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Abstract—Supporting ultra-reliable and low-latency commu-
nications (URLLC) is key for vehicular traffic safety and other
mission-critical applications. In this paper, a novel proximity and
quality-of-service (QoS)-aware resource allocation framework
for vehicle-to-vehicle (V2V) communication is proposed. The
proposed approach exploits the spatial and temporal traffic
characteristics of the vehicles. The proposed scheme incorporates
physical proximity and traffic demands of vehicles so as to
minimize the total network cost which captures the total trans-
mission power and queuing latency under reliability constraints.
This problem is formulated as a power minimization problem
for which a Lyapunov framework is used to decompose the
problem into two interrelated sub-problems of resource block
(RB) allocation and power optimization (RAPO). To minimize the
overhead introduced by frequent information exchange between
vehicles and the roadside unit (RSU), we further decomposed the
resource allocation problem into two interrelated subproblems.
First, a novel RSU-assisted virtual clustering mechanism is
proposed to group vehicles into disjoint zones based on mutual
interference. Second, a per-zone matching game is proposed to
allocate resources blocks (RBs) to each vehicle user equipment
(VUE) based on vehicles’s traffic demands and their latency
and reliability requirements. The problem is cast as a one-
to-many matching game in which VUEs pairs and RBs rank
one another using preference relations that capture both the
queue dynamics and interference. To solve this game, a semi-
decentralized algorithm is proposed in which VUEs and RBs
reach a stable matching. Subsequently, a power minimization
solution is proposed for each VUE pair over the assigned subset
of RBs. Simulation results for a Manhattan model show that
the proposed scheme outperforms a state-of-art baseline and
reaches up to 45% reduction in the queuing latency and 94%

improvement in reliability.
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power optimization, ultra-reliable low latency communications
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I. INTRODUCTION

Vehicular communication is emerging as a promising en-

abler for intelligent transportation systems (ITSs). In modern

vehicle-to-vehicle (V2V) applications, e.g., automatic braking,

safety concerns and lane change alerts, still pose substantial

challenges for vehicular networks [1]. These applications typ-

ically require efficient proximity-aware cooperative among by

exchanging safety messages among vehicles to reduce the risk

of traffic accidents. ETSI has standardized two types of safety

messages: decentralized environmental notification message

(DENM) and cooperative awareness message (CAM) [2], [3].

In order to exchange these messages, ultra-reliability and

low-latency communications (URLLC) is critical [4]. URLCC

applications with closed-loop control, such as vehicle collision

avoidance, end-to-end or round-trip latency requirement is

around 1ms while the overall packet loss probability is below

99.999% for small packet sizes, e.g., 20 bytes or even smaller

[5]–[7]. 5G specifies a queuing latency of 0.125ms in order to

satisfy 1ms end-to-end latency bound [8]. To this end, URLLC

requirements become essential part of the next generation

vehicular networks.

Efficient radio resource management (RRM) techniques are

essential to satisfy the stringent URLLC quality-of-service

(QoS) requirements. Dynamic and flexible RRM techniques

in V2V networks offer the possibility to adapt to the local-

ized service requirements and, hence, need to be carefully

designed. Legacy solutions for V2V communication rely on

ad hoc communication over the IEEE 802.11p standard and

backend-based communication over the long term evolution

(LTE) cellular standard [9]. Nevertheless, due to a dynamic

nature of vehicular communication, legacy solutions suffer

from several drawbacks such as network scalability, efficient

resource management, unbounded delay, lack of reliability

guarantees, and varying QoS requirements [1], [10], [11].

On the other hand, the performance of the LTE system for

vehicular communication is always unsatisfactory, particularly

for URLLC scenarios [4], [11]. Therefore, seeking optimal

RRM solutions to enable V2V communication are strongly

desirable.

A. Related Work

RRM has a significant impact on the performance of ve-

hicular networks. A vehicular network RRM mechanism must

be carefully designed with particular attention to interference
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Table I: Summary of resource allocation techniques in the existing V2V literature.

Reference RB allocation Latency & reliability Power allocation Queue dynamics

[9] IEEE 802.11p CSMA/CA × X ×

[11] Centralized solution + orthogonal RB allocation X X ×

[12] Centralized heuristic solution × × ×

[13] Heuristic solution X × ×

[14] Distributed solution X × ×

[15] Centralized scheme Limited X ×

[16] Hybrid solution × × ×

[17] Distributed solution × × ×

[18] Distributed solution × X ×

[19] Centralized scheme × × ×

[20] Semi-distributed scheme (PF) × × ×

mitigation due to resource reuse while satisfying stringent

URLLC requirements [6], [21]. In particular, the high mobility

of vehicles brings challenges in channel quality acquisition.

Problems pertaining to RRM and network modeling with

URLLC metrics have been recently studied for many types of

networks including vehicular and device-to-device networks

[11]–[24].

In [11] the authors proposed a centralized heuristic QoS-

based RRM scheme by solving sum-rate maximization prob-

lem but without considering for the traffic queue state informa-

tion (QSI) at vehicles. A heuristic location-dependent resource

allocation for V2V is proposed in [12], where orthogonal

resource blocks (RBs) are allocated to different geographical

areas. However, the work in [12] relies on a full buffer traffic

model which can lead to severe queuing latency. A resource

sharing algorithm while incorporate matrix spectral radius

to bound the accumulated interference is proposed in [13].

The objective of RRM algorithm in [13] is to maximizes the

number of concurrent V2V transmissions while ensuring re-

liability constraints. In [14], a low-complexity outage-optimal

distributed channel allocation scheme is proposed based on

a bipartite matching formulation for V2V links. The work

in [15] proposed a spectrum sharing and power allocation

scheme subject to the outage probability based on signal-to-

interference-plus-noise ratio (SINR).

Additionally, in [16] authors use dynamic programming to

search for an optimal clustering solution that minimizes the

number of resources consumed by vehicular ad hoc networks

(VANETs). In [17], a distributed resource allocation approach

is presented by exploring the spatio-temporal aspects (in terms

of load and vehicles’ physical proximity) of V2V networks to

minimize the total network cost which captures the tradeoffs

between load (i.e., service delay) and successful transmissions.

The authors in [18] proposed a geo-location based resource

reuse and user selection approach in which two different

distributed power control schemes are introduced for various

applications in vehicular networks. A centralized resource

allocation scheme based on vehicle locations is presented

in [19]. In our previous work [20], we studied the problem

of power optimization in V2V communication considering

latency and reliability aspects. However, this work differs

significantly from [20] in many folds: i) We group VUEs into

dynamic zones instead of a fixed number of zones, leveraging

the spatial and temporal nature of V2V communication, ii)

We propose a novel algorithm based on matching theory for

dynamic allocation of RBs to VUEs inside each zone, whereas

[20] assumes proportional fair (PF) allocation of RBs, iii)

Contrary to [20], we propose an interference estimation based

on the history of VUEs traffic demand and their geographical

information. Furthermore, we examine the latency and reliabil-

ity constraints to analyze the queue dynamics in more details

as discussed in Section II.

Moreover, a performance analysis framework is proposed

for optimizing a platoon’s operation while jointly taking into

account the delay of the V2V network and the stability of the

vehicle’s control system [24]. However, the works in [16]–[19]

fail to take into account the stringent latency and reliability

requirements. Meanwhile, the work in [24] assumes resource

allocation to be pre-determined, rather than optimized. The

state-of-the-art contributions in the resource allocation of V2V

communication is summarized in Table I.

B. Motivations and Contributions

Although interestingly, none of the aforementioned works

consider the stochastic nature of traffic arrival and data queue

dynamics while satisfying stringent URLLC requirements

[11]–[19]. Meanwhile, the majority of existing V2V works

[11]–[19] assume that full global channel state information

(CSI) is available at all network entities, which is impractical

for vehicular networks. Due to the fast-varying channel condi-

tions and topological environments, frequent exchange of local

information and control signaling can incur tremendous over-

head and leads to a degradation in the network performance

[9], [11], [19].

Motivated by the above shortcomings, the main contribution

of this work is a fresh start architecture for latency and

reliability-aware resource allocation for V2V communications.

Unlike existing works, our proposed approach considers RBs

allocation and power control jointly such that the interference

is minimized while taking into account both the geographical

information and the queue dynamics. To capture the dynamic

traffic demands, each vehicle user equipment (VUE) is as-

sumed to be equipped with a traffic queue buffer to store the

stochastic data arrivals. For better resource utilization and to

reduce queuing latency and maximum reliability, we exploit

QSI together with the conventional physical layer metrics.
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We propose a Lyapunov based stochastic optimization frame-

work [25] to jointly optimize resource allocation and power

allocation while satisfying the queuing latency and reliability

requirements. The problem is formulated as a network power

minimization wherein the main objective is to minimize the

Lyapunov drift-plus-penalty function that captures the trade-

off between the transmit power and stability of the system

queues. Due to the dynamic nature (e.g., CSI, QSI, network

topology, etc.) of V2V networks, performing dynamic resource

allocation requires the knowledge of the entire network state

information which incurs significant overhead. Therefore, the

main optimization problem is decomposed into two interre-

lated subproblems that are solved in a semi-distributed fashion

at the roadside unit (RSU) and VUE level.

First, by exploiting the spatial-temporal information of

vehicles, the RSU groups vehicle pairs into a number of zones

based on their location and traffic patterns. Then, in order

to allocate RBs to each VUE pair, we formulate a per-zone

one-to-many matching game in which VUEs and RBs are the

players, which rank one another based on a set of preferences

that account for interference, QSI and traffic demands. The

aim of the matching game is to find a suitable and stable

allocation between VUEs and RBs. Furthermore, the goal of

the matching game is to associate the VUEs to a feasible

set of RBs while satisfying latency and reliability constraints.

To solve this game, we propose a distributed algorithm that

is guaranteed to converge to a two-sided stable and Pareto

optimal matching between VUEs and RBs. Subsequently, once

the stable and optimal RB allocation solution is found, every

VUE optimizes its transmit power over allocated RBs while

satisfying latency and reliability constraints. Simulation results

validate the effectiveness and performance of the proposed

approach as compared to a baseline in terms of latency and

reliability. The results show 94% improvement in reliability

and 45% reduction in queuing latency as compared to baseline.

The rest of this paper is organized as follows. Section

II describes the system model and presents the optimization

problem. The optimization problem is further simplified using

the Lyapunov framework and a semi-distributed approach

is presented in Section III. Following the semi-distributed

approach, a novel zone formation mechanism is detailed in

Section IV. Section V discusses the proposed matching algo-

rithm and power allocation scheme. The performance of the

proposed framework is analyzed in Section VI. Finally, Section

VII concludes the paper. The notations used throughout this

paper are listed in Table II.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network and Traffic Model

We consider a V2V network following the Manhattan

mobility model as illustrated in Fig. 1. The V2V network

is composed of a single RSU covering set K of K VUE

transmitter-receiver (Tx-Rx) pairs. During the entir commu-

nication period, it is assumed that the VUE pair configuration

is fixed. In order to model the vehicular mobility, a safety

distance is incorporated between Tx-Rx of a single VUE pair.

The safety distance is bounded and smaller compared to the

Table II: Summary of Notations

Notation Definition

K Set of VUE pairs

N Set of RBs

ω Bandwidth of an RB

t Time slot index

xkn(t) RB usage indicator in time slot t
λk(t) Traffic arrival at VUE k in slot t
qk(t) Physical queue value at VUE k in slot t
fk(t) Virtual queue value at VUE k in slot t
jk(t) Virtual queue value at VUE k in slot t
Rkn(t) Transmission rate of VUE k over RB n in slot t
pkn(t) Transmit power of VUE k over RB n in slot t
hkk′n(t) Wireless channel from VUE k to VUE k′ over RB n

in slot t
σ2 Noise variance

Lk Maximum allowed queue length at VUE k
ǫk Tunable tolerance parameter for VUE k
Z Set of zones

Kz Set of VUE pairs in zone z
Nk Set of RBs allocated to VUE k
sk Geographical coordinates of VUE k
skk′ Gaussian distance similarity between VUE k and k′

ckk′ Gaussian traffic arrival dissimilarity between VUE k
and k′

v Control parameter

Ukn(t) Utility of VUE k over RB n at slot t
Un(t) Utility of RB n at slot t
≻ Preference relation

E[·] Expectation operator

Pr(·) Probability measurement

✶{·} Indicator function

considered network area. In this work, the available resources

are represented in both frequency and time domains, where

the whole bandwidth is divided into set of N RBs as shown

in Fig. 1. Additionally, |hkk′n(t)|
2

denotes the channel gain

of a VUE transmitter of pair k to the VUE receiver of pair k′

over RB n in time slot t. We define xkn(t) as the indicator

variable indicating that VUE k uses RB n at time slot t. To

transmit information to its VUE receiver, the transmitter of

pair k allocates power pkn(t) over RB n in time slot t with
∑

n∈N xkn(t)pkn(t) ≤ Pmax
k where Pmax

k is VUE pair k’s

total power budget. Thus, the data rate of VUE pair k in time

slot t is:

Rkn(t) = ω log2

(

1 +
xkn(t)pkn(t)|hkkn(t)|

2

σ2 + Ikn(t)

)

, (1)

Rk(t) =
∑

n∈N

Rkn(t), (2)

where ω represents the bandwidth of an RB and σ2 is the

variance of the additive white Gaussian noise. The interference

term Ikn(t) in (1) represents the aggregate interference at VUE

k caused by the transmission of other VUEs k′ ∈ K on the

same RB n, and is given by:

Ikn(t) =
∑

k′∈K\k

xkn(t)pk′n(t)|hk′kn(t)|
2
. (3)

Moreover, each VUE transmitter has a queue buffer to store

data for its VUE receiver. Let q(t) = [q1(t), . . . , qK(t)] be the

traffic queue length vector in time slot t where qk(t) denotes

the queue length of a given VUE pair k ∈ K. The evolution
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Figure 1: Interference between different VUE pairs k1 and k2
using the same set of RBs n ∈ N

of qk(t) is given by:

qk(t+ 1) =
[

qk(t)− τRk(t)
]+

+ λk(t), (4)

where, τ is the time slot duration while λk(t), with λ̄k =
E[λk(t)], is the traffic arrival at the transmitter of pair k in

time slot t. Here [·]+ = max{·, 0} indicates that the amount

of served data cannot exceed the amount of the stored data

in the queue. Without loss of generality, we assume qk(1) =
0, ∀ k ∈ K, as the initial queue length.

B. Problem Formulation

Our objective is to find an efficient RB allocation and power

optimization (RAPO) solution while meeting the latency and

reliability requirements [8]. In our considered V2V scenario,

the latency is defined as the queuing latency, defined as the

time a packet waits in a queue until it can be successfully

transmitted to the VUE receiver. According to Little’s law [26],

the average queuing latency at VUE pair k is proportional

to q̄k/λ̄k, where q̄k = lim
T→∞

1
T

∑T
t=1 E[qk(t)] is the time

averaged expected queue length. Thus, we impose an upper

bound dk on the average queuing latency of each VUE pair

k, as follow:
q̄k
λ̄k

≤ dk, ∀ k ∈ K. (5)

In addition to queuing latency, the queue length is also related

to the reliability requirements for V2V communication. We

further note that the delay (or queue length) bound violation

is related to reliability. Thus, taking into account the latency

and reliability requirements, we characterize the delay bound

violation with a tolerable probability. In particular, a prob-

abilistic constraint is imposed on the queue length of each

VUE pair k, i.e.,

lim
T→∞

1

T

T
∑

t=1

Pr
(

qk(t) ≥ Lk

)

≤ ǫk, ∀ k ∈ K, (6)

where Lk and ǫk ≪ 1 are the allowable queue length and

tolerable violation probability, respectively. Without loss of

generality, we replace the non-linear constraint in (6) with

linear equivalents to render the probabilistic constrain tractable

as:

lim
T→∞

1

T

T
∑

t=1

E
[

✶{qk(t) ≥ Lk}
]

≤ ǫk. (7)

In order to increase the reliability and reduce latency, a large

number of data packets needs to be sent within the given

latency bound. However, this might over-allocate resources

(i.e., RB, transmit power) to a given VUE. Typically, the

transmit power in successive slots is coupled with the re-

source allocation and queue dynamics (i.e., queue length).

Therefore, the transmission power can better capture the real-

world performance of a vehicular network while minimizing

the queuing latency and improving reliability. The RSU’s

objective is to find an optimal RB allocation and power

allocation policy which minimizes the network transmission

power while satisfying (5) and (7). Let X(t) = [xkn(t)] be

the RB allocation matrix and P (t) = [pkn(t)] be the power

matrix in time slot t. Therefore, we pose the following joint

resource allocation and power allocation optimization problem

whose goal is to minimize time-average power:

minimize
X(t),P (t)

∑

k∈K

∑

n∈N

p̄kn (8a)

subject to lim
T→∞

1

T

T
∑

t=1

E[qk(t)] ≤ λ̄kdk, ∀ k ∈ K, (8b)

lim
T→∞

1

T

T
∑

t=1

E
[

✶{qk(t) ≥ Lk}
]

≤ ǫk, ∀ k ∈ K,

(8c)
∑

n∈N

xkn(t) ≤ Nk, ∀k ∈ K, (8d)

∑

n∈N

xkn(t)pkn(t) ≤ Pmax
k , ∀ t, k ∈ K, (8e)

pkn(t) ≥ 0, ∀ t, k ∈ K, n ∈ N , (8f)

xkn(t) ∈ {0, 1}, ∀ t, k ∈ K, n ∈ N , (8g)

where p̄kn = lim
T→∞

1
T

∑T
t=1 pkn(t) is the time-averaged power

consumption of VUE pair k over RB n. (8b) is VUE k’s

queuing latency requirement while (8c) captures the reliability

constraint of VUE k. In addition, (8d) indicates that each VUE

k can be assigned up to Nk RBs. Constraint, (8e) ensures that

total transmit power of VUE k over the allocated RBs is within

the maximum power budget.

III. PROBLEM DECOMPOSITION USING LYPUNOV

OPTIMIZATION

Although the optimal X(t) and P (t) can be obtained by

dynamic programming, such an approach is computationally

complex and requires the statistics of traffic arrivals and

channel state information (CSI). To alleviate the computational

complexity, we invoke tools from Lyapunov stochastic opti-

mization [25], [27], [28] which require a partial knowledge

of the CSI and provide a tractable solution compared to

dynamic programming. Here, we note that, although Lyapunov
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Figure 2: RAPO framework for RB allocation and power

allocation.

optimization typically yields sub-optimal solutions, the opti-

mal solution can be asymptotically approached by selecting

a tradeoff parameter, as explained later in this section. The

RAPO framework consists of the inter-related components as

shown in Fig. 2. Using Lyapunov optimization [25], the time-

average inequality constraints (8b) and (8c) can be satisfied

by converting them into virtual queues and maintaining their

stability. Therefore, we define the following virtual queue

vectors j(t) = [j1(t), . . . jK(t)] and f(t) = [f1(t), . . . fK(t)]
corresponding to the constraints (8b) and (8c), respectively.

Accordingly, the virtual queues are updated as follows:

jk(t+ 1) =
[

jk(t) + qk(t+ 1)− λ̄kdk
]+

, (9)

fk(t+ 1) =
[

fk(t) + ✶{qk(t+ 1) ≥ Lk} − ǫk
]+

. (10)

We note that constraints (8b) and (8c) are satisfied if the

corresponding virtual queues are mean rate stable [25], i.e.,
1
T lim

t→∞
E[|jk(t)|] = 0 and 1

T lim
t→∞

E[|fk(t)|] = 0, ∀ k ∈ K.

Hereinafter, problem in (8) is equivalent to minimizing the

network-wide average transmit power subject to mean-rate

stability for virtual queues.

Letting y(t) , [j(t),f(t)] denote a combination of the

queues, we define the Lyapunov function L(y(t)) and the drift-

plus-penalty function ∆
(

y(t)
)

as:

L(y(t)) =
1

2

{

‖j(t)‖2 + ‖f(t)‖2
}

, (11)

∆
(

y(t)
)

= E

{

L
(

y(t+ 1)
)

− L
(

y(t)
)

+
∑

n∈N

vpkn(t)
∣

∣

∣
y(t)

}

,

= E

[

∑

k∈K

(jk(t+ 1)2

2
−

jk(t)
2

2
+

fk(t+ 1)2

2

−
fk(t)

2

2
+

∑

n∈N

vpkn(t)
)
∣

∣

∣
y(t)

]

, (12)

respectively, where the parameter v ≥ 0 controls the tradeoffs

between power minimization and queue length/latency (9),

(10) reduction while ensuring the stability of the queues.

Proposition 1. The conditional Lyapunov drift-plus-penalty

(12) in time slot t satisfies the following inequality under any

control strategy and queue state:

∆
(

y(t)
)

≤ C + E

[

∑

k∈K

(

− τqk(t)Rk(t)− τλk(t)Rk(t)

− τjk(t)Rk(t) + fk(t)✶{
[

qk(t) + λk(t)− τRk(t)
]+

≥ Lk}+
∑

n∈N

vpkn(t)

)

∣

∣

∣
y(t)

]

(13)

with the constant C =
∑

k∈K

(

1
2qk(t)

2+ 1
2λk(t)

2+ 1
2τ

2R2
k,max+

qk(t)λk(t) + 1
2 λ̄

2
kd

2
k + 1

2 + 1
2ǫ

2
k + jk(t)max

{

qk(t) +

λk(t), τRk,max

}

)

.

Proof. See Appendix A.

Note that the solution to (8) can be found by minimizing

the upper bound in (35) in each slot t [25], which is given by:

minimize
X(t),P (t)

∑

k∈K

∑

n∈N

Γkn(t),

subject to (8d)–(8g),

(14)

with the objective function defined as:

Γkn(t) , vpkn(t)−τ
(

jk(t)+fk(t)+2qk(t)+2λk(t)
)

Rkn(t).

(15)

The parameter v is a non-negative constant that captures

a trade-off between the optimal solution and network-wide

queue stability. The optimal solution of (15) can be found as

v asymptomatically increases [29].

Remark 1. From (14), we can observe that RB allocation is

coupled with the power allocation problem. The formulation

is an NP-hard mixed-integer programming problem which is

challenging to solve [30]. Moreover, to centrally find the

optimal X(t) and P (t) in each time slot, the RSU requires

full global information, i.e., CSI and QSI, of the network. This

is impractical for vehicular communication as the frequent

exchange of local information (considering high refresh rates)

between RSU and VUE pairs incurs high overhead.

A. Semi-distributed Resource Allocation

For efficient resource allocation, the RSU needs to coordi-

nate with the rest of the vehicles in the network in each time

slot which can incur a potentially large information exchange.

Furthermore, RBs are shared among VUE pairs, hence co-

channel transmission from neighboring vehicles leads to se-

vere interference. To mitigate the interference from nearby

vehicles, the RSU can group the VUE pairs into a set of

virtual zones1 based on their geographic locations and traffic

patterns. Therefore, instead of sending frequent vehicle’s local

information to RSU, we use the notion of time scale separation

between zone formation and resource allocation, hereinafter.

The RSU performs zone formation over a longer timescale,

1The term cluster and zone are utilized interchangeable. Furthermore, the
Tx-Rx of a VUE pair is treated as a unity and grouped in the same zone
during zone formation process.
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and the VUE utilizes its local CSI and QSI to optimize the

resource allocation and transmit power at each time slot. Thus,

zone formation is a slower process than resource allocation.

To this end, we assemble T0 ≫ 1 successive slots into one

time frame, which is indexed by i. Thus, vehicles send their

local information such as location, traffic pattern to the RSU

at the beginning of each time frame instead of each time

slot t. Furthermore, we assume that the RSU performs zone

formation over time period T0.

Consequently, we let Z be the set of Z zones. Each zone

z ∈ Z is of dynamic size and changes across different time

frames according to the geographical proximity and traffic

patterns of VUEs. At time frame i, we denote the set of

VUEs belonging to zone z as Kz(i). Note that Kz(i), ∀ z ∈ Z ,

are static during one time frame but dynamic over frames. In

each zone z, each VUE k ∈ Kz efficiently uses the allocated

RBs while optimizing its power and satisfying (5) and (6).

Furthermore, one RB cannot be shared by two VUE pairs

at the same time within the same zone. We note that the

restriction is imposed to avoid high interference created by

the neighboring VUEs, in which case assuming that an RB

can be share by multiple VUEs in the same proximity (i.e.,

within the zone) might be impractical as the number of VUEs

scheduled at given time instance may increases. Following the

idea of zone formation and resource allocation, the network-

wide objective can be is written as:

minimize
Z(i),X(t),P (t)

∑

z∈Z

∑

n∈Nz

Γzn(t) (16a)

subject to
∑

k∈Kz

xkn(t) ≤ 1, ∀ z ∈ Z, n ∈ N , (16b)

∑

n∈N

xkn(t) ≤ Nk, ∀k ∈ Kz, z ∈ Z, (16c)

xkn(t) ∈ {0, 1}, ∀n ∈ N , k ∈ Kz, z ∈ Z, (16d)
∑

n∈N

pkn(t) ≤ Pmax
k , ∀ k ∈ Kz, z ∈ Z, (16e)

pkn(t) ≥ 0, ∀n ∈ N , k ∈ Kz, z ∈ Z, (16f)

|Kz(i)| ≥ 1, ∀ z ∈ Z, (16g)

Kz(i) ∩ Kz′(i) = ∅, ∀ z, z′ ∈ Z, z 6= z′, (16h)
⋃

z∈Z

Kz(i) = K. (16i)

Here, Γzn(t) =
∑

∀k∈Kz

Γkn(t) is the aggregated objective

function of the VUEs in zone z. Furthermore, constraint (16b)

captures the fact that a given RB n can be assigned to only one

VUE k ∈ Kz inside a zone while, a VUE k can be associated

to one or more RBs. Constraint (16c) states that each VUE k
can be assigned up to Nk RBs. Constraints (16e)–(16h) imply

that each VUE pair belongs to one zone whereas each zone

has at least one VUE pair. The time-line and procedures of the

proposed semi-distributed resource allocation framework are

summarized in Fig. 3. Next, we present the details of traffic

and proximity-aware virtual zone formation mechanism.

Figure 3: Timeline and procedures of the zone formation and

resource allocation framework.

IV. PROPOSED SOLUTION USING ZONE FORMATION

The problem in (16) is centralized and combinatorial

in nature with exponential complexity. Developing a semi-

distributed approach in which limited control data exchange is

needed between VUEs and RSU is desirable. Furthermore, the

proposed approach requires minimal coordination2 between

neighboring VUEs. Hence, to mitigate interference and mini-

mize overhead caused by signaling, we cluster VUEs based on

similar attributes. This will allow to perform coordination be-

tween VUEs with little signaling overhead. There are numer-

ous similarity features that impact interference between VUEs.

Two key factors are their physical distance and traffic arrival

patterns. In this regard, we use geographical information and

traffic arrival similarities to group VUEs into distinct zones.

Therefore, we introduced a dynamic zone-formation strategy,

which takes into account both the physical proximity of VUEs

and their traffic patterns (e.g., traffic arrival, interference).

Moreover, the zone size varies dynamically (with respect to

time) depending on the dynamic nature of VUE traffic arrival

and their proximity. The set of zones is partitioned into |Z|
non-overlapping zones, such that:

⋃

∀z∈Z

Kz = K and Kz ∩ Kz′ = ∅, ∀ z 6= z′. (17)

Let us assume G = (K, E) denote as an undirected graph,

where K is the set of VUE pairs (vertices of graph) and E ⊂
K×K be the set of links between locally-coupled VUEs pairs

in terms of their physical distance and traffic arrivals.

A. Similarity based VUE Zone formation

Given the graph G = (K, E), let sk and sk′ be the geo-

graphical coordinates of the V-UE pairs k and k′ respectively,

in Euclidean space. Here, we define parameter ǫs to represent

2We note that by incorporating the transmission radius, we can minimize
the coordination area.
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the presence of a link or edge e ∈ E between neighboring

VUEs k and k′ such that {es
kk′

= es
k′k

= 1, ||sk−sk′ || ≤ δ}.

In other words δ represents the coordination radius for VUE.

The geographical locations of vehicles do not change signifi-

cantly during one time frame. Therefore, average locations of

vehicles are considered. The Gaussian distance similarity is

based on the distance between two VUEs k and k′ which is

given as [31]:

skk′(i) =







exp

(

−||sk−s
k′ ||2

2σ2
s

)

, if ‖sk − sk′‖ ≤ δ,

0, otherwise.
(18)

Here, the parameter σs controls the impact of the neighbor-

hood size. For a given δ, the range of the Gaussian distance

dissimilarity for any two close-by VUE pairs is [1, e−δ/2σ2

s ],
where the lower bound is determined by σs. Furthermore, S

represents the distance-based similarity matrix with each entry

skk′(i) given by (18).

Comparing the variation in geographical location of VUEs

pairs in (18), the traffic patterns of VUEs vary frequently

over time. Since, time-varying location and traffic arrivals of

vehicles are two important dynamic aspects therefore, group-

ing VUEs pairs based on their temporal location and traffic

aspects makes the zone formation dynamic. As described in

Section III-A for the zone formation performed over the longer

time period, we exploit the correlation of the traffic among

subsequent time slots, and thus the estimated time average

traffic arrival λ̂k for each VUE k is observed.

λ̂k =

(i−1)T0
∑

t=1

λk(t)

(i− 1)T0
, (19)

Let ckk′(i) be an entry of the Gaussian traffic arrival dissimi-

larity matrix C between VUEs k, k′ ∈ K with respect to their

traffic arrivals λ̂k and λ̂k′ , which is given [31]:

ckk′(i) = exp

(

||λ̂k − λ̂k′ ||2

2σ2
l

)

, (20)

Here σl parameter controls the impact of traffic arrival on the

dissimilarity. The upper bound of the dissimilarity is based on

the choice of σl.

The key step in zone formation is to identify similarities be-

tween VUEs pairs to group VUEs with similar characteristics.

In order to reuse resources between virtual zones grouping

VUEs pairs having different traffic patterns and physically

nearby, we combine the traffic arrival and distance similarities.

A Gaussian affinity matrix A that blends time-average traffic

affinity with spatial proximity is:

A = (S)θ.(C)(1−θ), (21)

where 0 ≤ θ ≤ 1 controls the impact of traffic arrival and

distance similarity. A spectral clustering algorithm (Algorithm

1) is used to construct zones between VUEs based on their

Gaussian affinity matrix A. Grouping dissimilar VUEs in

terms of geographical distance and traffic patterns similarities

as (18) and (20), respectively, mitigates interference and thus,

minimizes the total network cost.

Algorithm 1 Spectral clustering for zone formation [31]

1: Initialization: Read the time frame index i of length T0,

calculate affinity matrix A = [ajx] as in (21) of a graph

G, choose bmin = 2 and bmax = K/2.

2: Compute diagonal degree matrix M with diagonal mj =
∑K

x=1 ajx.

3: L = M −A.

4: Lnorm := M−1/2LM−1/2.

5: Pick a number of bmax eigenvalues of Lnorm such that

ρ1 ≤, . . . ,≤ ρkmax
.

6: Choose B = maxj=bmin,...,bmax
∆j where ∆i = ρj+1 − ρj .

7: Choose the b smallest eigenvectors w1, ..., wb of Lnorm.

8: Let W matrix has the eigenvectors w1, . . . wb as columns.

9: Use k-means clustering to cluster (zone) the rows of

matrix W .

10: Zone set {1, ..., Z|Z|}.

B. Coordination

Zone formation reduces the signaling overhead required for

coordination among VUEs and RSU as compared to a cen-

tralized approach. However, the interference Ikn(t) in Γzn(t)
of problem (16) (as per (1), (3), and (15)) contains intra and

inter-zone interference, i.e., Ikn(t) = I intra-zone
kn (t)+I inter-zone

kn (t)
and defined as:

I intra-zone
kn (t) =

∑

k′∈Kz\k

xk′n(t)pk′n(t)|hk′kn(t)|
2
, (22)

I inter-zone
kn (t) =

∑

k′′∈K\Kz

xk′′n(t)pk′′n(t)|hk′′kn(t)|
2
. (23)

Prior to solving the proposed RAPO problem, in (16b)–(16i),

we note that the solution of the network problem depends on

the resource allocation and power optimization solution due to

the fact that optimizing the power of each VUE pair depends

on the allocated RBs. Moreover, to allocate the resources to

each VUE pair, interference must be considered. Since RB

allocation is coupled with power allocation, we propose a

novel approach that solve the RAPO problem.

However, solving (16) requires the knowledge of all zones

i.e., X(t),P (t), and interference (22), (23) in the network,

which can be complex and not practical. Therefore, we decou-

ple the RB allocation from the power allocation problem. First,

a low complexity matching algorithm is proposed that matches

RBs to the VUEs inside each zone. Given the outcome of the

matching, a power allocation problem is proposed to optimally

allocate power to VUEs over the matched RBs.

V. PER-ZONE RB ALLOCATION AND POWER ALLOCATION

Our objective is to develop a self-organizing mechanism to

solve the RAPO problem in (16) using a semi-decentralized

approach in which VUEs inside each zone interact and make

resource allocation decision. First, the resource allocation

problem is formulated as a matching game per-zone between

VUEs and RBs by allocating equal power. To solve the

resource allocation problem at RSU, while taking into account

dynamic channel characteristics an inter-zone interference



8

Figure 4: (a) RSU-assisted zone formation among VUE pairs, (b) Per-zone VUE-RB matching in which VUE and RB

preferences are based on their utility, (c) Inter-zone interference and power allocation for V2V transmissions.

estimation method is proposed. Subsequently a matching al-

gorithm is proposed in order to find the suitable VUE-RBs

allocation. Then, power allocation is performed at each VUE

over the allocated RBs.

A. VUE-RB Matching

1) Matching preliminaries: To overcome the combinatorial

nature of the RB allocation problem (16b)–(16d), we utilize

the framework of matching theory [32]–[35]. A matching

game per-zone Xz : Kz → N is essentially a two-sided

assignment problem between two disjoint sets of players, e.g.,

the set of VUEs Kz and the set of RBs N , in which the players

of one set tries to match (associate) to the most suitable players

of the other set according to their own preference relations.

Further, for a one-to-many matching game, each player in Kz

is matched to one or multiple players in N whereas each

player in N is matched to at most one player in Kz . The

preferences of the sets of VUEs and RBs (Kz,N ) denoted by

≻k and ≻n, respectively, represents ranking of players from

one set over the other set.

Definition 1. Given two disjoint sets of finite players Kz and

N , a one-to-many matching Xz is defined as a mapping from

the set Kz∪N into the set of all subsets of N∪Kz such that for

each k ∈ Kz and n ∈ N : 1) Xz(k) ⊆ N ; 2) Xz(n) ∈ Kz; 3)

Xz(k) ≤ Nk; 4)Xz(n) ≤ 1; 5) Xz(n) = {k} ⇔ n ∈ Xz(k).
Note from 3) that a VUE is matched to at most a quota of Nk

RBs, whereas from 4) that RBs are matched to at most one

VUE within give zone ∀k ∈ Kz .

In the proposed matching, the quota of the VUE is changing

with time but will be fixed over a given time slot. The notion

of quota Nk for the VUE k accounts the queue length, latency

and reliability constraints as per (4), (5) and (6), respectively.

That is, a VUE pair with a tighter constraints (lower Lk and ǫk)

or VUE k with higher traffic demand λ̄k will need more RBs

to flash the data from its queue buffer. Hence, by utilizing Lk,

ǫk, and λ̄k, ∀ k ∈ Kz , the quota of a VUE pair k is determined

using the following proportional fairness metric:

Nk =
N × qk(t)λ̄k

Lkǫk
∑

k∈Kz

qk(t)λ̄k

Lkǫk

. (24)

The main goal of a matching problem is to optimally match

two sets of players (i.e., Kz and N ), given their individual

utilities which are captured by objective functions as per (25)

and (26). More interestingly, the matching framework allows

defining the relevant utility per VUE and RB, which captures

the preferences of VUEs and RBs. In this regard, the utility

that an arbitrary VUE k ∈ Kz is assigned an RB n ∈ N is

given by:

Uk(t) = −
∑

n∈N

Γkn(t). (25)

Accordingly, the utility of an RB assigned to a VUE k is:

Ukn(t) = −Γkn(t). (26)

Hereinafter, we ignore the time index t in utilities for nota-

tional simplicity.

Definition 2. A preference relation ≻ is defined as a complete,

reflexive and transitive binary relation between players in Kz

and N . In particular, if n ≻k n′ and n′ ≻k n′′, then n ≻k n′′

similarly, if k ≻n k′ and k′ ≻n k′′, then k ≻n k′′.

Each VUE aims to maximize its own utility while main-

taining its queues stability through optimizing its RB selection.

Therefore, each VUE k ∈ Kz ranks the subset of the proposing

RBs i.e., P ⊆ N and P ′ ⊆ N . Essentially, we can define the

preference profile of a VUE k, ≻k as follows:

P ≻k P ′ ⇐⇒ Uk(P) > Uk(P
′). (27)

On the other hand, each RB n rank the VUEs k, k′ ∈ Kz, k 6=
k′ based on the preference ≻n to maximize its own utility,
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which is expressed as:

k ≻n k′ ⇐⇒ Ukn > Uk′n. (28)

The preference of players in the given matching depends

on intra-zone and inter-zone interference as per (22) and (23),

respectively. Note that, the proposed VUE-RB matching game

satisfies constraints (16b)–(16d). Therefore, in order to per-

form a proper resource allocation, VUE needs to communicate

within the zone and outside zone. Considering the vehicular

network with very large control information among vehicles,

rendering matching algorithm is impractical.

Having defined the proposed VUE-RB matching, (16b)

constraint eliminates the intra-zone interference. To address

the inter-zone interference, each VUE estimates interference

based on its time-weighted history. While considering tem-

poral and location-aware nature of vehicular networks, the

latest information on interfering vehicles is given more weight

during resource allocation. Therefore, we consider an unbiased

estimator3 for Î inter-zone
kn (t):

Î inter-zone
kn (t) =

1 + α

1 + αi−1

i−1
∑

κ=1

αi−1−κ
κT0
∑

t=(κ−1)T0+1

I inter-zone
kn (t)

T0
.

(29)

Hence, a parameter 0 ≤ α < 1 is used in order to give

weight to the inter-zone interference in the temporal domain

and defined as the sum of a geometric sequence with a scale

factor (1 + α)/(1 + αi−1).

Once the estimated utilities are calculated, the preference

profile of players is derived from the estimated terms. The

preference of VUE k over two subsets of RBs P ⊆ N and

P ′ ⊆ N is:

P ≻k P ′ ⇔ Ûk(P) > Ûk(P
′). (30)

Subsequently, preference profiles are build for RBs over the

VUEs using the estimated inter-zone interference denoted as

Ûkn. Hence, an VUE’s preference over RBs within a zone z
is given by:

k ≻n k′ ⇔ Ûkn > Ûk′n. (31)

Using this formulation, we develop an algorithmic solution for

the proposed matching game that allows finding the suitable

VUE-RB matching.

2) Proposed VUE-RB Allocation Algorithm: To solve the

formulated game and find the suitable network VUE-RB

matching Xz , we consider two important concepts: two-sided

stability and Pareto optimality. A two sided stable is essentially

a solution concept that can be used to characterize the outcome

of a matching game. In particular, two-sided stability is defined

as follows [32]:

Definition 3. A pair (k, n) such that k ∈ Kz and n ∈ N , in

zone matching Xz, (k, n) ∈ Xz is a blocking pair if and only

if n ≻k Xz(k) and k ≻n k′ for some k′ ∈ Xz(n). A matching

Xz said to be two-sided stable, if there is no blocking pair,.

3It is noted that for given instance of matching the estimated inter-
zone interference is considered constant, which does not affects the player’s
preference.

Algorithm 2 Per-zone VUE-RB Matching Algorithm

1: Initialization: Set all RBs unmatched and initialize VUEs

with empty lists of proposals.

2: Construct preference lists for RBs using (27).

3: repeat each unmatched RB

4: proposed to its most preferred VUE.

5: for each VUE j do

6: Observe the subset of RBs that are in j’s proposal

7: list: Pj .

8: if |Pj | = 1, then

9: Accept RB in Pj .

10: else if |Pj | = 2, then

11: if Pj ≻k P ′
j , ∀P ′

j ⊆ Pj then

12: Accept both RBs.

13: else

14: Accept the most preferred RB in P ′
j and

15: reject the other.

16: end if

17: else if |Pj | > 2, then

18: Identify feasible subset (FS) of j as P ′
j ⊆ Pj

19: that satisfies constraints (16b)–(16d).

20: Calculate j’s preference over all FS.

21: Accept RBs in the most preferred subset of j
22: and reject other RBs.

23: end if

24: Mark an accepted RB as matched.

25: Remove j from rejected RB’s preference list.

26: end for

27: until either all RBs are matched or no VUE

28: remains in their preference lists.

29: Output: a stable pair-wise matching Xz .

The notion of two-sided stability ensures fairness for the

VUE-RB allocation. That is, if a VUE k prefers the assignment

of another VUE k′, then k′ must be preferred by the Xz(k
′)

to k, otherwise, Xz will not be two-sided stable. Two-sided

stability characterizes the stability and fairness of the matching

problem, while Pareto optimality characterized the efficiency

of the solution, as defined next:

Definition 4. A matching game Xz isa said to be Pareto

optimal (PO), if there is no other matching X ′
z such that

X ′
z is equally preferred to Xz by all the VUEs, X ′

z(k) �k

Xz(k), ∀k ∈ Kz , and strictly preferred over Xz , X ′
z ≻k Xz(k)

for some VUEs.

In order to find the stable solution of the proposed matching

game, the so-called deferred acceptance (DA) algorithm is

adopted [36]. Subsequently, a DA-based algorithm (shown in

Algorithm 2) that proceeds as follows. Following each round

of the proposed algorithm, each unmatched RB proposes to

its most preferred VUE in its preference list. Based on the

proposal, VUEs accept or reject the offers. As a matter of fact,

a VUE only accepts those RBs which leads to maximizing its

own utility and reject others and thus, it also removes blocking

pairs possibility. Different steps of matching algorithm and its

flow is presented in Algorithm 2. Since it is based on a variant
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of the DA process, Algorithm 2 is guaranteed to converge to a

stable matching as shown in [36]. Moreover, among the set of

all stable solutions, Algorithm 2 yields the solution that is PO

for the RBs. Here we note that the VUE will change location

and QSI dynamically over time. However, a given zone is

static within a time frame while RB allocation is executed

at each time slot depending on CSI and estimated inter-zone

interference. The proposed solution in Algorithm 2 allows the

VUEs to update their preference profiles, that depend on their

achieved utilities for each matched set of RBs and vice-versa.

Given Xz resulting from Algorithm 2, each VUE k ∈ Kz must

be assigned to the RBs in Xz(k). Next, we discuss some key

properties for Algorithm 2.

Remark 2. Algorithm 2 is guaranteed to converge to a two-

sided stable matching Xz between VUEs and RBs. Moreover,

the resulting solution, among all possible stable matchings, is

Pareto optimal for VUEs.

Algorithm 2 will always converge, since no RBs will apply

for the same VUE more than once. Furthermore, we note

that the proposed solution is Pareto optimal within each zone,

corresponding to each step in Algorithm 2, an it is assumed

that zones formation will not effect the utility functions. This

assumption is valid, since a given RB will experience random

interference from the interfering VUEs. Given that the zone

formation happened after each T0, the average interference

power will be fixed during T0. Hence, the preference profiles

of the RBs and VUEs, and consequent matching within each

zone will be independent of all other zones. Therefore, the

matching within each zone is Pareto optimal and maximize

over all players utilities as per (25) and (26). To this end, we

next propose a latency and reliability-aware power allocation

solution.

B. Latency and Reliability-aware Power Allocation at the

VUE

After the subset of RBs Nk is allocated to the VUEs inside

zone z, each VUE k ∈ Kz inside its respective zone z
optimizes the transmit power over the allocated RBs, i.e., Nk.

The optimal power allocation is performed locally by each

VUE pair. Thus, given the RBs allocated by the matching

algorithm, the local power allocation can be written as a

convex optimization problem:

minimize
pkn

∑

n∈Nk

vpkn −
∑

n∈Nk

τω
(

jk + fk + 2qk + 2λk

)

× EI inter-zone
kn

[

log2

(

1 +
pkn|hkkn|

2

σ2 + I inter-zone
kn

)]

(32a)

subject to
∑

n∈Nk

pkn ≤ Pmax
k , ∀k ∈ Kz (32b)

pkn ≥ 0, ∀n ∈ Nk, (32c)

which is solved in each time instant although we omit the

time index t for notational simplicity. Here, E[·] is the ex-

pectation with respect to the inter-zone interference (23). We

note that CSI and QSI are utilized locally to solve (32) for

power allocation. This substantially reduces the overheads of

Figure 5: Road configuration for Manhattan model

reporting local information to the RSU, as compared to the

fully-centralized approach. The optimal solution to problem

(32) is detailed in the following Lemma.

Lemma 1. For all n ∈ Nk, if
τω
(

jk+fk+2qk+2λk

)

ln 2 ×

E

[

hkkn

σ2+I inter-zone
kn

]

> v + γ, we find the optimal transmit power

p∗kn > 0 such that

τ
(

jk + fk + 2qk + 2λk

)

ln 2
× E

[

hkkn

σ2 + I inter-zone
kn + p∗knhkkn

]

= v + γ. (33)

Otherwise, p∗kn = 0. Moreover, the Lagrange multiplier γ is

0 if
∑

n∈Nk
p∗kn < Pmax

k , and we have
∑

n∈Nk
p∗kn = Pmax

k

when γ > 0.

Proof. Please refer to Appendix B.

In (33), we can see that when jk, fk, qk, or λk is large, the

reliability constraint (7) can be easily violated due to a large

queue length and data arrival (as per (4) and (10)). Therefore,

in order to satisfy (5) and (6), each VUE minimizes the

transmit power. Otherwise, power consumption is minimized.

After sending information, each VUE pair k updates qk(t+1),
jk(t+ 1) and fk(t+ 1) as per (4), (9) and (10) respectively.

VI. SIMULATION RESULTS AND ANALYSIS

In order to evaluate the performance of our proposed

scheme, we have simulated a Manhattan mobility model with

various densities of vehicles. The VUE pairs are distributed

over the specified traffic lanes covering area of 460× 460m2.

Fig. 5 shows the simulation area setup considering four build-

ings and bi-directional traffic lanes. Each building considered

to be a fixed breadth of 200 m. Moreover, four different kind

of vehicles Audi (A3, A4, A5 and A6) with their specified

length and width are considered4.

4https://www.automobiledimension.com/audi-car-dimensions.html
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Table III: Simulation Parameters

Parameter Value

Carrier frequency 6 GHz [37]

RB bandwidth 180 kHz

V-UE Tx/Rx antenna height 1.5 m

Building breadth 200 m

Distance between traffic signal and vehicle 15 m

Lane width 3.5 m

Vehicle Type (Audi) A3, A4, A5, A6

Noise power spectral density N0 -174 dBm/Hz

Minimum safety distance [15 m - 20 m]

Vehicle average speed 50 km/h

V-UE transmission power 10 dBm

Fading model Rayleigh fading

Allowable queue length Lk 3.3 kbps

Tolerable violation probability ǫk 0.1

Weight parameter α 0.033

Impact of traffic arrival σ2

l
341.73

Impact of neighborhood size (distance) σ2
s 49.71

Neighborhood radius δ 90 m

Impact of distance and traffic arrival on similarity θ 0.5

bmin, bmax parameters for zone formation 2, ⌈(K/2) + 1⌉
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Figure 6: Tradeoff between average power and control param-

eter V for various densities of VUEs with fixed RBs N = 15.

Vehicles moves along pre-defined bi-directional lanes with

the average speed of 50 km/h. Minimum safety distance

between the VUE’ transmitter and VUE’ receiver dynam-

ically ranges from 15 m to 20 m. In order to make our

simulations closer to realistic mobility and avoid collisions

among vehicles, traffic signals are emulated at each intersec-

tion area. Whenever a vehicle reaches the traffic signal, it

randomly chooses a direction based on the possible options

(north/west/east/south). Event-trigged traffic messages mod-

eled by Poisson process with mean arrival rate of µ = 75
bytes are transmitted at every time slot [38]. The V2V line

of sight (LOS) and non-line of sight (NLOS) WINNER+B1

channel model for the Manhattan layout is considered for path

loss calculation [37]. For every VUE pair k ∈ K, we set RBs

N = 15, Pmax
k = 10 dBm, λ̄k = 200 kbps, Lk = 3.3 kbps,

and ǫk = 0.1. The other parameters are: N = 15 RBs,

ω = 180 kHz, τ = 3ms, T0 = 10. The simulation parameters

are given in Table III. To compare the proposed approach with

3GPP baseline [39] (configuration 1, distributed scheduling),

each VUE pair optimizes its power over all RBs in every time
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Figure 7: CCDF of the instantaneous queuing latency for

different densities of VUEs with fixed V = 0 and N = 15.

Table IV: Latency reduction and reliability improvement

❛
❛

❛
❛
❛

❛
❛

❛
❛
❛

❛
❛

QoS
VUEs K = 10 K = 15 K = 20

Latency reduction ↓ 45% 41% 32%
Reliability improvement ↑ 94% 82% 87%

slot. We use Qk(t)/λk(t) as the instantaneous queuing latency

metric [40], Q̄/λ̄ as the average queuing latency [26].

A. Impact of VUE density

The tradeoff between the average power consumption and

control parameter V is shown in Fig. 6 for different densities of

VUE pairs. When V is smaller as per (32a), the VUE focuses

on the rate maximization which consumes more power. In con-

trast, for a larger V , the VUE reduce its power consumption

by allowing the queue length to grow. Fig. 6 also shows that

the proposed approach yields significant reduction in power

for higher values of V over the baseline approach. Fig. 6

shows that, at V = 0 proposed approach yields 0.5%, 1% and

6.6% reduction in average power for VUE densities of 10, 15
and 20, respectively. Meanwhile, at V = 100 the proposed

approach outperforms the baseline and reduces the average

power by up to 34.2%, 25.7% and 28.4% for K = 10, 15,

and 20, respectively.

Subsequently, when V is smaller as per (32), each VUE will

focus on rate maximization to decrease its queuing latency

thus consuming more power. Considering the case V = 0, we

investigate the transmission reliability via the complementary

cumulative distribution function (CCDF) of the instantaneous

queuing latency. The reliability performance for varying VUE

densities is shown in Fig. 7. It can be seen that, for

different network settings, our approach always satisfies the

aforementioned latency and reliability constraint as per (5)

and (6) while achieving a higher reliability performance (i.e.,

lower CCDF values) compared with the baseline. Table IV

shows that our proposed scheme outperforms the baseline with
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Figure 8: Cumulative density function of SINR with fixed V = 0, N = 15, and different densities of VUEs under the considered

approaches.

an average queuing latency reduction and achieves significant

improvement in term of reliability for different densities of

VUEs. Furthermore, from the Fig. 7, at 0.0053% of the

CCDF value (i.e., 99.995% reliability) our proposed approach

achieves a queuing latency reduction by up to 100%, 72%,

and 60% for K = 10, 15, and 20, respectively, as compared

to the baseline.

Fig. 8 shows the cumulative density function of SINR and

VUE’s SINR for different densities of VUEs K = 10, 15 and

20, for a fixed value of V = 0. Fig. 8 shows a significant gain

in SINR for the proposed approach compared to the baseline.

That is due to the fact that zone formation and matching can

help mitigates interference. In the proposed approach, a VUE

can use one or multiple RBs based on its traffic demand to

satisfy its QoS. The quota of a VUE defines the maximum

number of RBs a VUE can use, whereas, in the baseline, the

VUEs utilize all RBs and optimize their transmission power.

In a scenario with relative high load (e.g., for K = 20), the

performance gap between the baseline and the proposed RAPO

is more significant. This is due to the fact that interference

increases with the increase in the number of VUEs.

B. Impact of queuing latency

We show impact of the parameters ǫk and Lk on the queuing

latency. Fig. 9 shows the effect of ǫk for a fixed number of

VUE pairs K = 20 and RBs N = 15. In order to analyze

the performance of queuing latency for different values of ǫk,

we consider the case in which K > N , for a fixed value of

Lk = 2. From Fig. 9, we can see that, in order to achieve

a 99.995% reliability (i.e., 0.0053% of CCDF) for different

values of ǫk, the proposed approach reduces queuing latency

as compared to baseline by up to 80% and 77% for ǫ = 0.1
and 1.0, respectively.

Fig. 10 shows the effect of Lk for a K = 20 VUE pairs

and N = 15 RBs. In order to examine the performance of

queuing latency for different values of Lk, we consider the

case in which K > N and ǫ = 0.1. Fig. 10 shows that, in

order to achieve 99.995% reliability for different values of Lk,

the proposed approach reduces queuing latency by up to 79%
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Figure 9: CCDF of the instantaneous queuing latency for

different ǫk with fixed V = 0, N = 15, Lk = 2, and K = 20
VUE pairs.

and 74% for Lk = 2 and 8, respectively, as compared to the

baseline.

C. Impact of Clustering

In Fig. 11, we present the impact of the neighborhood range

on the average queuing latency for VUEs K = 15 and 20. We

vary the neighborhood discovery δ range from 70 m to 130 m.

From Fig. 11, we can observe that the average queuing latency

decrease when the neighborhood discovery radius increases.

This is due to the fact that, as we increase the zone radius

spacing, interference among the zones decreases. The average

queuing latency is higher when the number of VUEs pairs

increases. Furthermore, by increasing the neighborhood radius

from 70 m to 130 m the proposed approach reduces queuing

latency by up to 47% and 203%, for VUEs K = 15 and 20,

respectively.

In Fig. 12, we present the average number of zones and

the average zone sizes of VUEs. We use K = 20 VUEs

and N = 15 RBs with the neighborhood discovery range δ
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Figure 10: CCDF of the instantaneous queuing latency for

different Lk with ǫk = 0.1, V = 0, N = 15, and K = 20
VUE pairs.
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Figure 11: Neighborhood discovery radius vs. latency for a

fixed number of VUEs K = 20, V = 0, and N = 15.

varying fom 40 m to 140 m. Fig. 12 shows the impact of

distance, traffic arrival, and joint similarity on the coordination

of VUEs to form zones as per in (21). For the joint similarity,

θ is set to 0.5. As per (18)–(21). Fig. 12, shows that zone

formation based on the distance similarity allows to group

more VUEs together yielding a smaller number of zones and

a larger average zone size. Since we consider the mean arrival

rate, the effect of arrival rate is constant when considering only

the arrival rate for the zone formation. This is due to the fact

that, we consider the mean arrival rate which should be the

same in average over time. The increase in zone size directly

influences the zone load. Furthermore, zone formation based

on the joint similarity takes into account distance as well as

traffic arrival similarities to form zones.

VII. CONCLUSION

In this work, we have proposed a new scheme for power

and RBs allocation in V2V communication while satisfying

queuing latency and reliability constraints. To solve the pro-

posed problem, we have introduced a novel two-timescale
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Figure 12: Comparison of the average number of zones and

average zone size with different similarities for fixed number

of VUEs K = 20, V = 0, and N = 15. The solid

lines represent the average number of zones and doted lines

represent the average zone size.

resource allocation approach, in which the slow timescale,

the RSU groups VUEs in virtual zones leveraging spatial and

temporal aspects of network. Subsequently, at each time slot,

a matching algorithm is performed to match RBs to VUEs

based on their preference list. Finally, using the tools from

Lyapunov optimization, every vehicle within specific zone

optimizes its transmit power while satisfying queuing latency

and reliability constraints. Extensive simulation results have

shown that our proposed scheme outperforms a state-of-art

baseline and achieves 45% reduction in queuing latency and

94% improvement in terms of reliability.

APPENDIX A

PROOF OF PROPOSITION 1

Substituting (4), (9), and (10) into (12), and using ([x]+)2 ≤
x2, we obtain:

∆
(

y(t)
)

≤ E

[

∑

k∈K

(

1

2
qk(t)

2 +
1

2
λk(t)

2 +
1

2
τ2Rk(t)

2

+ qk(t)λk(t)− τqk(t)Rk(t)− τλk(t)Rk(t)

+
1

2
λ̄2
kd

2
k − Jk(t)λ̄kdk

+ Jk(t)
[

qk(t) + λk(t)− τRk(t)
]+

− λ̄kdk
[

qk(t) + λk(t)− τRk(t)
]+

+
1

2
✶
{[

qk(t) + λk(t)− τRk(t)
]+

≥ Lk

}2

+
1

2
ǫ2k + fk(t)✶

{[

qk(t) + λk(t)− τRk(t)
]+

≥ Lk

}

− fk(t)ǫk − ǫk✶{
[

Qk(t) + λk(t)− τRk(t)
]+

≥ Lk}+
∑

n∈N

vpkn(t)

)

∣

∣

∣
y(t)

]

. (34)
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Then, further applying
[

qk(t) + λk(t)− τRk(t)
]+

≤
max

{

qk(t) + λk(t), τRk,max

}

− jk(t)τRk(t), we have:

∆
(

y(t)
)

≤ E

[

∑

k∈K

(

1

2
qk(t)

2 +
1

2
λk(t)

2 +
1

2

2

τ2R2
k,max

+ qk(t)λk(t) +
1

2
λ̄2
kd

2
k +

1

2
+

1

2
ǫ2k

+ jk(t)max
{

qk(t) + λk(t), τRk,max

}

− τqk(t)Rk(t)− τλk(t)Rk(t)− τjk(t)Rk(t)

+ fk(t)✶
{[

Qk(t) + λk(t)− τRk(t)
]+

≥ Lk

}

+
∑

n∈N

vpkn(t)

)

∣

∣

∣
y(t)

]

. (35)

APPENDIX B

PROOF OF LEMMA 1

Since (32) belongs to a convex optimization problem, we

can apply the Karush-Kuhn-Tucker (KKT) conditions to find

the optimal solution. Subsequently, applying the KKT condi-

tions, the optimal solution P ∗
kn, ∀n ∈ Nk, satisfies:



















































































τ
(

jk + fk + 2qk + 2λk

)

ln 2
×EIkn

[Ψ] = v + γ − γkn, ∀n ∈ Nk, (36a)

p∗kn ≥ 0, ∀n ∈ Nk, (36b)

γkn ≥ 0, ∀n ∈ Nk, (36c)

p∗knγkn = 0, ∀n ∈ Nk, (36d)
∑

n∈Nz

p∗kn ≤ Pmax
k , (36e)

γ ≥ 0, (36f)

γ

(

∑

n∈Nz

p∗kn − Pmax
k

)

= 0, (36g)

with Ψ =
p∗

kn

σ2+Ikn+p∗

kn
|hkkn|2

. In addition, γ and γkn, ∀n ∈
Nk are the Lagrange multipliers. From (36a)–(36d), we can

deduce that if
τω
(

jk+fk+2qk+2λk

)

ln 2 × E

[

hkkn

σ2+I inter-zone
kn

]

> v +

γ, ∀n ∈ Nz , the VUE allocates a positive transmit power

p∗kn > 0 over RB n which satisfies

τ
(

jk + fk + 2qk + 2λk

)

ln 2
× E

[

hkkn

σ2 + I inter-zone
kn + p∗knhkkn

]

= v + γ. (37)

Otherwise, p∗kn = 0. According to (36e)–(36g), we let the

Lagrange multiplier γ = 0 if
∑

n∈Nk
p∗kn < Pmax

k , and
∑

n∈Nk
p∗kn = Pmax

k when γ > 0.
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