudinal

relaxation time constant.

Thus, the SNR per unit time (in power units) is given by

SNRt =
Stot

2(1− e−TW /T1)
2

(NETE + TW )

1

NEσ2
noise

, (5)

where TW is the wait time and σnoise is the rms noise per echo

per scan (assumed to be additive and white, i.e., uncorrelated

between echoes and scans).
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For simplicity, we define the parameters β = NETE/T2,eff ,

α = TW /T1, and δ = T1/T2,eff . Thus, eqn. (5) becomes

SNRt =
A2

σ2
noise

(

1− e−β

1− e−TE/T2,eff

)2 (

1− e−TW /T1

)2

NE(NETE + TW )
.

(6)
Taking advantage of the approximation 1

1−e−x ∼ 1

x when

x = TE/T2,eff ≪ 1, eqn. (6) can be rewritten as

SNRt =
A2

σ2
noise

1

TE

(1− e−α)
2(

1− e−β
)2

β(β + αδ)

=
γA2

Snoise

(1− e−α)
2(

1− e−β
)2

β(β + αδ)
, (7)

where Snoise is the power spectral density (PSD) of the noise.

The noise PSD is defined using σ2
noise = Snoise∆f where

∆f is the effective bandwidth of each echo after matched

filtering. Also, we define γ = 1/ (∆fTE) to be another

dimensionless parameter. For pulsed measurements such as

the SLSE sequence, ∆f ≈ (1/T ∗
2 + 1/Tacq) where 1/T ∗

2 is

the line width and Tacq is the duration of the signal acquisition

window for each echo. Clearly Tacq < TE since signals cannot

be acquired during the RF pulses; as a result, 0 < γ < 1.
Eqn. (7) shows that the SNR per unit time depends on

various parameters. Of these, i) α and β depend on the pulse

sequence parameters NETE and TW ; ii) γ increases mono-

tonically with Tacq/TE and is limited by hardware constraints

(peak RF power level, duplexer isolation, etc.); iii) A and δ
only depend on sample properties, and iv) Snoise is limited by

the receiver hardware (i.e., coil resistance and Noise Figure

[NF]). We can thus estimate the optimum pulse sequence

parameters for a given instrument and sample by numerically

evaluating the nonlinear function shown in eqn. (7) versus α
and β for fixed values of A, Snoise, γ, and δ.

Fig. 12(a) shows the normalized SNR per unit time function

for δ = 3. A clear optimum is obtained near (α, β) =
(1.57, 0.98). Fig. 12(b) summarizes the optimum values of

α and β as a function of δ. As δ increases, i.e., T1 becomes

relatively larger than T2,eff , it becomes more favorable to

acquire echoes rather than wait increasingly longer times for

T1 relaxation. Thus, the optimum value of α decreases with

δ, while that of β increases. However, the dependence of αopt

and βopt on δ is relatively weak.
As an example, Fig. 13(a) shows the dependence of SNR per

unit time on NETE and TW for 35Cl NQR of sodium chlorate

(NaClO3), for which the nominal values of T1 and T2,eff at

room temperature are 31 ms and 5 ms, respectively. Fig. 13(b)

confirms that the experimentally measured SNR per unit time

for NaClO3 is in agreement with the theory, i.e., reaches an

optimum for a given value of TW when the scan time NETE

is kept fixed. We created a modified version of the 14N test

setup shown in Fig. 5 for this experiment; this version uses

a smaller sample coil and higher-frequency matching network

such that 35Cl NQR lines (which occur in the 20-35 MHz

range) can be measured.

C. Sensitivity

Sensitivity plays a major role in choosing an extrinsic tag

as it directly determines the SNR per unit amount of tagging

δ = 3
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Fig. 12: (a) Theoretical dependence of SNR per unit time on

α and β for δ = 3. (b) Theoretical dependence of the optimum

values of α and β as a function of δ.

material. NQR signal strength scales as the square of the

resonant frequency ω0, so compounds with high resonance

frequencies are desirable [18]. As a result, the amount of NQR-

sensitive tag that can be reliably detected within a specified

detection period depends on the tag. As an example, we limited

the detection time to a maximum of 40 sec, used the optimum

pulse sequence parameters derived in the previous section,

and then evaluated the minimum amount of active ingredient

required for reliable detection of L-histidine and L-proline. It

should be noted that these compounds have low 14N resonance

frequencies of 2.39 MHz and 1.48 MHz, respectively. Hence

the amount of tag required is relatively large. In our case,

we can reliably detect changes in concentration of an L-

histidine tag (in powder form) at the 10% level within a

∼50 cm3 sample. For example, Fig. 15 shows that we can

reliably classify samples of common sugar containing 30%

and 40% of L-histidine. Thus, the estimated sensitivity (within

the specified 40 sec detection time limit) for this tag is

∼5 cm3, which corresponds to ∼2.1 gm of powder. Of course,

averaging across more scans will further improve sensitivity

as the square root of detection time.

Sensitivity can be greatly improved by using tags with

higher resonant frequencies, as mentioned earlier. However,

the improvement is not quite quadratic with ω0 because of two

factors: i) the power spectral density of noise in the detector

coil increases due to proximity and skin effects; and ii) the
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Fig. 13: (a) Theoretical dependence of SNR per unit time

on wait and scan times for sodium chlorate (NaClO3). (b)

Comparison of theoretical and experimentally measured de-

pendence of SNR per unit time (in this case, proportional to

the acquired signal amplitude per unit time) on wait time TW

for NaClO3 when the scan time NETE was fixed at 6 ms.

NQR line width also tends to increase, which increases the

noise bandwidth. Assuming that i) the skin effect is dominant

and ii) the line width is proportional to ω0, it can be shown

that the resulting sensitivity scales as ω
5/4
0 , i.e, increases in a

roughly linear way with ω0. The resonant frequencies of 35Cl,

for example, often lie in the 20-35 MHz range, which results

in ∼20× higher sensitivity than typical 14N resonances in the

1.8-3.2 MHz range. This allows smaller amounts of tag to be

added to the material of interest.

We have used sodium chlorate, which has a resonant fre-

quency around 29.91 MHz at room temperature, as an example

of 35Cl-based tagging. In particular, we have measured sam-

ples with different quantities of sodium chlorate; the results

are shown in Fig. 14. The figure shows that this 35Cl-based tag

can be reliably identified in extremely low quantities (0.1 g

within ∼40 sec, which is ∼20× better than the L-histidine
14N-based tag, as expected). Furthermore, the signal strength

is linearly proportional to the sample weight, which proves the

quantitative nature of NQR. The large variance of the 0.9 g

sample is due to the inhomogeneity of the detection coil and

temperature shift during the experiment.
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Fig. 14: High sensitivity of a sodium chlorate tag. Experimen-

tal conditions: RF frequency = 29.91 MHz, inter-experimental

delay = 200 ms, pulse length = 50 µs, echo period = 600 µs,

number of echoes = 100, number of scans= 128.

V. COMPLEXITY ANALYSIS

Computational complexity of the deployed algorithm plays

an important role in the practical implementation of the

technique, since it determines the hardware requirements.

We have estimated the computational complexity of SVMs

during both the training and prediction phases. The training

complexity of nonlinear SVMs is generally between O(n2)
and O(n3) where n is the number of training instances [28].

We used a maximum of 40 instances and 3 features for

training an SVM on each sample, which resulted in > 90%

accuracy as described earlier. Similar training datasets can

thus be used for commercial applications of the technique.

Given the computational power of modern machines, training

on such datasets only takes a few seconds. For example, in

our case training took 6.8 sec using MATLAB running on

a standard laptop computer (64-bit operating system, Intel-

i7 8550U CPU). Similarly, the prediction complexity of a

SVM is also low: it scales as O(d) where d is the number

of dimensions or features [29]. In our case, the same laptop

took 4.6 sec to complete the prediction task given 3 features

and a test dataset consisting of 34 samples.

Extrinsic tags should be difficult to clone to ensure high

security. Tags with complex NQR spectra generated by sev-

eral intrinsic or external NQR-sensitive nuclei are therefore

desirable. There are several ways to make the extrinsic tag

unclonable. Since we use three parameters from each NQR

resonance for classification, we can permute these parameters

in several combinations to make it extremely difficult for

the attacker to guess them by brute force attacks. To further

study the properties of extrinsic tags, we performed several

experiments by modifying the parameters and also by using

multiple tags. These are explained in the following sections.
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Fig. 15: Classification of two samples of common sugar using

a single extrinsic L-histidine tag. Experimental conditions: RF

frequency = 2.390 MHz, inter-experimental delay = 2000 ms,

pulse length = 200 µs, echo period = 1200 µs, number of

echoes = 2048, number of scans = 16.

A. Single extrinsic tag

One of the important parameters in creating a NQR-specific

watermark is the amplitude of the echo spectrum. As the

amplitude is directly proportional to the amount of tag, we

can vary the amplitude by modifying the amount. We used L-

histidine as an extrinsic tag to differentiate between two sam-

ples of common sugar for this proof-of-concept experiment.

The tag accounted for 30% and 40%, respectively, of the entire

mass of the two samples under test. As shown in Fig. 15, we

can use this method to reliably differentiate one extrinsic tag

from another; the cross validation accuracy is 100%.

B. Multiple extrinsic tags

We can also use multiple NQR-sensitive compounds which

are non-reactive both with each other and the actual substance

as extrinsic tags. This increases the complexity of the tag and

makes it harder to clone. In a proof-of-concept experiment, we

used two directly consumable dietary supplements (L-histidine

and L-proline) as extrinsic tags in a single sample of infant

formula (milk powder) and created a watermark for it. The

first sample contained 30% and 40%, respectively, of tagging

material by mass, while the second contained 20% and 50%.

Fig. 16 shows that we can reliably distinguish between these

two cases even though they have the same total amount of

tagging material.

As explained in the previous sections, we generally use

three parameters per NQR line. For extrinsic tags containing

a single compound, we can modify the signal amplitude (A)

but not the decay time (T2,eff ) or linewidth (∆f ), because the

latter are tag-specific parameters. It can however be argued that

the linewidth can be modified and used for extrinsic tagging

by using multiple brands of the same compound (i.e., from

different manufacturers). However, these changes are small

enough that mixtures of multiple brands cannot be resolved

using the current apparatus. As a result, they do not enhance

security relative to a single-brand tag.

L-Proline Cluster

L-Histidine Cluster

Fig. 16: Classification of two samples of milk powder using

multiple extrinsic tags (L-histidine and L-proline). Experi-

mental conditions: RF frequency = 2.390 MHz (L-histidine);

1.490 MHz (L-proline), inter-experimental delay = 2000 ms,

pulse length = 200 µs, echo period = 1200 µs, number of

echoes = 2048, number of scans = 16.

C. Miscellaneous Effects

There are several other effects that determine the complexity

of extrinsic tags. Firstly, each NQR-sensitive nucleus with

spin I = 1, such as 14N, generates three resonant lines (see

Fig. 2), resulting in up to 3× 3 = 9 classification parameters.

However, the lowest-frequency resonance (the ω0 transition

shown in Fig. 2) generally does not have enough sensitivity to

be useful, which reduces the number of useful parameters to

6. For example, the single 14N nucleus of acetaminophen has

resonances at 2.564, 1.921, and 0.643 MHz. Fig. 17 confirms

that the parameters of the first two resonances are distinct.

Secondly, a compound with N > 1 NQR-sensitive nu-

clei will generate an independent set of lines for each nu-

cleus, resulting in 6N classification parameters. For example,

melamine has N = 6 14N nuclei, and thus has as many

as 36 classification parameters. Finally, many compounds

have K > 1 polymorphic forms, each of which can also

generate significantly different NQR parameters. In this case,

the number of available parameters increases to 6NK. Thus,

one can greatly increase the complexity of the tag by picking

the right tagging compound.

The manufacturing process can also add complexity to

extrinsic tags. As explained earlier, the NQR linewidth for

pills can vary significantly with pressure applied during man-

ufacturing. Similarly, other physical variables, such as stress,

can affect the NQR parameters, hence, the watermark. As an

example, we performed an experiment with two samples from

the same manufacturer that have the same chemical composi-

tion and mass but different physical forms. In particular, both

samples contain 500 mg Tylenol (acetaminophen) per pill, but

the first consists of regular caplets while the second consists of

gelatin capsules (gelcaps). The cross validation accuracy for

classifying these samples is high (97%) as shown in Fig. 18.
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Fig. 17: NQR signatures for two different NQR resonances of the same 14N nucleus in a sample of acetaminophen. Experimental

conditions: RF frequency = 2.564 MHz; 1.921 MHz, inter-experimental delay = 3000 ms, pulse length = 200 µs, echo period

= 1200 µs, number of echoes = 2048, number of scans = 16, number of pills = 50 (500 mg each).

Fig. 18: Classification of two samples of acetaminophen

(Tylenol) in (i) caplet form, and (ii) gelcap form. Experimental

conditions: RF frequency = 2.564 MHz, inter-experimental

delay = 3000 ms, pulse length = 200 µs, echo period

= 1200 µs, number of echoes = 2048, number of scans = 16,

number of pills = 50 (500 mg each).

D. Randomness Function

The unclonability of an extrinsic tag is vital for ensuring

resistance to brute-force attacks. The following equation pro-

vides an estimate for the randomness of a tag:

ℜ =

K
∏

α=1

2N
∏

β=1

(

∆Aβ

Aβ,sen

)(

∆Lβ

Lβ,sen

)(

∆Tβ

Tβ,sen

)

, (8)

where ℜ is the randomness function, K is the number of NQR-

sensitive compounds (or polymorphs) used to make an extrin-

sic tag, and N is the number of NQR-sensitive nuclei (assumed

to have spin I = 1) inside each compound. As each nucleus

has different resonant frequencies, randomness increases ex-

ponentially with the total number of nuclei. Moreover, ∆Aβ

is the available range of signal amplitudes for a particular

nucleus, while Aβ,sen is the measurement sensitivity, i.e., the

smallest detectable change in signal amplitude. Similarly ∆Lβ

and ∆Tβ are the available ranges of linewidths and decay time

constants for that nucleus, respectively, and Lβ,sen and Tβ,sen

are the corresponding sensitivities.

As an example, when three different compounds are used to

make a single watermark, then K = 3. If each compound has

five NQR-sensitive atoms, then N = 5. Assuming reasonable

values for ∆Aβ = 10 gm and Aβ,sen = 0.5 gm, the first term

in eqn. (8) is equal to 20. Similarly, assuming ∆Lβ = 30 kHz

and Lβ,sen = 1 kHz, the second term is equal to 30. Finally,

assuming ∆Tβ = 2000 ms and ∆Tβ = 5 ms, the third term

is equal to 400. Thus, considering all the possible parameter

values for this complex extrinsic tag, the randomness function

will have a value of ℜ = 2.55× 10161. This result proves that

such a three-component extrinsic tag is highly random and

quite difficult to estimate using brute force.

VI. RESULTS AND DISCUSSION

We have shown that the intrinsic properties of NQR-

sensitive nuclei can be utilized to make unique chemical

signatures that are highly sensitive to changes in the chemical

environment (e.g., due to the manufacturing process, phys-

ical structure, etc.). Thus, in some cases they can even be

used to differentiate between nominally-identical chemicals

from various manufacturers [19]. We have used SVMs with

ECOC support vectors to accurately classify different NQR-

sensitive substances based on these signatures with relatively

low computational complexity. However, not all consumables

are NQR-sensitive. In these cases, we proposed an extrinsic

tagging approach based on adding consumable NQR-sensitive

compounds (see Table II). Compounds with higher NQR res-

onance frequencies are desirable for such extrinsic tags since
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they have higher sensitivity, thus minimizing the amount of

tagging material that needs to be added. Methods to optimize

sensitivity and SNR per unit time were further discussed

in Section IV. The desired complexity of an extrinsic tag

depends on the security requirements of a particular product.

Simple tags can be made by merely changing the quantity

of active ingredient (see Fig. 15). More secure tags can be

made by using multiple NQR-sensitive elements (see Fig. 16)

or multiple NQR-sensitive nuclei (see Fig. 17). Thus, tag

complexity can be varied depending on the application, as

described in Section V. Finally, we provided a theoretical

analysis of the randomness function of such tags (see eqn. 8)

that confirms their highly unclonable nature and thus validates

the proposed extrinsic tagging concept.

The existing experimental setup is a bench-top device that

consists of a probe, spectrometer, computer, and batteries. This

type of device is suitable for industrial authentication applica-

tions (e.g., in supply chain management) but is too large and

expensive for use by average consumers. In order to address

this issue, future work will concentrate on i) miniaturizing

the device by replacing the expensive bench-top spectrometer

with a system-on-module (SoM); ii) improving sensitivity

by using pre-polarization techniques; and iii) reducing local

processing requirements by transferring computations to the

cloud. Moreover, the current applications of the proposed

technique are limited to consumables. Future work will explore

additional applications, such as the authentication of common

non-consumables like plastics, glass, and metals.

VII. CONCLUSION

We have presented a novel non-invasive approach for ver-

ifying the integrity of consumables and tracing them through

a supply chain using chemical tags. Our approach is based on

verifying intrinsic chemical and structural properties of NQR-

sensitive elements, which can be used as extrinsic tags in di-

verse products. In particular, we have described how to classify

and track consumables by using extrinsic tags that generate

unique watermark based on three NQR parameters (amplitude,

decay time, and line width). We have demonstrated that these

parameters can be measured by a portable authentication

device. The proposed approach enables reliable track-and-trace

of consumables through the supply chain based on training a

machine learning model with measured NQR signatures. Such

tags themselves should be safe to consume, e.g., made out of

inactive ingredients of a pharmaceutical/supplement product,

or additives of a food product. Further, they should be hard-to-

clone, which is achievable since the exact watermarks rely on

multiple hard-to-replicate manufacturing parameters. We have

presented an estimate of the unclonability of these signatures

by defining an appropriate randomness function.

Both authentication and unclonability can be further im-

proved by using improved instrumentation that provides higher

sensitivity. For example, a pre-polarization system can be

added to the existing setup, which uses cross-polarization from

protons in a static magnetic field to increase NQR signal

amplitude, thereby improving SNR. Our current experimental

setup is also limited to solid tags, since NQR is a solid-state

technique. In order to extend our approach to a wider set of

tags, including liquid, we plan to combine NQR with low-field

NMR in our future work. We also plan to explore ways to sig-

nificantly reduce the amount of tag by using compounds with

higher resonance frequencies. Finally, we plan to incorporate

extrinsic tags in non-consumables to improve their security

using similar authentication approach.
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