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Automatic determination of vertical cup-to-disc ratio

in retinal fundus images for glaucoma screening
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Abstract—Glaucoma is a chronic progressive optic neuropathy
that causes visual impairment or blindness, if left untreated.
It is crucial to diagnose it at an early stage in order to
enable treatment. Fundus photography is a viable option for
population-based screening. A fundus photograph enables the
observation of the excavation of the optic disc - the hallmark
of glaucoma. The excavation is quantified as vertical cup-to-disc
ratio (VCDR). The manual assessment of retinal fundus images is,
however, time-consuming and costly. Thus, an automated system
is necessary to assist human observers. We propose a computer
aided diagnosis system, which consists of localization of the optic
disc, determination of the height of the optic disc and the cup, and
computation of the VCDR. We evaluated the performance of our
approach on eight publicly available data sets, which have in total
1712 retinal fundus images. We compared the obtained VCDR
values with those provided by an experienced ophthalmologist
and achieved a weighted VCDR mean difference of 0.11. The
system provides a reliable estimation of the height of the optic disc
and the cup in terms of the Relative Height Error (RHE = 0.08

and 0.09, respectively). Bland-Altman analysis showed that the
system achieves a good agreement with the manual annotations
especially for large VCDRs, which indicate pathology.

Index Terms—Glaucoma, retinal fundus images, vertical cup-
to-disc ratio, trainable COSFIRE filters, GMLVQ

I. INTRODUCTION

G
LAUCOMA is a chronic, progressive neuropathy that

affects irreversibly the optic nerve, the neural fiber

bundle that relays visual information from the eye to the brain.

The worldwide number of people (aged 40-80 years) affected

by glaucoma was estimated to be 64 million in the year 2013.

This number is expected to increase to 76 million by 2020

and to 120 million by 2040 [1], [2]. Glaucoma affects 1 -

2% of the population and is now the second leading cause of

blindness [1].

As glaucoma is initially asymptomatic and the damage is

irreversible, it is important to diagnose it as early as possible in

order to halt or slow down progression by adequate treatment

- thus avoiding visual impairment or blindness. The diagnosis

and treatment of glaucoma requires specialized physicians and

sophisticated procedures, such as tonometry (assessment of

intraocular pressure), ophthalmoscopy (assessment of the optic

nerve), and perimetry (assessment of visual function). The

initial detection of glaucoma, however, does not necessarily

require all of these measurements; a single assessment of

the nerve could already be very valuable in a population-

based screening setting. In addition to ophthalmoscopy by a

skilled professional, fundus photography and optical coherence

tomography (OCT) can be used for this assessment. With these

techniques, the changes of the optic nerve head (ONH) and

L
e
n
s

Pupil

Iris

Cornea

Retina
Optic

nerve head

Optic nerve

Retinal
blood vessels

Fovea

Sclera

Fig. 1: A schematic diagram of the human eye. This figure is

taken from:http://tinyurl.com/mtkglzh.

the retinal nerve fibre layer (RNFL) can be observed [3]. OCT

enables a quantitative evaluation of individual retinal layers,

including layers relevant to glaucoma. It is also useful to

uncover certain aspects of macular degeneration and diabetic

retinopathy. Compared to fundus photography, however, OCT

is costly.

Fundus photography forms the cornerstone for the clas-

sification and grading of macular degeneration and diabetic

retinopathy in (genetic) epidemiological research, and can

also be used for the assessment of glaucoma [4]. A major

advantage of fundus photography is the availability in virtually

all large eye studies, in which a detailed description of the

characteristics and genotype of the participants is present as

well [5]–[10]. Therefore, in this study we focus on fundus

photography.

Fig. 1 shows a schematic diagram that illustrates the

anatomy of the human eye. The visual pathways start with the

photoreceptors in the retina, which transduce light into neural

signals. The photoreceptors relay information to bipolar cells

that are connected to the retinal ganglion cells. The axons of

the retinal ganglion cells leave the eye through the ONH. The

ONH is also the entry point of the major blood vessels into

the eye. Fig. 2a shows a retinal image taken with a fundus

camera. The optic disc is the region surrounded by the dashed

white boundary and is the two-dimensional view of the ONH.

The optic disc appears as a bright reddish area which usually

has a vertically elliptic shape [12]. Usually, three areas can

be distinguished within the optic disc: a neuroretinal rim, a
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Fig. 2: Example of a retinal fundus image and the optic nerve

head. (a) A retinal fundus image (of size 564 × 584 pixels)

captured at a field of view of 45◦ from a right eye. This

image is taken from the DRIVE data set [11]. The white

and black boundaries indicate the optic disc and the cup,

respectively. The ring-shaped region between the black and

the white boundaries is called neuroretinal rim. The vertical

cup-to-disc ratio (VCDR) is 0.45. (b) A close-up view of the

optic disc region.

cup, and blood vessels. The cup is the pale, oval region in

the middle of the optic disc, marked with the black dashed

boundary. It is paler than the surrounding rim because - in

contrast to the rim - it is void of optic nerve fibres. It is usually

slightly decentered towards the fovea. The size of the cup

relative to the size of the optic disc gives an indication of the

state of the optic nerve. The vertical cup-to-disc ratio (VCDR),

defined as the ratio between the height of the cup and that of

the optic disc, is a commonly used measure to assess the state

of the optic nerve and the risk of glaucoma [13]. Outside the

optic disc sometimes there is a pale ring named scleral ring,

which is indicated by the white arrow in Fig. 3b. Outside the

scleral ring there is a yellow-gray region called parapapillary

atrophy (PPA), as shown in Fig. 3(a-b). PPA is a glaucoma-

related pathology that is due to the thinning of the layers of the

retina and the retinal pigment epithelium around the optic disc.

PPA and the scleral ring frustrate the correct determination

of the optic disc border, making an accurate estimate of the

VCDR difficult. For instance, the VCDR value of the retinal

fundus image in Fig. 3(a-b) is 0.56. It can be underestimated if

the observer erroneously determines the boundary of the optic

disc as that of the PPA.

The manual analysis of retinal fundus images in glaucoma

population screening would be a highly tedious procedure for

medical experts, because of the large number of images of

which only about five percent contain signs of glaucoma1. A

computer-aided diagnosis system for glaucoma screening that

measures the VCDR can be used to speed up the analysis

of retinal images. Our decision to compute the VCDR of

retinal images as opposed to methods [15]–[19] that address

this challenge as a classification problem and provide only the

1It is recommended for people above 40 years old to have regular eye
examination. Among Caucasian people above this age the occurrence of
glaucoma is approximately 2%, and it increases rapidly with age [14]. The
occurrence is even higher in case of African descent.
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Fig. 3: Example of a retina with pathology. (a) A retinal fundus

image with pathologies that may make the optic disc look

much bigger than it actually is. This image is taken from the

DRIVE data set [11]. The real boundary of the optic disc is

marked by the white-dashed contour. The light region between

this boundary and the outer black dotted contour is due to the

parapapillary atrophy. The VCDR value is 0.56. (b) A close-up

view of the optic disc region.

likelihood that a given image is glaucomatous, is motivated by

two main reasons. First, the VCDR is part of the current defini-

tion of glaucoma for epidemiological studies [20] and still the

preferred measure of glaucomatous optic neuropathy in these

studies [21]. Second, the VCDR (and optic disc area) plays an

important role in the unraveling of the genetics of glaucoma

[22], and especially in genome-wide association studies, where

a very large number (1,000-100,000) of fundus images have

to be assessed. With the proposed work we contribute to

the development of a feasible computer assisted screening

program that would allow ophthalmologists to analyse the

images based on the automatic computation of the VCDR.

In this work, we propose a computer-aided diagnosis system

that uses trainable computer vision algorithms to estimate the

VCDR in retinal fundus images. First, our system localizes

the optic disc and approximates its boundary with an ellipse.

We develop two novel shape-selective filters, namely the

vasculature- and disc-selective COSFIRE filters and combine

their results to provide a precise localization of the optic disc.

We adapt such filters to the cases where parts of the patterns

are missing or occluded, such as the vascular branches. Then,

we fit an ellipse to the boundary of the optic disc and employ

a Generalised Matrix Learning Vector Quantization classifier

[23] to segment the optic disc into the optic neuroretinal rim

and the cup. Finally, we compute the VCDR and provide a

reliability indicator. Such a reliability indicator can be thought

of as a confidence score of the resulting VCDR values as

well as an indication of retinal abnormalities. We evaluate

the proposed approach on eight public data sets and compare

the obtained results with the manual annotation provided

by a glaucoma expert from the University Medical Center

Groningen. We also make the manual annotations from the

glaucoma expert publicly available. The main contributions of

this work are as follows:

(1) We propose a complete framework for the determination

of the VCDR in retinal fundus images for glaucoma screening,
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which employs the visual features that are understandable and

interpretable for the ophthalmologists.

(2) The proposed shape-selective COSFIRE filters for optic

disc localization are configured based on the retinal fundus

images in one data set, which show generalization ability also

on images in other data sets with different imaging settings.

(3) The proposed approach is evaluated on eight public data

sets which are easily accessible and the manual annotations

will be available online for benchmarking purposes.

The rest of the paper is organized in the following way.

In Section II, we review studies which attempted to solve the

same problem or parts of it. In Section III we present our

proposed method that determines the boundary of the optic

disc and the cup and evaluates the VCDR. In Section IV we

describe the data sets and the corresponding manual annotation

followed by the experiments and the experimental results.

Finally, we discuss some aspects of the proposed method in

Section V and draw conclusions in Section VI.

II. RELATED WORK

The automatic detection of glaucoma has attracted the

interest of many researchers [24]. Most of the studies, however,

address only parts of the problem. For instance, some studies

focus on the localization of the optic disc [25]–[33], and some

also attempt to delineate the boundary of the optic disc [34]–

[36]. Others focus on the segmentation of the cup [37]–[41] or

some other features for the detection of glaucoma [15], [18],

[42], [43].

The algorithms proposed for the localization and boundary

detection of the optic disc can be categorized into two types,

namely intensity-based and vasculature-based. The former

methods detect the optic disc by its visual appearance which

is characterized by a circular or an oval shape with bright

luminosity. On the other hand, vasculature-based approaches

analyze the position of the large retinal blood vessels that

diverge from the interior of the optic disc.

Various approaches have been proposed to localize the optic

disc as the brightest region in a retinal fundus image [26]–

[28]. [25] proposed a variance-based optic disc detection, in

which the location of the optic disc is identified by the area of

the highest variation in intensity. [26] estimated the center of

the optic disc as the center of the connected region with the

highest brightness and then applied the watershed transform to

the image gradient to obtain the disc boundary. Other intensity-

based methods that extract shape information of the optic disc

employ algorithms, such as circular Hough transform [35]

and template matching [34]. These methods require images

with even illumination and are not sufficiently robust for

images with pathologies. In [29], it was demonstrated that

the brightness, shape, and contrast are not robust features for

optic disc detection in images with pathologies.

In order to avoid relying on the luminosity, other meth-

ods [29]–[31], [44] sought to analyze the vascular structure in

the vicinity of the optic disc. A fuzzy convergence algorithm

was proposed to determine the intersection of the blood vessel

segments [29]. The method proposed in [30] introduced a

geometrical directional model of the retinal vascular tree to

detect the convergence point of vessels. In [44], the authors

proposed an approach to detect the optic disc by matching the

directions of the neighboring blood vessels with a vessels’

direction matched filter. In [31], the entropy of vascular

directions was used. The entropy is thought to be associated

with the occurrence of a large number of vessels with multiple

orientations. As shown in Fig. 2b, the divergent point of the

main vessel tree, however, is not always exactly at the center

of the optic disc. Therefore, these methods may suffer from

insufficient precision in the localization of the optic disc.

The studies [39], [40], [45], [46] focused on the cup

segmentation. The work in [39] proposed a spatial heuris-

tic ensembling approach which fuses different methods to

segment the cup. Later, in another work [40], the authors

proposed a method to identify the boundary of the cup by

determining the vessel kinking points, which indicate the cup

excavation. Recently, [45] and [46] proposed joint disc and cup

segmentation based on deep convolutional neural networks.

Moreover, the methods proposed in [15], [18], [42], [43] rely

on the analysis of retinal fundus images to automatically

assess glaucoma. The work in [42] proposed an automatic

system to estimate the glaucoma risk index which indicates

the probability of a retina being glaucomatous. Their system

extracts features, such as FFT and B-spline coefficients, from

the spatial and the frequency domains followed by a support

vector machine classification. The work proposed in [15] and

[43] implemented deep learning approaches to automatically

extract discriminant features for the differentiation of the

glaucomatous retinas from the healthy ones. Most of these

methods were, however, tested on proprietary data sets or

public data sets with ground truth data that is not publicly

available.

Some other approaches [47], [48] detect the optic nerve

head in stereo retinal fundus images which provide depth

information or in OCT images [49]. Systems that rely on

sophisticated equipment are, however, not considered suitable

for population screening as they are too time consuming and

require expensive resources.

III. PROPOSED METHOD

A. Overview

We propose a novel approach for assisting population-based

glaucoma screening and we provide the manual annotation by

an experienced ophthalmologist2 for eight public data sets. In

our approach, we first localize the optic disc by using two

types of trainable COSFIRE (Combination of Shifted Filter

Responses) filters [50]: one type configured to be selective

for the divergent points of vessel trees and the other type

configured to be selective for circular bright regions. We

then fit an ellipse that approximates the boundary of the

detected optic disc. Next, we apply generalized matrix learning

vector quantization to segment the delineated optic disc into

two regions: the cup and the neuroretinal rim. Finally, we

compute the VCDR and provide a reliability score of the

2The manual annotation data can be downloaded from http://matlabserver.
cs.rug.nl/.



JIAPAN GUO ET AL.: AUTOMATIC DETERMINATION OF VERTICAL CUP-TO-DISC RATIO IN RETINAL FUNDUS IMAGES FOR GLAUCOMA SCREENING 4

measurement. Fig. 4 illustrates a schematic overview of the

proposed procedure.

B. Localization of the optic disc

We use two types of trainable COSFIRE filters for the

localization of the optic disc. First, we use a set of COSFIRE

filters that are selective for divergent points of thick vessels.

Such filters are automatically configured using training images

as we explain below. We then consider the neighbourhood

of the location where we achieve the maximum response

from the concerned vasculature-selective COSFIRE filters.

Subsequently, we apply a set of disc-selective COSFIRE filters

in order to improve the localization of the optic disc.

1) COSFIRE filters: COSFIRE filters are trainable pattern

detectors and have been demonstrated to be effective in various

applications [51]–[57]. One type of such a filter takes as input

the responses of a bank of Gabor filters that are selective

for contour parts of different widths and orientations. The

types of Gabor filter and the positions at which we take

their responses are determined in an automatic configuration

procedure. This procedure locates the local maxima responses

of a bank of Gabor filters along a set of concentric circles

in a prototype pattern of interest and forms a set of 4-tuples:

S = {(λi, θi, ρi, φi) | i = 1 . . . n}. The parameters (λi, θi)
in the i-th tuple are the wavelength and the orientation of the

involved Gabor filter that is selective for contour parts with

thickness of (roughly) λi/2 pixels and orientation θi, while

(ρi, φi) are the distance and the polar angle where the local

maximum response of the concerned Gabor filter is located

with respect to the support center of the filter.

The response of a COSFIRE filter is then computed by

combining the responses of the selected Gabor filters. In the

original work, the combination is achieved by a weighted

geometric mean, which responds only when every contour part

of interest is present in the given pattern. COSFIRE filters are

able to achieve tolerance to rotation, scale and reflection by

manipulating the model parameters. We do not elaborate on

this aspect and refer the interested readers to [50].

In this work, we make modifications to the application of

COSFIRE filters so that they can adapt to the cases that parts

of the patterns of interest are missing or occluded. We binarize

the responses of Gabor filters by thresholding with a fraction

(t1 = 0.4) of the maximum response value and dilate (instead

of blurring) each of these responses by a disc-shape structuring

element3 in order to allow for some spatial tolerance. We use

the arithmetic mean (instead of the geometric mean) as the

output function in order to increase the tolerance to missing

contour parts in patterns of interest.

2) Configuration of a vasculature-selective COSFIRE filter:

Fig. 5a shows an example of a retinal fundus image. We first

extract its major vessels by the delineation algorithm proposed

in [52] and then manually remove the small branches of blood

vessels to obtain a binary image with only the major vessels.

Fig. 5c shows the resulting vessel segmentation binary map

and the corresponding major vessel tree. We use the major

3The radius R of the structuring element is a linear function of ρ: R =

0.1ρ.

vessel pattern as a prototype to configure4 a COSFIRE filter,

which we denote by Sv , with the method proposed in [50]. The

point from which the big vessels diverge is used as the support

center of the concerned COSFIRE filter. Fig. 5d illustrates the

structure of the resulting COSFIRE filter superimposed on the

input image. The ellipses represent the wavelengths and the

orientations of the selected Gabor filters and their positions

indicate the locations at which their responses are used to

compute the response of the COSFIRE filter.

3) Response of a vasculature-selective COSFIRE filter:

Before applying a COSFIRE filter, we first apply a prepro-

cessing step to the green channel of the input image in order

to obtain the field-of-view (FOV) region (Fig. 6b) and enhance

the contrast by histogram equalization (Fig. 6c). We elaborate

on the generation of the FOV mask in Section IV-B1.

Next, we apply the configured vasculature-selective COS-

FIRE filter to the preprocessed retinal image. The output of

the COSFIRE filter is the arithmetic mean of all the dilated

and shifted Gabor filter responses that correspond to the tuples

in the set Sv:

rSv
(x, y)

def
=

∣

∣

∣

∣

1

nv

( |Sv|
∑

i=1

sλi,θi,ρi,φi,δi(x, y)

)∣

∣

∣

∣

tv

(1)

where | · |tv stands for thresholding the output at a threshold

value tv =0.95, and sλi,θi,ρi,φi,δi(x, y) is the dilated and

shifted Gabor filter response in location (x, y) with parameter

values specified in the i-th tuple. We specify how to obtain the

value of the threshold parameter tv in a training phase that we

describe in Section IV-C1. Fig. 6d shows the response map of

the filter and Fig. 6e illustrates the thresholded response map.

Finally, we consider the centroid of the thresholded output

(Fig. 6f) as the center and crop a rectangular region around

the center (Fig. 6g).

4) Localization of the optic disc: So far we demonstrated

how we apply a vasculature-selective COSFIRE filter to (ap-

proximately) determine the position of the optic disc. Here,

we explain how we localize the optic disc more precisely by

detecting the bright disc region. Similar to vessel divergence

detection, we use COSFIRE filters but this time they are

selective for disc-shaped patterns. Empirical experiences show

that this approach is much more robust to noise than the

Circular Hough Transform [58].

We use a synthetic disc image shown in Fig. 7a as a proto-

type pattern to configure a COSFIRE filter. We implement the

same configuration procedure5 as proposed for the vasculature-

selective COSFIRE filter. We use anti-symmetric Gabor filters

that respond to edges (with a wavelength λ = 30 pixels and

eight orientations θ ∈ {πi
8

| i = 0...7}).

Before we apply the disc-selective COSFIRE filter, we

first preprocess the automatically cropped input image that

contains the optic disc, Fig. 8a. The preprocessing steps

consist of vessel segmentation and inpainting of vessel pixels

4The parameters of the COSFIRE filter are: λ = 20, θ ∈ {πi

8
| i =

0, . . . , 7}, ρ ∈ {0, 50, . . . 500}, t1 = 0.4.
5The parameters for the disc-selective filter: λ = 30, θ ∈ {πi

8
| i = 0...7},

ρ = 50, t1 = 0.81.
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Fig. 4: Schematic overview of the proposed approach. For a given (a) retinal fundus image we first apply (b) a set of

vasculature-selective COSFIRE filters to detect the divergent point of the major vessels. Then, (c) we crop a large region

around the maximum response and apply (d) a set of disc-selective COSFIRE filters to detect bright disc patterns. (e) We

crop a small region around the maximum response of the disc-selective COSFIRE filters and fit an ellipse to approximate

the boundary of the detected optic disc. The black boundary in (f) indicates the delineated disc boundary. We then employ

generalized matrix learning vector quantization to segment the disc region into the neuroretinal rim and the cup. (g) The blue

boundary inside the disc indicates the determined cup. Finally, we compute the VCDR according to the determined cup and

disc and provide a reliability score.

(a) (b) (c) (d)

Fig. 5: Configuration of the vasculature-selective COSFIRE

filters. (a) Example of a coloured retinal fundus image (of

size 605 × 700 pixels) taken from the STARE data set [29].

(b) Vessel tree delineated by the method proposed in [52]. (c)

Binary image of the corresponding main vessel (of thickness

10 pixels). (d) The structure of the resulting vasculature-

selective COSFIRE filter. The black cross marks the vessel

divergence point and is used as the support center of the

COSFIRE filter. The white ellipses illustrate the wavelengths

and orientations of the selected Gabor filters and their positions

indicate the locations from which the responses of these Gabor

filters are taken with respect to the center.

(details provided in Section IV-B2) as well as edge preserving

smoothing [59]. The resulting preprocessed image is shown in

Fig. 8b. The red spot in Fig. 8c indicates the position at which

we achieve the maximum COSFIRE filter response, and we

use it to indicate the center of the optic disc. We then crop a

small rectangular region from the original image around the

detected point, Fig. 8d.

C. Delineation of the optic disc boundary

Fig. 9a shows an automatically cropped image containing

the optic disc and Fig. 9b illustrates the result of the vessel

segmentation and inpainting. We delineate the optic disc

boundary by computing the best fit of an ellipse to the cropped

region obtained above. Then we compute the smoothed x-

and y- partial derivatives. This is achieved by convolving

the preprocessed image in Fig. 9b with the two partial first

(a) (b) (c)

(d) (e) (f) (g)

Fig. 6: Application of a vasculature-selective COSFIRE filter.

(a) Example of a colour retinal fundus image (of size 605 ×
700 pixels) from the STARE data set. (b) The automatically

determined FOV mask. (c) The preprocessed image. (d) The

output response map of the vasculature-selective COSFIRE

filter to the image in (c). (e) The thresholded response map. (f)

The red dot indicates the centroid of the thresholded responses

in (e). (g) The cropped retinal image (of size 605×231 pixels)

around the detected point.

(a) (b) (c)

Fig. 7: Configuration of a COSFIRE filter that is selective for

a bright disc. (a) A synthetic input image (of size 150× 150
pixels) that contains a bright disc of radius 50 pixels. (b) The

superposition of the responses of a bank of anti-symmetric

Gabor filters with a wavelength λ = 30 pixels and eight

orientations θ ∈ {πi
8

| i = 0...7}). (c) The structure of the

resulting COSFIRE filter.
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(a) (b) (c) (d)

Fig. 8: Application of a disc-selective COSFIRE filter. (a) The

input image is the automatically cropped part of a retinal image

(of size 605× 231 pixels) resulting from the localization step.

(b) Preprocessed image of the cropped area. (c) The red dot

indicates the location at which the maximum response of the

COSFIRE filter is achieved. (d) The resulting cropped area (of

size 209× 153 pixels) around the detected point.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 9: Delineation of the optic disc boundary. (a) An optic

disc image (of size 209×152 pixels) cropped automatically

from a retinal fundus image in the localization step. (b) Result

of the preprocessing of the cropped region. (c-d) The x- and

y- derivative maps, and their (e-f) enhanced versions. (g)

Synthetic disc image (of size 150 × 150 pixels). (h-i) The

x- and y- derivative maps of the synthetic disc in (g). (j)

The sum of correlations between the partial derivatives of

the preprocessed disc image and a synthetic ellipse that best

fits the concerned optic disc. (k) The black ellipse indicates

the best delineation of the optic disc with the horizontal and

vertical axes of size 73 and 70 pixels, respectively. The blue

star marker indicates the location of the maximum correlation

sum response, and we consider this point to be the center of

the optic disc.

order derivatives of a 2D Gaussian function (with a standard

deviation of
√
2). Fig. 9(c-d) show the corresponding deriva-

tive maps. We change to unit length all gradient vectors of

magnitude larger than or equal to 0.2 of the maximum gradient

magnitude across the image. The idea of this operation is

to make the responses along the boundary of the optic disc

similar to the responses to a synthetic ellipse of uniform

intensity - compare Fig. 9e with Fig. 9h and Fig. 9f with

Fig. 9i.

Subsequently, we correlate the two enhanced derivative

maps, Fig. 9(e-f), with a pair of derivative maps of a synthetic

ellipse, Fig. 9(h-i), and sum up the output maps of the respec-

tive two correlations. We repeat this procedure for ellipses

of different radii and ellipticities and we determine the semi

axes of the synthetic ellipse that yields the maximum sum of

correlations. Fig. 9j shows the sum of correlations between

the partial derivatives of the preprocessed disc image and a

synthetic ellipse that best fits the concerned optic disc. The

location at which the maximum sum is obtained is used to

represent the center of the optic disc. The black boundary in

Fig. 9k is the ellipse that gives the highest correlation result.

D. Determination of the cup region

The boundaries of the cup are typically diffuse and they

are often occluded by blood vessels. Thus, the edge-based

approaches are not sufficiently robust for the segmentation

of the cup. Therefore, we apply a supervised classification

approach called Generalized Matrix Learning Vector Quanti-

zation (GMLVQ) [23] for the detection of the cup.

Learning Vector quantization (LVQ) [60] is a prototype-

based classification approach that performs distance learning

to optimize the discrimination of classes. An LVQ classifier

is represented by prototypes which are learned in the feature

space of the training data. The classification is performed

by a winner-takes-all scheme, in which a new data sample

is classified to the class given of the nearest prototype. The

GMLVQ model extends the distance measure with an adaptive

relevance matrix that ranks the importance of single features

and their combinations for the categorization tasks. For the

detailed information about the mathematical explanation of

the GMLVQ classifier, we refer to the work in [23]. We

use the public available toolbox provided in [61] for the

implementation and all other parameters were set as the

default values [61]. For the pixel-wised classification of the

neuroretinal rim and the cup, we consider two prototypes for

the neuroretinal class and one for the cup class. We form the

pixel wise feature vector with seven elements, namely the Red,

Green, Blue, Hue, Saturation and Lightness from the RGB

and HSV colour spaces as well as the distance of each pixel

with respect to the center of the optic disc. We use half of

the images from each data set to train the classifiers and the

rest as the test images. Fig. 10a shows ans example of the

determined cup/rim region with GMLVQ.

Next, we use morphological closing followed by an opening

to connect the isolated regions and remove small islands. The

empirical sizes of the disc-shaped structuring elements for

these morphological operations are fractions of 0.1 and 0.05 of

the maximum axis of the determined optic disc, respectively.

We then fit an ellipse to the white region with its center being

the center of mass and its vertical and horizontal axes being

the height and width of the concerned component, respectively.

The blue ellipse in Fig. 10b illustrates the cup region.

E. Vertical cup-to-disc ratio (VCDR)

We compute the VCDR as the ratio Hc

Hd
of the height of

the ellipse representing the cup Hc and the height of the

delineated disc Hd with respect to the center of the cup. For

the considered example in Fig. 10c, the VCDR is 0.41.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

A. Data sets

We experiment on nine public data sets of retinal fundus

images, which are listed in Table I. These data sets contain
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(a) (b) (c)

HdHc

Fig. 10: Computation of the VCDR value. (a) Result of the

cup detection from the GMLVQ. (b) The final determined cup

which is indicated by the inner ellipse in blue. (c) Computation

of the VCDR. The black dot indicates the center of the cup.

The VCDR here is equal to 0.41.

TABLE I: List of public data sets6 in alphabetical order.

Data set No. of images Image size (pixels) FOV

CHASEDB1 [66] 28 999×960 30
◦

DIARETDB1 [67] 89 1500×1150 50
◦

DRISHTI-GS1 [62] 101 2049×1751 30
◦

DRIONS [63] 110 600×400 30
◦

DRIVE [11] 40 565×584 45
◦

HRF [65] 45 3504×2336 60
◦

MESSIDOR [68] 1200 2240×1488 45
◦

ONHSD [64] 99 760×570 45
◦

STARE [29] 397 700×605 -

a total of 2109 images of different sizes and FOV angles.

Most of them were originally created for the purpose of vessel

segmentation or diabetic retinopathy screening. Among these

data sets, only the DRISHTI-GS1 data set [62] has annotations

of glaucoma-related features, namely boundaries of the optic

discs and the cups. The DRIONS [63] and the ONHSD [64]

data sets provide annotations of the optic disc boundaries and

the HRF data set [65] gives the centers of the optic discs. None

of the other data sets provide any annotations of glaucoma-

related features.

One of our contributions in this work is the annotation7

of the optic disc and the cup boundary points for the first

eight data sets made by an experienced ophthalmologist from

the University Medical Center Groningen (UMCG). He used

an annotation tool to mark the leftmost, the rightmost, the

topmost and the bottommost boundary points of the optic disc

as well as those of the cup in each image. Fig. 11 shows some

examples of the manual annotations. We then fit two ellipses

to these eight points to represent the annotated boundaries of

the optic disc and the cup in each image, from which we can

compute the groundtruth cup-to-disc ratios.

In our experiments, we use all 397 images in the STARE

data set to configure vasculature-selective COSFIRE filters.

We evaluate the proposed approach on all 850 test images in

the other eight data sets.

6DRIONS, HRF and STARE data sets do not provide the FOV angle.
Since the images in the DRIONS and HRF data sets were obtained with
the same FOV angles, we randomly selected some images from each data set
and measured manually their FOV angles. The FOV angles, however, vary a
lot in the STARE data set.

7These annotations (specifications of the optic disc and cup boundaries)
can be downloaded from http://matlabserver.cs.rug.nl.

Fig. 11: Examples of manual annotations of optic discs and

cups in retinal fundus images (taken from the DRISHTI-GS1,

DIARETDB1 and the DRIVE data sets, respectively) by the

ophthalmologist. The black stars indicate the boundary points

of the optic discs while the green stars are the boundary points

of the cups. The bottom row shows the close-up views of these

examples.

B. Pre-processing procedures

Here, we elaborate on the pre-processing steps that we

mentioned briefly in Section III.

1) Image rescaling and FOV mask generation: In order to

keep fixed parameters of the proposed method, we resize every

image in such a way that the FOV region has a diameter of

1024 pixels.

Since not every data set provides the FOV masks, we

generate them by binarizing the grayscale versions of the RGB

images with thresholds that we determine automatically as

follows. We sort in ascending order the intensity values of

all pixels in each image. Then we compute the first order

derivative of this one-dimensional array and set the threshold

to be the intensity value, at which the first order derivative

is maximum. This design decision is motivated by the fact

that the background pixels have relatively small (close to

0) intensity values, which arise a high first order derivative

at the transition to the pixels within the FOV region. After

the binarization, we apply morphological closing with a disc-

shaped structuring element of radius 20 pixels to obtain the

FOV mask as one connected component.

2) Vessel extraction and image inpainting: We extract

blood vessels by the method proposed in [52]. We use the

online implementation with the parameters tuned for the

detection of thick blood vessels8. Next, we use the inpainting

algorithm proposed in [69] that fills in the removed vessel

pixels with the intensity values that are interpolated from the

neighbouring pixels.

3) Pre-estimation of the optic disc width: The pre-

estimation of the optic disc width is important for the accurate

localization and segmentation of the optic disc. In retinal fun-

dus images, some features, such as blood vessels, myelinated

optic nerves and hard exudates, may interfere with the accurate

detection of the optic disc. These features usually contain

8We use only symmetric filters with parameters: σ =

{2.1, 5.2, 10.4, 15.6}, ρ = {0, 5, 10, . . . , 20}, σ0 = 3 and α = 0.6.
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curvatures that are similar in shape to the boundaries of the

optic disc. By pre-estimating the size of the optic disc, we are

able to rule out these interferences and improve the accuracy of

the disc detection while reducing the computation time needed

to search for the best approximating ellipse.

The epidemiologic investigation in glaucoma [70] has

shown that the viewing angle of the optic disc ψdisc is roughly

between 4◦ and 9◦. We use this finding and denote by γ the

set of pre-estimated widths of the optic disc in pixels:

γ = {1024ψdisc/ψim | ψdisc = 4, 4.1, . . . , 9}
where 1024 is the diameter of the FOV region of an image

and ψim is the viewing angle of that image. For instance, the

retinal fundus images in the CHASEDB1 data set9 captured

with an FOV angle of (ψim =) 30◦ have optic disc diameters

ranging from (1024 × 4/30 =) 137 to (1024 × 9/30 =) 307

pixels. For the images of unknown FOV angle, we assume it

to be 45◦, as it is the most commonly used FOV angle.

C. Implementation of the proposed approach

1) Configuration of vasculature- and disc- selective COS-

FIRE filters: For the configuration of vasculature-selective

COSFIRE filters, we randomly select a retinal fundus image

from the training set, i.e. the STARE set, and generate its

binary vessel pattern image as the one shown in Fig. 5c. Next,

we use the resulting binary vessel pattern as a prototype to

configure a vasculature-selective COSFIRE filter as described

in Section III-B2. We then apply the resulting filter with

reflection invariance to all images in the training set. We set

the threshold value tv such that it yields no false positives.

For the COSFIRE filter configured with the pattern in Fig. 5c,

the threshold parameter tv is set to 0.96. This filter correctly

detects the vessel divergent points in 35 training images.

Fig. 12a illustrates the structure of the resulting COSFIRE

filter, which we denote by Sv1 . For the configuration of this

filter, we use the set of radii values ρ ∈ {0, 50, .., 500}. For

the remaining images whose vessel divergent points are not

detected by the filter Sv1 , we perform the following steps. We

randomly select one of these training images and use its binary

vessel pattern to configure a new filter Sv2
. Then we apply this

filter to the training images that were missed by the first filter

and determine its threshold value. We repeat this procedure

of configuring filters until the divergent points of all training

images are detected. For the STARE data set with 397 images

as our training set, we need 27 vasculature-selective COSFIRE

filters. Fig. 12 shows some examples of the structures of

such filters. We apply in sequence the 27 vasculature-selective

COSFIRE filters as described in Section III-B3. A response of

a vasculature-selective COSFIRE filter indicates the presence

of a vessel tree. As soon as one of the 27 filters responds

sufficiently to the given image, we stop applying the remaining

ones. We denote by Iv a reliability indicator of this detection;

it is equal to 1 when there is a filter that responds to the image,

otherwise it is 0.

9The images in the CHASEDB1 data set are all rescaled to 1093× 1137

pixels, while the widths of the FOV region of the images are rescaled to 1024

pixels.

(a) (b) (c) (d) (e)

Fig. 12: The structures of five examples of vasculature-

selective COSFIRE filters. The white ellipses illustrate the

wavelengths and orientations of the selected Gabor filters

and their positions indicate the locations where the responses

of these Gabor filters are taken with respect to the support

center of the COSFIRE filter. The bright blobs represent the

dilation operations (see Section III-B1) that provide some

spatial tolerance.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 13: (Top row) Synthetic patterns and (bottom row) the

structures of the resulting disc-selective COSFIRE filters.

For the configuration of disc-selective COSFIRE filters, we

use the four synthetic images in the top row of Fig. 13 as

prototype patterns. The three patterns in Fig. 13(b-d) have

areas that cover 50%, 40% and 30% of the disc in Fig. 13a,

respectively. We show the corresponding structures of the

disc-selective COSFIRE filters in the bottom row. We denote

by Sc1 , Sc2 , Sc3 and Sc4 the four disc-selective COSFIRE

filters which have empirically determined threshold values

tv(Sc1) = 0.81, tv(Sc2) = 0.95, tv(Sc3) = 1, tv(Sc4) = 1.

The last three filters are used to detect the optic discs which

have part of the disc boundaries missing. They (Fig. 13(c-d))

contain only 30%-40% of the boundary of a complete disc.

We configure a family of disc-selective COSFIRE filters by

using synthetic circles whose radii increase in intervals of

10 pixels from the minimum to the maximum pre-estimated

widths of the optic disc. For each radius in this range we

configure four COSFIRE filters of the type described above.

Similar to the way we apply the vascular-selective filters, we

apply in sequence all the configured disc-selective COSFIRE

filters. We denote by Id the reliability indicator of the bright

disc, which is 1 when one of the disc-selective filters responds,

otherwise 0.

2) Disc delineation: As shown in Fig. 14(a-c), it is common

to have the PPA and a bright cup in the vicinity of the optic

disc, which may disturb the accurate delineation of the optic

disc. PPA and the cups have a bigger and smaller diameter

than that of the optic disc, respectively. In order to address

this challenge, we group the set of pre-estimated widths γ
of the optic discs into three ranges, which contain the first
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(a) (b) (c)

(d) (e) (f)

Fig. 14: Examples of the optic disc regions cropped from the

retinal fundus images as well as their corresponding delin-

eation results. (a) An optic disc with surrounding parapapillary

atrophy. (b-c) Optic discs with with a larger, bright cup. The

white dashed lines indicate the boundaries of the optic discs.

The black dashed lines inside the optic discs are the boundaries

of the cups while the outer one in (a) indicates parapapillary

atrophy. (d-f) The corresponding results of the disc delineation.

The red, green and blue ellipses indicate the best fits from the

three ranges of considered widths. The three ellipses overlap

each other in (f) leaving only the blue one visible.

60%, 80% and 100% of the values of γ. For each range,

we select the ellipse that best delineates the disc boundary

as described in Section III-C. In this way, we end up with

three ellipses, as shown in Fig. 14(d-f). The red, green and

blue ellipses represent the best ellipses determined from the

considered three ranges of widths. We then compute the

similarity between every pair of the ellipses as follows. We

calculate the distances between their center locations and the

sum of the absolute differences between their widths and

heights. Only if both values are smaller than 10 pixels, we

consider such a pair of ellipses as similar, otherwise we treat

them as different. We denote by Ie a reliability indicator that

concerns the delineation of the disc boundary. It can have one

of four values (0, 1/3, 2/3, or 1) that represents the proportion

of the number of similar ellipses. Finally, we determine the

center, width and height of the optic disc as the mean values

of the locations, widths and heights of the three ellipses. For

the case that only two ellipses are similar, we take the mean

of the locations, widths and heights of the two ellipses. For

the example shown in Fig. 14d, the final disc boundary is

approximated by the ellipse determined from the mean of

the red and green ellipses. Fig. 14e has the delineated disc

boundary coming from the mean of the green and the blue

ellipses and the disc boundary in Fig. 14f is the mean of the

three ellipses.

D. Experimental results

We evaluate the performance of the proposed approach on

the following aspects: disc localization, disc height error, cup

height error and VCDR values.

TABLE II: Localization accuracy (%) and average localization

error (δL) of the proposed approach on all images in the eight

data sets comparing to a recently published approach proposed

in [71].

Data set Our method (δL) Akram et al [71](%)

CHASEDB1 96.43 (0.09) -
DIARETDB1 98.88 (0.05) 100

DRISHTI-GS1 99.01 (0.04) -
DRIONS 100 (0.05) 100

DRIVE 97.50 (0.08) 100
HRF 97.78 (0.10) 100

MESSIDOR 99.08 (0.06) 98.91
ONHSD 91.92 (0.07) -

Weighted mean 98.54 (0.06) 99.11

TABLE III: Performance measurements of the disc height (δD)

and the cup height (δC) on the test data sets. We mark in bold

the best result for the measurements.

Data set δD δC
CHASEDB1 0.11 0.11

DIARETDB1 0.08 0.08
DRISHTI-GS1 0.08 0.07

DRIONS 0.09 0.11
DRIVE 0.09 0.08

HRF 0.07 0.06

MESSIDOR 0.08 0.10
ONHSD 0.09 0.16

Weighted mean 0.08 0.09

1) Performance of the optic disc localization: We compare

the automatically obtained results with the ones provided by

an experienced ophthalmologist. As suggested in [29] for the

evaluation of the localization step, we consider the location

of the optic disc is correct if the center of the detected

optic disc is located inside the manually identified one in the

ophthalmologist annotation. We then compute the relative error

of the optic disc localization, which is the distance between

the automatically determined disc center and the one from the

manual annotation divided by the height of the disc in the

manual annotation. We report the results of the localization

accuracy and the average localization error in Table II.

2) Performance of the height estimation of the optic disc

and the cup: We evaluate the performance of the height

estimation of the optic disc and the cup by the relative height

error (RHE). We report the results in Table III.

RHE =
|HD −HG|

HG
,

where HD is the height of the detected disc or cup while HG

is the corresponding height from the manual annotation.

3) Performance of VCDR estimation: Next, we compute the

errors of the automatically obtained VCDR values with respect

to those from the manual annotations by the ophthalmologist.

Fig. 15 illustrates the box and whisker diagrams of the VCDR

errors for all 850 test images, which show the distribution of

the errors in each data set. As we see from the plots, the

median values of the VCDR errors are around 0.1, which

are indicated by the red horizontal lines. In Fig. 16a, we

illustrate the distribution of the obtained VCDR values in all

test data sets with respect to the manual annotation of the
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TABLE IV: VCDR errors on the test data sets. We mark in

bold the best result for the measurement.

Data set VCDR error

CHASEDB1 0.06

DIARETDB1 0.12
DRISHTI-GS1 0.16

DRIONS 0.13
DRIVE 0.08

HRF 0.17
MESSIDOR 0.11

ONHSD 0.13
Weighted mean 0.11

ophthalmologist. Fig. 16b shows the inter-observer variabil-

ity between two ophthalmologists on 100 randomly selected

images. We also illustrate in Fig. 17 the Bland-Altman plot

of the automatically determined VCDR values with respect to

the manual annotation from the ophthalmologist. Such a plot

is used to analyze the agreement between two measurements.

The mean difference (bias) between the automatically obtained

VCDRs and those from the ophthalmologist was −0.0034 and

the mean difference plus/minus 1.96 times the standard devia-

tion (limits of agreement) were +0.30 and −0.29, respectively.

For the inter-observer variability (Fig. 16b), these values were

0.03, 0.19, and −0.13, respectively. As indicated by the shaded

region in Fig. 17, the proposed approach achieved a much

better agreement (smaller difference) on images with a large

VCDR (> 0.7) according to the manual annotations. This is

important, because a VCDR above 0.7 indicates pathology.

4) Performance of the classification of glaucomatous reti-

nas: In clinical practice, glaucoma experts do not rely on a

VCDR value alone to conclude whether a patient has glaucoma

or not. However, the automatic computation of VCDR can

be highly beneficial to experts as it can be used to decide

much quicker whether other checks are necessary or not. In

order to get an indication of the screening performance of our

method, we computed the sensitivity and specificity. We used

VCDRoph = 0.7 as a threshold to label the images as healthy

or glaucomatous (corresponding to the 97.5th percentile of

the general population [14]). We then took a threshold value

denoted by VCDR* and vary it between 0 and 1. We compute

the sensitivity and specificity and illustrate it in Fig. 18. This

figure shows the receiver operating characteristic (ROC) curve

of the automatic method. The closer such a curve is to the

top-left corner, the better the performance of the approach

is. In the same way, we obtained ROC curves for threshold

VCDRoph equal to 0.5 and 0.8 (presented in the same figure).

We achieved an area under the curve (AUC) of 0.79, 0.93 and

0.94 for VCDRoph equal to 0.5, 0.7, and 0.8, respectively.

V. DISCUSSION

We propose a systematic approach that computes the

VCDR to assist ophthalmologists in population-based glau-

coma screening. We experimented on eight public data sets

with a total of 1712 retinal fundus images and evaluated the

performance of the approach. We compared the localization

performance of our method with a recently published approach

proposed in [71] and reported comparable results in Table II.
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Fig. 15: Box-whisker plot of the VCDR errors on all test

images in each data set.
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Fig. 16: Distributions of the obtained VCDR values. (a)

Distribution of the automatically obtained VCDR values on

images with respect to the manual annotation from the ophthal-

mologist. The x-axis represents the VCDR values provided by

the ophthalmologist while the y-axis represents the automat-

ically obtained VCDR values. (b) Distribution of the VCDR

values provided by another ophthalmologist with respect to

the manual annotation from the ophthalmologist. The x-axis

represents the VCDR values provided by the ophthalmologist

while the y-axis is the VCDR values provided by the second

observer. The intensity values in both matrices indicate the

number of images falling in the grid regions. The vertical line

represents the decision threshold VCDRoph of the image label,

which is set to 0.7, while the horizontal line is the classification

of the images by the automatic system. The ones that fall into

Q1, Q2, Q3 and Q4 areas are the true negatives, false positives,

true positives and false negatives, respectively. The sensitivity

is computed as #Q3

#Q3+#Q4
while the specificity is #Q1

#Q1+#Q2
,

where # indicates the number of images falling in the region.

In our work we provided further results on three other data sets

that were not used in [71], including the DRISHTI-GS1 data

set that contains retinal images with a high number of glauco-

matous cases and the ONHSD data set that has many images

taken under insufficient illumination. The images whose optic

discs are not correctly localized in the DIARETDB1, DRIVE

and HRF data sets were later indicated as unreliable cases by

the proposed reliability score. In Fig. 19, we show the four

images from the DRIVE data set that our algorithm labeled as

unreliable as well as the segmentation results. The first image

is marked as unreliable due to the uncertain presence of the
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Fig. 17: Bland-Altman plot of the automatically determined

VCDR values with respect to the manual annotation from the

ophthalmologist. The x-axis and the y-axis of the plot are the

mean and the difference of the VCDR values obtained from

the proposed approach and the ophthalmologist, respectively.

Each blue circle represents an image and the blue line indicates

the mean value while the red dashed lines indicate the mean

value ±1.96 times the standard deviation. The images falling

in the shaded area concern VCDR values above the 97.5th

percentile of the general population (indicating pathology).
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Fig. 18: ROC curves of the automatically obtained VCDR

values with respect to the manual annotation provided by

the ophthalmologist. We obtain these curves by ranging the

VCDR* threshold between 0 and 1 in intervals of 0.05. The

area under the curve (AUC) is equal to 0.79, 0.93 and 0.94
when we set the VCDRoph to 0.5, 0.7 and 0.8, respectively.

Fig. 19: (Top row) The four retinal fundus images

(‘07 test.tif’, ‘26 training.tif’, ‘31 training.tif’ and

‘34 training.tif’) from the DRIVE data set that are indicated

as unreliable. (Bottom row) The corresponding close-up

views of the segmented optic discs and the cups. The black

ellipses indicate the delineated optic discs while the blue

ellipses are the cups. The reliability indicators (Iv, Id, Ie)
of the four images are (1,0,0.33),(1,1,0),(1,1,0) and (1,1,0),

respectively. The presence of PPA is the main reason for the

unreliable results.

(a) (b) (c)

Fig. 20: Example of the cup segmentation from the oph-

thalmologist and the proposed approach on a unobvious cup

excavation case. (a) An example of a retinal fundus image of

unobvious cup excavation. (b) The manual segmentation of

the optic disc and the cup obtained from the eight boundary

points provided by the ophthalmologist. (c) The automated

segmentation.

optic disc pattern. The problems of the other three images are

due to the presence of PPA outside the disc boundaries.

In the evaluation of the optic disc and cup height determi-

nation we achieved a mean relative height error of 0.08 and

0.09, respectively. For the evaluation of the VCDR values, we

achieved a mean VCDR error of 0.11 on 850 test images.

An indirect comparison is possible with several studies that

proposed an automatic calculation of VCDR. We provide a

comparison of the VCDR error between our approach and

existing approaches in Table V.

The VCDR error results show that there is still room for

improvement and this could be on the cup determination since

most of the normal retinal fundus images do not have an

obvious cup excavation. We show an example in Fig.20a. In

such cases it is difficult for the proposed system to determine

the cup region as indicated by the ophthalmologist (Fig.20b).

This is mainly due to the fact that the pixels (except the

vessel pixels) in the disc region have similar intensity values

(Fig.20c). In future, we aim to investigate other segmentation

algorithms that can deal with such challenging images.
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TABLE V: Comparison of the VCDR error between the proposed approach and existing approaches on the VCDR error.

Method VCDR error Data sets Availabilty of manual annotations

Mittapalli et al [72] 0.13 40 private, 19 public No
Ayub et al [73] 0.14 100 Private No

Septiarini et al [74] 0.04 68 Private No
Proposed approach 0.11 850 public Yes

In healthy eyes, the VCDR ranges from 0 to approximately

0.7 (97.5th percentile [14]); in glaucomatous eyes from ap-

proximately 0.5 to - ultimately - 1.0 [21]. The agreement

between our approach and the annotation of the ophthalmol-

ogist was best for VCDRs above 0.7 (Fig.17, and - related

to that - our approach was able to detect VCDRs above

0.7 and especially above 0.8 with a reasonable sensitivity

and specificity (Fig. 18). Fortunately, the greater VCDRs

are the relevant ones to detect from the point of view of

preventing blindness. For screening, a high specificity is the

most important issue [75], [76]. Hence, the left part of the

ROC curve (Fig.18) is the most important part.

The vasculature-selective COSFIRE filters are effective to

determine the side at which the optic disc is located. In

order to improve the localization precision, we applied a set

of disc-selective COSFIRE filters within the selected region.

The proposed two-stage localization process turned out to be

essential to reduce the number of false detections. Any bright

lesions, such as hard exudates, would affect the performance

of disc-selective filters if they had to be applied to the entire

image.

From the training set with 397 retinal fundus images,

we configured 27 vasculature-selective COSFIRE filters with

which we were able to detect most of the vessel trees in

all retinal fundus images from the other eight data sets. By

using different training and test sets, we demonstrated the

robustness of the configured filters. We made all 27 filters

publicly available10.

One of the contributions of this work is the manual anno-

tation data of 1712 images from eight data sets, which we

made available online11. The manual annotation was done by

a glaucoma specialist at the UMCG hospital in Groningen,

who marked the locations of the topmost, the bottommost, the

leftmost and the rightmost boundaries of both the optic disc

and the cup of all images. A randomly selected subset has

been annotated by another ophthalmologist, showing a very

small bias and inter-observer variability (Fig. 16b).

VI. SUMMARY AND CONCLUSIONS

We propose a novel approach for the detection of glaucoma-

related features from fundus photographs. The proposed sys-

tem could be deployed as part of a population-based glaucoma

screening to provide effective markers and indications of

retinal abnormalities. It consists of four steps, namely optic

disc localization, optic disc delineation, cup delineation, and

computation of the vertical cup-to-disc ratio (VCDR). For

10The configured filters can be downloaded from http://matlabserver.cs.rug.
nl.

11The manual annotation data can be downloaded from: http://matlabserver.
cs.rug.nl.

a total number of 850 test images from eight data sets we

achieve a mean VCDR difference of 0.11 with respect to

a glaucoma expert. Bland-Altman analysis showed that the

system achieves better agreement with respect to the manual

annotations for large VCDRs, which indicate pathology. We

achieved an AUC of 0.93 for a manually annotated VCDR

of 0.7 as a cut-off for pathology. We made available online

the manual annotations by an experienced ophthalmologist of

eight benchmark data sets in order to facilitate comparison of

future methods and thus further this field.
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