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A Sensing Framework for Indoor Spatial Awareness

for Blind and Visually Impaired Users
Zhuorui Yang, Student Member, IEEE, and Aura Ganz, Fellow, IEEE

Abstract— In this paper, we present a Bluetooth Low Energy
(BLE)-based sensing framework that provides real time spatial
awareness for blind and visually impaired (BVI) users while
navigating independently through large public venues. The pro-
posed framework includes the following functionalities using only
the Received Signal Strength Indicator (RSSI) obtained from
the BLE sensors: 1) determining the location of the user, 2)
estimating user’s moving direction, and 3) detecting proximity
of landmarks next to the user. We evaluate these functionalities
individually. Moreover, we incorporate the proposed framework
in PERCEPT indoor navigation system and test it with BVI
users in a large public venue. Testing results show that the
location, moving direction and landmark proximity computed
by the framework, although not very accurate, provide sufficient
information to enable BVI users to independently navigate in
large indoor venues. This conclusion aligns with Nobel Prize
winning findings that confirm the spatial nature of the entorhinal-
hippocampal system and the existence of a positioning system in
the brain.

Index Terms— Indoor Localization, Bluetooth Low Energy,
Sensing Framework, Spatial Cognition, Cognitive Neuroscience,
Visually Impaired.

I. INTRODUCTION

Traveling independently in unfamiliar large public venues

is a very challenging task for blind and visually impaired

(BVI) people [1]. In [2-4] we introduced PERCEPT indoor

navigation system for BVI users which enables them to

independently navigate in large indoor spaces. In this paper we

introduce a sensing framework which was integrated and suc-

cessfully tested in PERCEPT system. The framework provides

user location, moving direction and proximity to landmarks.

In cognitive neuroscience, there is a consensus [5] that

one’s ability of navigation depends on one’s capability to build

the cognitive map of the space. Using this map, humans can

position and navigate themselves inside the space. To identify

the needs of humans in spatial positioning and navigation

and develop corresponding navigation aids, it is necessary to

know how the brain encodes the space from a neuroscientific

viewpoint [6]. There are four types of cells found in the spatial

representation in the brain (see Fig. 1).

1. Place cells (Fig. 1a) are pyramidal neurons inside the

hippocampus which fire when an individual (animal or human)

visits a particular place (small region) in the environment,

thereby exhibiting a representation of the place with respect

to the environment [7]. This area of high firing rate is known
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Fig. 1. Illustration of firing patterns. In (a) and (b) the color code
demonstrates the rate of firing: red shows high activity and blue shows low
activity. (a) Place cells (b) Grid cells (c) Head-direction cells

as the cell’s ‘place field’. Such place fields are considered to

be allocentric, implying that they are defined by the external

recognizable cues in the environment, for instance, landmarks.

While visual input comprises a key element in the formation

of place fields, it was shown in [8] that in the absence of

visual input, both humans and other vertebrates studied in this

context, are capable of generating very effective spatial repre-

sentations using other sensory input. To strengthen the sensing

ability of the BVI user, the proposed framework determines

user’s location. Moreover, the sensory cues associated with

the specific location can be extracted and provided to the BVI

user through PERCEPT system.

2. Grid cells (Fig. 1b) are neurons within the medial

entorhinal cortex (MEC) which exhibit firing at multiple

locations in the environment. The spatial firing fields are

positioned regularly in a grid across the environment com-

prised of equilateral triangles. Unlike place cells, grid cells

seem to be the internal cognitive representation of the external

Euclidean space. Moreover, it is found that grid cells play a

critical role in path integration (i.e. navigation or wayfinding)

since their firing depends on the ego-motion of the individuals,

such as moving direction.

3. Border/boundary vector cells are neurons found in

the hippocampal formation which fire when the individual is

at a specific distance and direction relative to the environ-

ment boundaries such as walls, low ridges or vertical drops.

The landmark proximity function in the proposed sensing

framework enables PERCEPT to alert the user about these

environment boundaries.

4. Head-direction cells (Fig. 1c) are neurons which fire

maximally when an animal’s head faces a particular direction

in the azimuthal (horizontal) plane. The firing relies on the

angular position of environmental cues [9-12]. Like place cells,

the firing of head direction cells has been shown to rely on

the angular position of environmental cues and generate a

lobe of a certain width. The sensing framework estimates the
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Fig. 2. PERCEPT system architecture

user moving direction which enables PERCEPT to provide

directional instructions to the BVI user.

These extraordinary findings that confirm the spatial nature

of the entorhinal-hippocampal system led to the award of the

2014 Nobel Prize in Physiology or Medicine to O’Keefe and

the Mosers for their discovery of “a positioning system in the

brain.” [13].

It is important to mention that researchers [14-17] have

shown that the hippocampus can use non-visuospatial input

such as spatial olfactory and tactile information, to generate

spatial representations. In spite of the fact that olfactory input

is less precise than visual input, it can substitute for visual

inputs to enable the acquisition of metric information about

space. However, for BVI users traveling through large public

venues it is difficult or sometime impossible to use only

olfactory and/or tactile information to form the cognitive map

of the space. PERCEPT system complements these senses and

helps the BVI user to build the cognitive map which helps

them independently navigate through large public venues.

PERCEPT provides users with audio/text information about

their location in space relative to landmarks, proximity to

landmarks as well as detailed instructions to their chosen

destination. In order to provide such information, PERCEPT

system incorporates the sensing framework introduced in this

paper. As reported later in this paper, the framework was

tested within the entire PERCEPT system and shown that it

provides the necessary information that helps BVI users build

a cognitive map of the space and reach the chosen destination

independently [4]. Fig. 2 illustrates the architecture of PER-

CEPT system which includes the sensing framework presented

in this paper, the navigation and instruction generation module

and the user interface.

The sensing framework introduced in this paper includes

the following modules that correspond to the abovementioned

place, border and head-direction cells: a localization module,

a moving direction estimation module and a landmark prox-

imity detection module. Grid cells correspond to the graph

representation of space included in the Navigation Instruction

Generation Module (see Fig. 2) [18]. As shown in Fig. 3, the

Fig. 3. Sensing framework overview

TABLE I

ANALOGY BETWEEN NEURAL REPRESENTATION OF SPACE AND PRO-
POSED FRAMEWORK

proposed framework includes two phases, the

offline phase and the online phase. In the offline phase, we

generate the optimal sensor deployment strategy for the indoor

space, minimizing the cost of the deployment while consid-

ering the requirements of the localization algorithm. During

the online phase, we develop intelligent sensing algorithms

that provide location estimates, moving direction estimates

and detect landmarks next to the user. To the best of our

knowledge, this is the first comprehensive BLE-based sensing

solution that can determine location, moving direction and

landmark proximity using only RSSI values. In addition, to

make our sensing solution scalable and practical to different

spaces, we have introduced an algorithm to determine the

sensors’ locations in the indoor environment.

Table I summarizes the spatial information represented in

each type of neuron and the corresponding modules provided

in our framework.

In contrast to the established literature, our framework will

not seek to achieve the exact coordinates (e.g. singular point)

of the user location or exact value of user orientation in
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degrees. Neuroscience reveals that the human cognitive system

for positioning and navigation uses aregion to understand the

location instead of a singular point. Therefore, we propose to

evaluate the performance of the localization algorithm using

the success rate of region detection for different region sizes.

In addition, as shown in Fig. 1c and reported in [19], head-

direction cells fire in a range around the preferred firing

direction (e.g. the direction at which neurons fire maximally).

Thus, instead of evaluating the moving direction algorithm

using deviation of the estimated moving direction from the

ground truth, we evaluate its performance using success rate

of estimating a 4-way or 8-way cardinal directions.

The remainder of the paper is organized as follows. Section

II discusses the related work. The offline phase which includes

the optimal deployment strategy generation is introduced in

Section III. The online phase which includes localization,

moving direction estimation and landmark proximity detection

is detailed in Section IV. Experimental results are shown in

Section V and Section VI concludes the paper.

II. RELATED WORK

With the advent of smartphones and sensors, indoor local-

ization techniques using Bluetooth Low Energy (BLE) tech-

nology have attracted significant interest. In this section, we

will present an overview of recent advances in the development

of BLE-based indoor localization techniques followed by a

discussion of the advantages of the proposed framework over

other BLE-based indoor navigation systems for BVI users.

A. Indoor Localization

Using multilateration [20], we can determine the location

of the target from the distances between the target and the

beacons using the least square algorithm. Given the RSSI,

we can derive the distance between the target and the beacon

using a prebuilt propagation model. To compensate for the

inaccuracy of deriving distance from the propagation model,

the authors in [21] perform additional signal processing of

the RSSI values and propose to auto-calibrate the propagation

model with respect to environmental textures. In [22], the

authors present an approach similar to trilateration, named

inter Ring Localization Algorithm (iRingLA). Instead of treat-

ing the communication range of the transmitter as a circle,

iRingLA regards it as a ring and determines the target’s loca-

tion from the intersection of three rings. In [23], the authors

try to improve the localization accuracy by applying several

techniques. First, instead of using one propagation model for

all beacons, they build a propagation model for each beacon.

Second, the authors take advantages of Gaussian filtering and

other smoothing approaches to reduce the fluctuations of noisy

RSSI measurements.

As the least computational expensive approach among all

methodologies, proximity algorithms can locate a target using

the approximate communication range of a beacon to detect

whether the target is in range or not. One of the most popular

methods in proximity algorithms is Min-Max approach [20],

which aims to find the intersection region from beacons’

communication ranges. In [24] the authors present a two-

level localization approach, including low-precision and high-

precision indoor localization components. The main idea is

to find the intersection region of the beacons using the bea-

cons’ different transmission power levels. In [25] the authors

combine the stigmergic marking approach with the Min-Max

algorithm and draw the location estimation from the stigmergic

map. Two other BLE-based approaches [26, 27] adopt the

same idea of deriving the location using the beacon with the

strongest RSSI value.

Fingerprinting-based algorithms typically contain two

phases, the offline training phase and the online localization

phase [20]. During the offline phase, the fingerprint data is

collected at each reference point in space and then stored in the

database. In the online phase, given an RSSI vector collected

by a target at a certain point, the algorithm derives the target’s

location from the location of the reference point at which the

fingerprint is most similar to the given RSSI vector using K-

nearest neighbors (KNN) algorithm. In [28] the authors utilize

the autoencoder, an unsupervised learning algorithm as the

denoising function for raw RSSI values. In [29] the authors

exploit the Kendall Tau Correlation Coefficient to generate the

weights and integrate it into the fingerprinting algorithm. In

[30] the authors present an iterative approach for localizing the

target by selecting different beacons to obtain RSSI in each

iteration and then averaging the location estimations.

Even though fingerprinting-based algorithm can effectively

alleviate the negative effect of localizing targets from noisy

RSSI measurements to a certain degree, the time-consuming

preparation procedure makes it an impractical solution. Thus,

some researchers started to work on a more flexible and

computation-efficient approach, called Weighted Centroid

Localization (WCL). In [31] the authors utilize a Kalman filter

to derive the weights for each nearby beacon and then calculate

the target’s location from the generated weights. In [32] the

authors leverage a self-defined propagation model to com-

pute the weights and perform a comprehensive performance

comparison between BLE and Wireless Local Area Networks

(WLAN) at 2.4GHz and 5GHz. They show that BLE outper-

forms WLAN in terms of the localization performance using

WCL. In our work, we utilize RSSI directly without applying

any sophisticated smoothing methods [33]. We compute the

weights using the Weighted Path Loss Localization (WPLL)

algorithm [35].

B. Indoor Navigation Systems for BVI

Different types of indoor navigation systems have been

designed and implemented to make indoor spaces more acces-

sible to BVI users. Such systems use different localizations

schemes such as vision-based systems [36-41] wireless-based

systems [42-47] and hybrid systems [48-54]. Here, we elab-

orate on BLE-based systems and compare them with the

proposed framework.

A system called NavCog [42] uses a BLE-based localization

scheme and was tested by 6 BVI subjects. A fingerprint-based

algorithm is used to compute the user’s location and the Smart-

phone compass is used to determine the user’s orientation.
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They reported several interesting conclusions obtained from

users’ feedback. One of them is that the precision of the

localization algorithm is not a concern as long as the system

can help them recover from mistakes quickly.

A hybrid indoor navigation system for BVI users using BLE

and Google Tango is proposed in [48]. Authors implemented

a two-level localization strategy. At the first level, the RSSI

fingerprints are used to find the coarse location of the user

and builds an Area Description File (ADF), i.e. a feature map

of the space, built by Google Tango. Given the ADF, the

software and hardware on Google Tango can localize users

with high accuracy. Unfortunately, Google Tango phone was

discontinued.

A wayfinding system for large indoor spaces, which is

named GuideBeacon, was introduced in [43]. The system can

localize the user using a proximity algorithm, which identifies

the closest beacon using thresholds. Similar to [42], the

directional information is determined by the compass. In [44]

the authors propose a localization method that uses the user

proximity to a beacon. It is well known that the localization

accuracy of the beacon proximity approach depends on the

density of the beacons. High beacon density will increase the

deployment and maintenance cost.

Unlike prior works in which the BLE sensors’ RSSI is used

to determine only the user location, our framework provides

the user location, orientation and landmark proximity. Our

approach does not require any specialized hardware and/or

software (e.g. Tango platform) since the user can run the

algorithm in any Smartphone. It is important to mention that

compass based approaches to determine the user orientation

in indoor spaces is very unreliable in areas with strong and

changing magnetic fields such as areas near elevators and

subway platforms with frequent arrivals of trains. Moreover, to

make our solution scalable, we have introduced a systematic

way of planning sensor deployment in indoor environments,

which is not covered by prior works [42-47]. In addition, we

introduce a novel way to evaluate the localization performance

which is zone localization, inspired by space encoding in the

human brain.

III. OFFLINE PHASE

In this phase we generate an optimal sensor deployment

strategy for an indoor environment. The input includes: the

blueprint and its associated scale, the sensor communication

range and the number of sensors, k, that should cover each

point in the blueprint (k is determined by the localization

algorithm). To ensure coverage, we use the optimal deploy-

ment pattern that guarantees k-covering [55]. If k equals to 3,

the optimal deployed pattern is shown in Fig. 4.

The sensor deployment algorithm is implemented in Matlab.

The graphical user interface (GUI) which is shown in Fig. 5

includes:

• Blueprint (Top): displays the blueprint as background and

the superimposed locations of the sensors obtained from

the deployment algorithm using red dots.

• Parameter settings (Input-bottom left): includes the num-

ber of sensors, k, that should cover each point in the

Fig. 4. Optimal pattern when k=3 (r is BLE communication range in ft.)

Fig. 5. GUI of the optimal deployment strategy generation

blueprint, the BLE communication range and the scale

of the blueprint.

• Interaction (center): marks the deployment area with a

blue box, triggers the action of computing the optimal

deployment or resets the current parameters.

• Results (Output-bottom right): the size of the entire area,

the total number of beacons required and the density

which is defined as the size of area covered by one

beacon.

Note that the generated optimal sensor deployment may not

be followed exactly while deploying the sensors in the envi-

ronment due to the physical limitations of each suggested loca-

tion. Nevertheless, the optimal deployment strategy provides

valuable guidelines for guaranteeing the performance of the

localization algorithm across the entire environment.

IV. ONLINE PHASE

The online phase includes the following modules: local-

ization (Section IV.A), moving direction estimation (Section

IV.B), and landmark proximity detection (Section IV.C).

A. Localization

We assume that the user’s smartphone can collect RSSI

measurements from k nearby BLE sensors simultaneously.

Distance di from BLE sensor i to user’s smartphone is given

by:

di = 10
si −P L0

10∗γ (1)
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Fig. 6. Illustration of moving direction estimation

where si is the RSSI collected from BLE sensor i , γ is the

path loss component and P L0 is the path loss at the reference

distance d0.

Equation (2) describes the Log-distance path loss propaga-

tion model. Given a certain distance, di , si can be computed

by:

si = P L0 + 10 ∗ γ ∗ log10 (di/d0) (2)

The weighting factor wi is given by:

wi =

1
/

di
∑k

i=1
1
/

di

(3)

The location estimate (u, v) of the user can be obtained by:

u =

k
∑

i=1

wi ∗ xi (4)

v =

k
∑

i=1

wi ∗ yi (5)

where (xi , yi ) is the 2D location of BLE sensor i .

B. Moving Direction Estimation

To determine user’s moving direction from the sequence of

location estimations, we use the K-means clustering algorithm

in conjunction with a sliding time window.

Given a set of location estimates computed in the past N

seconds, e(1) . . . , e(N), we group the data into two cohesive

clusters, extracting the moving trajectory from two centroids.

The pseudocode implementation of the algorithm is provided

in Table II.

As shown in Fig. 6, we cluster the location estimates in a

time window into two groups using K-means algorithm. Using

the centroids of the two clusters, we determine the moving

direction by finding the trajectory from the past centroid to

the present one.

TABLE II

PSEUDOCODE OF MOVING DIRECTION ESTIMATION

C. Landmark Proximity Detection

In addition to location and moving direction estimation, the

proposed framework also offers the functionality of landmark

proximity detection which can helps the user build the cogni-

tive map of the space.

We define a proximity radius for each landmark. Since our

detection problem can be treated as a binary classification

problem, we leverage the naïve Bayes classifier to detect a

landmark next to the user. For each landmark, the two possible

outcomes are either the user location is in close proximity to

the landmark (i.e. within the proximity radius of the landmark)

or not (i.e., the user location is out of of the proximity radius

of the landmark). We train the probabilistic model that will be

used in naïve Bayes classifier using the RSSI measurements

collected at different distances. For the labelling process, all

the RSSI measurements collected within the radius are labelled

with 1, and other measurements are labelled with 0.

Mathematically, the conditional probability model for each

landmark can be calculated using (6).

p
(

Ck
i |x1

i , . . . xn
i

)

∝ p(Ck
i , x1

i , . . . xn
i ) (6)
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where x
j
i denotes the j th RSSI measurement from sensor

i , and Ck
i refers to class k for landmark i (each landmark

is paired with a certain sensor) with k = 1 (we are in the

proximity of landmark k), k = 0 otherwise.

The joint model can be expressed as follows:

p
(

Ck
i , x1

i , . . . xn
i

)

= p
(

Ck
i

)

p
(

x1
i |Ck

i

)

p
(

x2
i |Ck

i

)

. . .

= p(Ck
i )

n
∏

j=1

p(x
j
i |Ck

i ) (7)

Finally, the decision can be made using:

ŷi = arg max
k∈{0,1}

p(Ck
i )

n
∏

j=1

p(x
j
i |Ck

i ) (8)

where n refers to the number of RSSI measurements col-

lected from the sensor that is paired with landmark i , ŷi

denotes the estimated class for landmark i .

V. EXPERIMENTAL RESULTS

To evaluate the performance of the algorithms included

in the proposed framework, we deployed our testbed at the

basement level of UMass Campus Center, which is a 9,000

ft2 area (see Fig. 7). We use BLE sensors manufactured by

Kontact.io and different models of iPhones (iPhone 6, iPhone

6 plus and iPhone 6s plus). The hardware specifications [56]

of the BLE sensor are provided in Table III. The sensors’

transmission power is set to medium level, −12 dBm. Due

to the default Bluetooth communication setting in iOS, the

frequency of collecting the RSSI signal is 1 Hz. The BLE

sensors are deployed following the guidelines provided by

the optimal deployment strategy with minor adjustment to the

environment.

Our dataset contains 35 and 34 groups of RSSI measure-

ments along Route 1 and Route 2, respectively. On each route

that takes about 1-2 minutes from start to end, we collect about

100 location estimates. With nearly 7,000 location estimations

calculated in total, over a thousand orientation and landmark

proximity estimates are computed. As shown in Fig. 7, we

collected RSSI measurements following the testing routes

so that the ground truth walking trajectory is known to us.

Along each route, we pressed a button on our data collection

application when we passed by the marked checkpoints (6 for

Route 1 and 4 for Route 2). The

recorded information is used as the ground truth for evalu-

ating the proximity landmark detection module. Since we also

know that the moving direction for each walking trajectory,

the ground truth moving direction can be collected as well.

A. Localization

In equations introduced in Section IV.A we use P L0 =

−63.5379 dB, γ = −2.086 and d0 = 3ft. These parameters in

(2) are calculated by solving the nonlinear regression problem

of the pre-collected data at different sampling points between

3 ft and 45 ft at 3ft intervals. We collected 200 readings at

each sampling point.

TABLE III

HARDWARE SPECIFICATIONS OF TOUGH BEACON

Fig. 7. Testbed at UMass campus center (180 ft. x 50 ft.)

We evaluate the success rate of region detection which is

defined as the ratio between the number of correct region esti-

mations over the total number of region estimations (correct

and incorrect). The choice of region localization is inspired

by the spatial representation in cognitive neuroscience [6]. As

detailed above, the human cognitive system for positioning and

navigation uses a region to understand the location instead

of a singular point. As shown in Fig. 8, we generate the

hexagon tessellation of the space following the format of

spatial representation used in neural cells [6]. As we learned

from cognitive neuroscience, grid cells fire in a certain pattern

(see the Fig. 9a). If we connect the centers of the firing

regions, it can cover the entire space with equilateral triangles.

As shown in Fig. 9b, we connected the centroids of the

neighboring equilateral triangles of a certain region, which

form a hexagon pattern. It turns out this is the best tessellation

pattern that determines regions used to evaluate the accuracy

of the proposed localization algorithm. As shown in Fig. 10,

while the radius of the hexagon-shaped region increases from

10 ft. to 20 ft., the success rate of region detection increases

from 62.5% to 83%.

B. Moving Direction Estimation

According to a neuroscientific study reported in [19], the

head-direction cells used in human cognitive system for orien-

tation will fire in a range around the preferred firing direction
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Fig. 8. Hexagon tessellation of the space (a) Radius is 10 ft. (b) Radius is
20 ft.

Fig. 9. Grid cell firing pattern in (a) and Hexagon formation in (b)

Fig. 10. Experimental results of region detection

which is defined as the direction at which the neuron fires

maximally. Thus, to evaluate the moving direction module, we

propose to evaluate the success rate of estimating a specific

cardinal direction (see Fig. 11) determined by the orientation

vector calculated in Section IV.B. Using a 10-second sliding

window, 1395 estimates are generated by our dataset.

Among these estimates, the orientation estimation success

rates for 4-way and 8-way cardinal directions are about 94%

and 60 %, respectively.

Fig. 11. Illustration of Head-direction cells firing pattern around cardinal
directions (a) 4-way cardinal directions (b) 8-way cardinal directions

C. Landmark Proximity Detection

The success rate of landmark proximity detection is defined

as the ratio between the number of correct proximity land-

mark detections over the total number of proximity landmark

detections (correct and incorrect). Using a 6-ft. proximity

radius around each landmark, and 1153 estimates, we obtain

a landmark proximity detection success rate of 81%.

D. Integration With Percept Indoor Navigation System for

BVI Users

The proposed sensing framework was integrated in PER-

CEPT system (see Fig. 2) and tested in a large public

transportation hub in Boston [4]. Using PERCEPT application

installed on users’ iPhones, BVI users can: 1) understand

where they are in space audibly using regions and moving

direction calculated by our sensing framework, 2) receive

audible navigation instructions from one landmark to another

using surrounding landmarks, and 3) receive alerts if they

approach some landmarks via proximity landmark detection.

The system has been tested by 6 BVI subjects in a subway

station [4]. The experiments show that the users can suc-

cessfully and independently reach their chosen destinations.

All participants were very satisfied with the navigational aid

provided by PERCEPT. Details of this deployment as well as

testing results can be found in [4].

It is important to note that we expect that the user will

make mistakes (i.e., reach wrong landmarks or just get dis-

oriented in the environment) and therefore require rerouting.

Rerouting assistance in the application includes the ability

to press “Where am I” as well as provide instructions from

any landmark to the chosen destination. It was interesting to

observe that the participants reported that they have built a

cognitive map of the environment using the application routing

and rerouting features as well as the “Where am I” feature.

For completeness of the paper we include some of the

feedback provided by the BVI users which participated in

these trials. We collected the participants’ feedback using a

qualitative questionnaire. Each participant was asked to

score their agreement with specific statements related to their

experience during the trial. The score followed Likert scale

from 1 strongly disagree to 7 strongly agree with, with 4

being neither agreeing or disagreeing with the statement. The

average scores are provided in Table IV. The nine additional
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TABLE IV

POST-TRIAL QUESTIONNAIRE USING LIKERT SCALE SCORE

trials we performed in a large indoor transportation venue

showed similar trends.

As shown above, we conclude that the information we com-

pute in the proposed sensing framework, i.e., zone localization,

region orientation and proximity, can be successfully used by

the navigation instructions module to convey the necessary

information to allow the BVI user to independently navigate

through large indoor venues.

VI. CONCLUSIONS

In this paper, we introduced a sensing framework that

includes optimal deployment strategy, location estimation,

moving direction estimation and landmark proximity detec-

tion. We note that in spite of the fact that the location,

orientation and proximity results computed by our sensing

framework are not accurate, they provide the necessary infor-

mation to the rest of PERCEPT modules and ultimately enable

the BVI user to successfully navigate independently in large

indoor venues. It is interesting to note that unlike a sensing

framework for robots that needs to provide very accurate

location and orientation, in the proposed framework used by

BVI users high accuracy is not necessary. The reason is that

the movement/navigation decisions made by the user include

diverse aspects such as how the navigation instructions are

composed, how the user interface is designed and how accurate

the user can interpret the instructions and/or manipulate the

user interface. Our observation is also aligned with the space

encoding methods presented in this paper which show that the

brain encodes zones (place fields) using place cells (i.e., zones,

not singular points) as well as orientation regions using head

cells with wide lobes (see Fig. 1c) (i.e., do not record highly

accurate directions using very narrow width lobe).
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