
1

NETASPNO: Approximate strict pattern matching

under nonoverlapping condition
Youxi Wu, Shasha Li, Jingyu Liu, Lei Guo, and Xindong Wu

Abstract—In pattern matching, a gap constraint is a more
flexible wildcard than traditional wildcards “?” and “*”. Pattern
matching with gap constraints is more difficult to handle and
fulfills user’s enquiries more easily. Pattern matching with gap
constraints has therefore been carried out in numerous research
works such as music information retrieval, searching protein
sites, and sequence pattern mining. Strict pattern matching under
a nonoverlapping condition, as a type of pattern matching with
gap constraints, is a key issue of sequence pattern mining with
gap constraints since it can be used to compute the frequency of a
pattern. Exact matching limits the flexibility of the match to some
extent since it requires each character to be matched exactly. We
therefore address Approximate Strict Pattern matching under the
NonOverlapping constraints (ASPNO) and propose an effective
algorithm, named NETtree for ASPNO (NETASPNO), which
first transforms the problem into a Nettree data structure, an
extensive tree structure. To find the nonoverlapping occurrences
effectively, we propose the concept of Number of Roots Paths
with Distance Constraints (NRPDC) which indicates the number
of path from a node to the roots with distance d and can be used
to delete useless parent-child relationships and useless nodes.
We iteratively recalculate the NRPDCs of each node on the
subnettree with the rightmost root. Then we can get a path
from the rightmost leaf to its rightmost root without using the
backtracking strategy. NETASPNO therefore iteratively gets the
rightmost root-leaf-path and prunes the path on the Nettree.
Extensive experimental results demonstrate that NETASPNO has
better performance than the other competitive algorithms.

Index Terms—approximate pattern matching, wildcard, gap
constraint, sequence, occurrence.

I. INTRODUCTION

Pattern matching (or string matching) has played a very

important role in many research fields [1], [2]. Numerous

research works have been carried out on this task, such as

network intrusion detection systems [3], approximate string

search in large scale string [4] or in large spatial databases

[5], text indexing [6], pattern queries on XML data [7], and

document retrieval [8].

One of the essential tasks in pattern mining is to calculate

the support of a pattern, which can be seen as a pattern

matching task [9]. Therefore, pattern matching is one of the

The work was supported in part by the National Natural Science Foundation
of China under Grant 61673159, in part by the National Natural Science
Foundation of China under Grant 61571180, and in part by US National
Science Foundation (NSF) under grant IIS-1613950.

Y. Wu, S. Li, and J. Liu are with School of Computer Science and
Engineering, Hebei University of Technology, Tianjin 300401, China and
Hebei Province Key Laboratory of Big Data Calculation, Tianjin 300401,
China (e-mail:wuc@scse.hebut.edu.cn )

L. Guo is with School of Electrical Engineering, Hebei University of
Technology, Tianjin 300131

X. Wu is with School of Computing and Informatics, University of
Louisiana at Lafayette, Louisiana 70504, USA (e-mail:xwu@louisiana.edu)

essential tasks in pattern mining. For instance, Chen et al.

[10] focused on exact circular string matching. Based on this

technology, circular pattern discovery was proposed [11].

Recently, many research works have focused on pattern

matching with gap constraints (or flexible gaps or flexible

wildcards) [12], [13], [14], which is a kind of wildcard that

is more flexible than the traditional wildcards “?”and “*”. For

example, in computational biology, protein pattern matching

employed this type of pattern matching to find some special

protein sites [15]. RNA structure can also be found based

on pattern matching with flexible gaps [16]. As mentioned

above, pattern matching with gap constraints is also one of the

essential tasks in sequence pattern mining. Numerous research

works have been proposed to mine the patterns with gap

constraints, which are applied in many fields, such as time

series analysis[17], medical emergency identification [18], cus-

tomer purchase patterns mining[19], biological characteristics

mining [20], and feature selection for sequence classification

[21]. A gap constraint can be written as “a[x, y]b”, where

’a’ and ’b’ are two characters and x and y are two integer

numbers that represent the minimal and maximal numbers of

any characters [22]. For instance, both subsequences “ACCT”

and “AGGCT” are two occurrences of pattern “A[2,3]T”

since the first and the last characters of subsequences are

‘A’ and ‘T’, respectively, and there are two or three char-

acters between ‘A’ and ‘T’ in the subsequences, respec-

tively. Pattern P with gap constraints [23], [24] can be writ-

ten as p1[min1,max1]p2 · · · [minj ,maxj ]pj+1 · · · [minm−1,

maxm−1]pm. Pattern matching with gap constraints can fulfil

user enquiries more easily and is more flexible. But this issue

is more difficult to solve and various versions have been

investigated, such as the traditional pattern matching and the

strict pattern matching. The strict pattern matching, unlike the

traditional pattern matching which uses the last position in

the sequence to describe an occurrence, employs a group of

positions in the sequence to express an occurrence. Apparently,

the strict pattern matching considers the matching process

in detail, while the traditional pattern matching ignores the

process. Pattern matching under the nonoverlapping condition

[25], as a kind of strict pattern matching with gap constraints,

means that each subsequence can be used no more than

once by each subpattern and this matching method has been

applied in sequence pattern mining with gap constraints [26],

[27]. An illustrative example of pattern matching under the

nonoverlapping condition is shown as follows.

Example 1. We have sequence S = s1s2s3s4s5s6=ABBABA

and pattern P = p1[min1,max1]p2[min2,max2]p3

Digital Object Identifier: 10.1109/ACCESS.2018.2832209

2169-3536 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



2

=A[0,1]B[0,1]A.

According to subpattern A[0,1]B, there is no wildcard or

one wildcard “?” between ‘A’ and ‘B’. For example, we

can see that both s1s2 and s1s3 are two suboccurrences of

subpattern A[0,1]B. Therefore, suboccurrence s1s2 can be

expressed by 〈1,2〉. It is easy to see that in this example there

are three occurrences: 〈1,2,4〉, 〈1,3,4〉, and 〈4,5,6〉. Although

s4 is used in both 〈1,2,4〉 and 〈4,5,6〉, it matches p3 and

p1, respectively. Hence, 〈1,2,4〉 and 〈4,5,6〉 are called two

nonoverlapping occurrences [26], [27]. However, 〈1,2,4〉 and

〈1,3,4〉 are two overlapping occurrences because s1 matches

p1 twice in the two occurrences.

As we know, exact matching requires each character to be

matched exactly. However, in many cases, exact matching

is not good enough to satisfy certain criteria, since exact

matching limits the flexibility of the matching to some extent.

The approximate version should therefore be considered [28],

[29].

Example 2. We also use the same sequence S and pattern P

as in Example 1.

Under exact matching 〈1,2,3〉 is not an occurrence for

pattern P , because s3 = B 6= p3 = A, but it is an occurrence

of approximate pattern matching with the Hamming distance 1.

〈1,2,4〉 is also an occurrence of approximate pattern matching

with the Hamming distance 1, since the Hamming distance

between s1s2s4 and p1p2p3 is 0 which is smaller than 1.

Hence, all exact occurrences are special cases of approxi-

mate pattern matching with the Hamming distance. With the

Hamming distance 1, 〈3,4,5〉 is not an occurrence, since the

Hamming distance between s3s4s5 and p1p2p3 is 3 which

is greater than 1. From this example we can see that if the

similarity constraint is 0, the approximate pattern matching

automatically converts to exact pattern matching. Therefore,

compared with exact pattern matching, approximate matching

is more general.

To tackle this challenge, first we transform the approximate

strict pattern matching under nonoverlapping condition prob-

lem into a Nettree data structure which is an extensive tree

structure. We also propose a concept to indicate the number

of paths from a node to its roots with distance d. Using

this concept, we can delete useless parent-child relationships

and useless nodes effectively. We also reuse this concept on

the subnettree with the rightmost root and iteratively get a

path from the rightmost leaf to its rightmost root without

using the backtracking strategy. At last, we iteratively get the

rightmost root-leaf-path and prunes the path on the Nettree.

The contributions of this paper are threefold:

(1) Due to the limitation of the exact pattern matching,

in this paper, we formally address Approximate Strict Pat-

tern matching under the NonOverlapping condition (ASPNO)

which is a more general version than the exact version.

(2) We propose an effective algorithm, named NETtree for

ASPNO (NETASPNO), which iterates to find the rightmost

root-leaf path. The space and time complexities are O(n∗m∗
(T + g)) and O(n ∗m2 ∗ T ∗ g) in the worst case, where n,

m, g, and T are the length of sequence, the length of pattern,

the maximal gap, and the similarity constraint, respectively.

(3) Experimental results show that NETASPNO has better

performance than other algorithms.

The rest of this paper is organized as follows. Section 2 sum-

marizes the related work. Section 3 presents the definition of

the problem, proposes the algorithm NETASPNO, and shows

the time and space complexities of NETASPNO. Section 4

validates the performance of the algorithm. We present the

conclusion in Section 5.

II. RELATED WORKS

The gap constraints make the issue not only more difficult

but also more flexible. There are two kinds of pattern matching

with gap constraints: traditional pattern matching and strict

pattern matching [28]. Under the traditional pattern matching,

an occurrence is the last position of a matching in the se-

quence, while under the strict pattern matching an occurrence

is a group of positions of each subpattern in the sequence. Both

the traditional pattern matching and the strict pattern matching

have also been widely applied in many tasks. For example,

Navarro and Raffinot [15] proposed an effective algorithm that

employed the traditional pattern matching with applications

to protein sites searching. Some kinds of sequence pattern

mining tasks [20], [24], [26], [27], [30], [31] used the strict

pattern matching strategies to calculate the support of a pattern.

There are three types of sequence pattern mining conditions,

i.e. no special condition [20], [21], [22], [23], the one-off

condition [30], [31], and the nonoverlapping condition [26],

[27]. Moreover, there are also three types of the strict pattern

matching strategies, strict pattern matching under no special

condition [22], [28], under the one-off condition [32], [33], and

under the nonoverlapping condition [25]. Now, Example 3 is

employed to illustrate the relationship between the traditional

pattern matching and the strict pattern matching under no

special condition, under the one-off condition, and under the

nonoverlapping condition.

Example 3. Suppose we have sequence S = ABBABA and

pattern P = A[0, 1]B[0, 1]A, all occurrences are shown in

Table I.

Under the traditional pattern matching, the last position in

the sequence is considered. The three occurrences have two

different last positions: 4 and 6. Hence, there are two occur-

rences under the traditional pattern matching. To describe an

occurrence conveniently, a group of positions is used under

the strict pattern matching. 〈1, 2, 4〉, 〈1, 3, 4〉, and 〈4, 5, 6〉
are the three occurrences for strict pattern matching under

no special condition. Strict pattern matching under the one-

off condition and under the nonoverlapping condition are of

different subsets from strict pattern matching under no special

condition. 〈1, 2, 4〉 and 〈4, 5, 6〉 are two occurrences under

the nonoverlapping condition since each subsequence can be

used to match different subpatterns while under the one-off

condition, there is only one occurrence for this instance. For

example, if 〈1, 2, 4〉 is selected, 〈4, 5, 6〉 cannot be selected

since each subsequence can be used only once. The two

problems, under the one-off condition and under the nonover-

lapping condition, have different computational complexity



3

TABLE I: All occurrences for pattern P in sequence S

1 2 3 4 5 6

S= A B B A B A

A B A The first occurrence

A B A The second occurrence

A B A The third occurrence

since the former is a NP-hard problem [34] while the latter

is a P problem [25]. For clarification, Table II reports the

occurrences under the different methods.

From this example, we can see that the strict pattern

matching is more detailed to describe an occurrence but more

difficult to handle than the traditional pattern matching. Table

III shows a comparison of related works.

From Table III, we can see that the most relevant related

work is Ref [25] which is an exact version of our problem.

As we know exact matching is too tight to find the useful

information, while approximate matching with certain criteria

is good enough. Similarly, some useful patterns may be lost

under exact sequence pattern mining. When the distance is

0, approximate pattern matching transforms into exact version

automatically. Hence, approximate pattern matching is a more

general issue. Due to the limitations of the exact version, we

focus on ASPNO.

III. PROBLEM DEFINITIONS AND ALGORITHMS

A. Problem definitions

Definition 1. A sequence S with length n can be written as

s1s2 . . . si . . . sn(1 ≤ i ≤ n) and si ∈
∑

, where
∑

is a set

of characters. A pattern P with gap constraints can be writ-

ten as p1[min1,max1]p2 · · · [minj ,maxj ]pj+1 · · · [minm−1,

maxm−1]pm(1 ≤ j ≤ m) and pj ∈
∑

, where m is the

length of P and minj and maxj are two given non-negative

integers which refer to the minimal and maximal wildcards

“?” between pj and pj+1, respectively.

As we know, in a DNA sequence,
∑

is {A, C, G, T}.

Definition 2. Let P = p1p2 . . . pm and Q = q1q2 . . . qm be

two sequences with length m. The Hamming distance between

P and Q denoted by D(P,Q) is the number of positions at

which the corresponding characters are different.

Example 4. Suppose P = p1p2p3 = AGT and Q = q1q2q3 =
ACT are given. According to Definition 2, we can see that p2
and q2 are different. Therefore, the Hamming distance between

P and Q is 1; that is, D(P,Q) = 1.

Definition 3. Given a threshold T , if a group of position

indexes L = 〈l1, l2, · · · lm〉 is an approximate occurrence

of pattern P in sequence S, L should satisfy the following

equations.

minj−1 ≤ lj − lj−1 − 1 ≤ maxj−1 (1)

D(p1p2pm, sl1sl2slm) ≤ T (2)

Definition 4. Let L = 〈l1, l2, . . . lm〉 and L′ = 〈l′1, l
′

2, · · · l
′

m〉
be two approximate occurrences of pattern P in sequence S.

If and only if for all j (1 ≤ j ≤ m), lj is not equal to l′j ,

that is lj 6= l′j , L and L′ are two nonoverlapping approximate

occurrences.

Definition 5. The task of ASPNO is to find the maximum

nonoverlapping set. In this set, any two approximate occur-

rences of P in S are nonoverlapping.

B. Nettree

In this subsection, we introduce the concept of the Net-

tree data structure at first. Then an example is employed

to illustrate that an instance of approximate strict pattern

matching can be expressed by a Nettree. Finally, we propose

the algorithm CreNetTree which creates a Nettree for the

problem. Nettree [25] is a kind of data structure that is similar

to a tree data structure. The characteristics of Nettree are

shown in Definition 6.

Definition 6. Nettree has four characteristics.

(1) A Nettree may have n roots, where n > 1.

(2) Any node except the root may have more than one parent

and all its parents must be at the same level.

(3) A Nettree may have many nodes with the same label.

But these nodes are on different level. In order to describe a

node effectively, node i on the jth level is denoted by ni
j .

(4) There is more than one path from ni
j to its descendant

or its ancestor.

Although our previous work [25] employed Nettree to

handle the issue of the strict pattern matching under the

nonoverlapping condition, it is the exact version. In this paper,

to deal with the approximate version, a special concept of

Nettree is addressed.

Definition 7. NRPDC (Number of Roots Paths with Distance

Constraints). We can see that there is more than one path from

ni
j to its ancestor. So there is more than one path from ni

j to a

root. The number of paths from ni
j to the roots with Hamming

distance d is called the Number of Roots Paths with Distance

Constraints (NRPDC) and denoted by NR (ni
j , d). For a root

ni
1, if si is equal to p1, that is, si = p1, the Hamming distance

between si and p1 is 0, and then NR (ni
1, 0) = 1 and the other

NR (ni
1, d) (d > 0) are 0. Otherwise, if si is not equal to p1,

that is, si 6= p1, and then NR (ni
1, 1) = 1 and the other NR

(ni
1, d) (d 6= 0) are 0.

Definition 8. In a Nettree, a path 〈ni1
1 , ni2

2 , · · · , nim
m 〉 is

called a root-leaf path and its corresponding occurrence is

〈i1, i2, · · · , im〉. The max root is called the rightmost root.

Similarly, we can have the rightmost leaf, the rightmost child,

and the rightmost parent. The rightmost root-leaf path iterates

to obtain the rightmost child from the rightmost root or to

obtain the rightmost parent from the rightmost leaf.

To illustrate the above concepts, a Nettree is shown in Fig.

1.

Example 5. In Fig. 1, for instance, s3 is the corresponding

subsequence of node n3
2 and is equal to p2, so node n3

2 is a

white node while s3 is not equal to p3, and hence node n3
3

is a grey node. There are two numbers at the top left of each



4

TABLE II: The occurrences under the different methods

Method Number of occurrences Occurrences

Traditional pattern matching 2 4 and 6

Strict pattern matching under no special condition 3 〈1, 2, 4〉, 〈1, 3, 4〉, and 〈4, 5, 6〉
Strict pattern matching under the one-off condition 1 Anyone of 〈1, 2, 4〉, 〈1, 3, 4〉, or 〈4, 5, 6〉

Strict pattern matching under the nonoverlapping condition 2 〈1, 2, 4〉 and 〈4, 5, 6〉

TABLE III: A comparison of related works

Related work Matching/Mining Traditional/strict Type of matching Length constraints Type of condition

Navarro et al. [15] Matching Traditional Exact No Traditional

Bille et al. [35] Matching Traditional/ Stricta Exact No Traditional / No special

Wu et al. [28] Matching Strict Approximate Yes No special

Li et al. [21] Mining Strict - No No special

He et al. [33] Matching Strict Approximate Yes One-off

Lam et al. [31] Mining Strict - No One-off

Wu et al. [25] Matching Strict Exact Yes Nonoverlapping

Ding et al. [26] Mining Strict - Yes Nonoverlapping

Wu et al. [27] Mining Strict - Yes Nonoverlapping

This paper Matching Strict Approximate Yes Nonoverlapping

Fig. 1: A Nettree with NRPDCs for each node. The two

numbers at the top left of nodes are used to indicate NR(ni
j , 0)

and NR(ni
j , 1). There are two kinds of nodes: grey and white.

The grey node means that the corresponding subsequence is

different from the corresponding subpattern, that is, it is an

approximate matching, while the white node means that the

corresponding subsequence is the same as the corresponding

subpattern, that is, it is an exact matching.

node which are used to indicate NR (ni
j , 0) and NR (ni

j , 1),

respectively. Node n8
3 is the rightmost child of node n6

2 and the

rightmost parent of node n9
4. Path 〈n1

1, n
3
2, n

4
3, n

5
4〉 is a root-

leaf path and its corresponding occurrence is 〈1, 3, 4, 5〉. It is

easy to see the Hamming distance of occurrence 〈1, 3, 4, 5〉 is

1 since node n4
3 is a grey node. Node n6

1 is the rightmost root.

Nevertheless, path 〈n5
1, n

6
2, n

8
3, n

9
4〉 is the rightmost root-leaf

path since there is no root-leaf path from node n6
1. The cor-

responding occurrence of path 〈n5
1, n

6
2, n

8
3, n

9
4〉 is 〈5, 6, 8, 9〉.

Suppose path 〈n5
1, n

6
2, n

8
3, n

9
4〉 is deleted, path 〈n2

1, n
3
2, n

5
3, n

8
4〉

is the rightmost root-leaf path and the Hamming distance of its

corresponding occurrence is 2 since there are two grey nodes,

n2
1 and n8

4, in the path.

Next, we will show how to update NR(ni
j , d) of a non-root

node ni
j .

Lemma 1. If n
rq
j−1

and ni
j satisfy gap constraint

pj−1[minj−1,maxj−1]pj , n
rq
j−1

is a parent node of ni
j .

NR(n
i
j , d) can be updated as follows. If si = pj , for all

d(0 ≤ d ≤ T ), NR(n
i
j , d)+ = NR(n

rq
j−1

, d). Otherwise, for

all d(1 ≤ d ≤ T ), NR(n
i
j , d)+ = NR(n

rq
j−1

, d − 1) and

NR(n
i
j , 0) = 0.

Proof. If si is equal to pj , that is, si = pj , then after

adding node ni
j , the distance between p1 · · · pj−1pj and

sl1 . . . slj−1
si is the same as the distance between p1 . . . pj−1

and sl1 . . . slj−1
, that is, D(p1 . . . pj−1pj , sl1 . . . slj−1

si) =
D(p1 . . . pj−1, sl1 . . . slj−1

). So NR(n
i
j , d) should add

NR(n
rq
j−1

, d) if n
rq
j−1

is a parent node of ni
j . If si is

not equal to pj , that is, si 6= pj , then after adding node

ni
j , the distance between p1 . . . pj−pj and sl1 . . . slj−1

si
increases by 1, that is, D(p1 . . . pj−1pj , sl1 . . . slj−1

si) =
D(p1 . . . pj−1, sl1 . . . slj−1

) + 1. So NR(n
i
j , d) should add

NR(n
rq
j−1

, d − 1) when d > 0 and NR(n
i
j , d) is 0 when

d = 0.

Lemma 2. If
∑T

d=1
NR(n

i
j , d) = 0, ni

j can be deleted or does

not need to be created.

Proof. We can see that D(p1 . . . pj−1pj , sl1 . . . slj−1
si) is no

less than D(p1 . . . pj−1, sl1 . . . slj−1
). Therefore, the Ham-

ming distance is monotonous. If
∑T

d=1
NR(n

i
j , d) = 0, this

means that the distance of all the paths from node ni
j to any

root is greater than T . Therefore, the distance of all the paths

from node ni
k passing through node ni

j to any root is greater

than T since the Hamming distance is monotonous. Hence,

node ni
j can be deleted or does not need to be created.

Lemma 3. Suppose n
rq
j−1

is a parent node of ni
j according

to the gap constraint. If si 6= pj and for all d(1 ≤ d ≤

T−1),
∑T−1

d=1
NR(n

rq
j−1

, d) = 0 , the parent-child relationship

between n
rq
j−1

and ni
j can be deleted.

Proof. According to Lemma 2, we know that∑T

d=1
NR(n

rq
j−1

, d) is greater than 0, otherwise node n
rq
j−1

is deleted. Because
∑T−1

d=1
NR(n

rq
j−1

, d) = 0, NR(n
rq
j−1

, T )
is greater than 0, which means that the distance of all paths

from node n
rq
j−1

to its roots is T . Since si is not equal

to pj , the distance of the paths from node ni
j to its roots



5

via node n
rq
j−1

is T + 1, which does not meet the criteria.

Although n
rq
j−1

is a parent node of ni
j according to the gap

constraint, the relationship fails to satisfy the criteria. Hence,

the parent-child relationship between n
rq
j−1

and ni
j can be

deleted.

Next, an example is used to illustrate the process that

transforms an instance into a Nettree.

Example 6. Suppose we have sequence S = s1s2s3s4
s5s6s7s8s9 = AGGTAGAGA, pattern P = p1[min1,max1]
p2[min2,max2]p3[min3,max3]p4 = A[0, 1]G[0, 1]A[0, 2]A,

and threshold T = 1.

We obtain the first letter s1 in sequence S first. Since s1=p1
= ’A’, we create a root n1

1 on the Nettree and NR(n
1
1, 0) and

NR(n
1
1, 1) are 1 and 0, respectively. Then we obtain the second

letter s2 in the sequence. Now, we can see that the Nettree

has only a root on the first level. So s2 can be created on

the first and second levels, respectively. Since s2=’G’ 6= p1,

according to Definition 7, we create a root n2
1 and NR(n

2
1, 0)

and NR(n
2
1, 1) are 0 and 1, respectively. Since 2 - 1 - 1

= 0 which satisfies the gap constraints [0, 1], we create a

node n2
2 on the second level. Since s2=’G’=p2, according to

Lemma 1, we know that NR(n
2
2, 0) and NR(n

2
2, 1) are 1 and

0, respectively. Now, we deal with s3. Since there is a node on

the second level, s3 can be created on the first, second, and

third levels, respectively. Since s3=’G’ 6= p1, we create a root

n3
1 and NR(n

3
1, 0) and NR(n

3
1, 1) are 0 and 1, respectively. It

is easy to see that both n1
1 and n2

1 can be parents according

to the gap constraints [0, 1]. So NR(n
3
2, 0) and NR(n

3
2, 1)

are both 1 since s3=’G’=p2. Similarly, we create node n3
2

and get NR(n
3
2, 0) = 0 and NR(n

3
2, 1) = 1. Now, we process

s4 = ‘T ′. It is easy to see that s4 should be compared with p1,

p2, p3, and p4, respectively. For the sake of conciseness, here

we only talk about n4
2. Since s4=’T’ 6= p2=’G’ and n4

2 has two

parents, n2
1 and n3

1, according to the gap constraints [0,1], we

get NR(n
4
2, 0) = NR(n

4
2, 1) = 0. According to Lemma 3, n4

2

is deleted. Hence, the Nettree is created and shown in Fig. 1.

From this example, we can see that the Nettree can be

created by one-way scanning of the sequence and the benefits

of NRPDC are threefold. (1) Some useless parent-child rela-

tionships can be deleted. n6
1 can be a parent of n7

2 according to

the gap constraint A[0,1]G. But we can see that NR(n
6
1, 0) = 0

and s7 6= p2. According to Lemma 3, in the figure, the parent-

child relationship between n6
1 and n7

2 is deleted. Similarly, the

parent-child relationships between n7
2 and n8

3 and between n4
3

and n6
4 are deleted. (2) Some useless nodes can be deleted

according to Theorem 2. For instance, in Fig. 1, nodes n4
2,

n5
2, and n6

3 are deleted. 3) There are NR(n
i
j , d) paths from

node ni
j to its roots with distance d. For instance, as we know

that NR(n
5
3, 0) is 1, we can safely say that there is a path

from a root to n5
3 with distance 0 which is 〈1, 3, 5〉. Similarly,

NR(n
5
3, 1) is also 1, so there is a path from a root to n5

3 with

distance 1, which is 〈2, 3, 5〉.

Algorithm CreNetTree therefore creates a Nettree and is

shown as follows.

Algorithm 1 CreNetTree

Input: sequence S, pattern P , similarity constraint T

Output: NetTree

1: for i = 1 to n step 1 do;

2: Create node ni
1 and calculate its NRPDCs according

to Definition 7

3: for j = 2 to min(m, i) step 1 do;

4: Create node ni
j ;

5: Update NRPDCs of node ni
j according to Lemma

1;

6: if
∑T

d=1
NR(n

i
j , d) = 0 then delete node ni

j

according to Lemma 2;

7: end for

8: end for

C. NETASPNO algorithm

In this subsection, we first show two lemmas. An illustrative

example is used to show the principle of our algorithm. Finally,

we propose the algorithm NETASPNO.

Lemma 4. Let A and B be two root-leaf paths without using

the same node on the Nettree. The corresponding occurrences

of A and B are two nonoverlapping occurrences.

Proof. Suppose two paths from root to leaf A and B are

〈na1

1 , na2

2 , . . . , nam
m 〉 and 〈nb1

1 , nb2
2 , · · · , nbm

m 〉, respectively. We

can safely say that, for any i(1 ≤ i ≤ m), ai is not equal

to bi, that is, ai 6= bi, since according to the definition of

Nettree, nodes with the same label are on the different levels

and A and B do not use the same nodes on the Nettree. Hence,

〈a1, a2, · · · , am〉 and 〈b1, b2, · · · , bm〉 are two nonoverlapping

occurrences.

Lemma 5. We can get a path from the rightmost leaf to its

rightmost root without using the backtracking strategy.

Proof. Suppose the rightmost leaf is nk
m. We can safely

say that
∑T

d=1
NR(n

am
m , d) is greater than 0, that is,

∑T

d=1
NR(n

am
m , d) > 0, otherwise, nk

m should be deleted

according to Lemma 2. Suppose NR(n
i
j , d) = k is greater than

0, which means that there are k paths from node ni
j to its roots

with distance d and if NR(n
i
j , d) is 0, there is no path from ni

j

to its roots with distance d. In the process of searching a path

from node ni
j to its root with distance d, if srq = pj−1, we can

carry out iteration to select parent n
rq
j−1

whose NR(n
rq
j−1

, d)
is greater than 0, otherwise, we carry out iteration to select

parent n
rq
j−1

whose NR(n
rq
j−1

, d−1) is greater than 0. Iterating

this process, we can get a path from nk
m to its rightmost root

without using the backtracking strategy.

The benefit of NR(n
i
j , d) therefore lies in the fact that

the backtracking strategy can be avoided in a root-leaf path

searching.

As we know, to solve the exact version of ASPNO,

NETLAP-Best [25] finds the rightmost occurrence from the

rightmost leaf and removes the found occurrence and other

useless nodes. So in Example 3, if we use the similar principle

of NETLAP-Best, we get the rightmost occurrence 〈5, 6, 8, 9〉



6

Fig. 2: The Nettree and the subnettree with root n5
1 and its

NRPDCs for each node which are composed by two numbers,

NR(ni
j , 0) and NR(ni

j , 1).

from the rightmost leaf n9
4 first. Then we find the next nonover-

lapping occurrence. We can see that path 〈n2
1, n

3
2, n

5
3, n

8
4〉 has

two grey nodes and its corresponding occurrence is 〈2, 3, 5, 8〉.
So the Hamming distance between s2s3s5s8 and pattern P

is 2, which is greater than 1. Therefore, we cannot select

path 〈n2
1, n

3
2, n

5
3, n

8
4〉 and have to get the rightmost occurrence

〈1, 3, 5, 8〉 with distance 1 from the rightmost leaf n8
4. There is

no occurrence after removing 〈1, 3, 5, 8〉. Therefore, there are

two nonoverlapping occurrences, 〈5, 6, 8, 9〉 and 〈1, 3, 5, 8〉,
using the similar principle of NETLAP-Best. However, it is

easy to see that there are three nonoverlapping occurrences

〈5, 6, 8, 9〉, 〈2, 3, 5, 7〉, and 〈1, 2, 3, 5〉, for this instance. Hence,

we cannot employ the similar principle of NETLAP-Best [25]

since it is easy to lose a feasible solution. To handle ASPNO,

we propose the algorithm named NETASPNO, which obtains

the rightmost root first. If there are some paths from the

rightmost root to its mth level leaves, then NETASPNO finds

the rightmost root-leaf path from its rightmost leaf to obtain

its corresponding occurrence. Otherwise, if there is no path

from the rightmost root to its mth level leaf, NETASPNO

selects the next rightmost root. After obtaining the occurrence,

NETASPNO deletes all the nodes of the rightmost root-leaf

path. This process is iterated, until there are no occurrences

that can be found. Example 7 is employed to illustrate the

principle of NETASPNO directly.

Example 7. In this example, we also select the same pattern

and sequence as in Example 6.

From Fig. 1, we can see that root n6
1 is the rightmost root

at first. However, there is no path from root n6
1 to the fourth-

level leaf. So NETASPNO finds the next rightmost root n5
1. It

is easy to see that there are some paths from n5
1 to its fourth-

level leaves, n8
4 and n9

4. Apparently, n9
4 is the rightmost leaf

of n5
1. To avoid the efforts from other roots, such as root n4

1,

NETASPNO recalculates the NRPDCs of each node on the

subnettree with root n5
1 and the results are shown in Fig. 2.

NETASPNO can select n8
3 as the rightmost parent of leaf n9

4

although s8 6= p3, since NR(n
8
3, 1) is 1 which means that

there is a path from root n5
1 to n8

3 with distance 1. 〈5, 6, 8, 9〉
is the rightmost path from root n5

1 to leaf n9
4 via node n8

3.

Now, NETASPNO deletes occurrence 〈5, 6, 8, 9〉. Then NE-

TASPNO selects root n4
1. It is easy to see that root n4

1 does

Fig. 3: The subnettree with root n2
1 and its NRPDCs and the

Nettree after deleting occurrence 〈5, 6, 8, 9〉. The red nodes are

deleted.

Fig. 4: The subnettree with root n1
1 and its NRPDCs and the

Nettree after deleting occurrences 〈2, 3, 5, 7〉 and 〈5, 6, 8, 9〉.

not have a root-leaf path after deleting nodes n5
1, n6

2, n8
3, and

n9
4, and neither does root n3

1. The subnettree with root n2
1 and

its NRPDCs can be seen in Fig. 3. When NETASPNO selects

root n2
1, NETASPNO can find occurrence 〈2, 3, 5, 7〉.

Finally, NETASPNO deletes occurrence 〈2, 3, 5, 7〉 on the

Nettree and recalculates NRPDCs for some nodes with root

n1
1. The new Nettree can be seen in Fig. 4. It is easy to find the

last occurrence 〈1, 2, 4, 5〉 on the new Nettree. Therefore NE-

TASPNO finds three nonoverlapping occurrences, 〈1, 2, 4, 5〉,
〈2, 3, 5, 7〉, and 〈5, 6, 8, 9〉 for pattern P in sequence S with

Hamming distance 1.

Now, NETASPNO is shown as follows.

In Algorithm 2, NETASPNO adopts algorithm reachleaf to

determine whether the rth root can reach an mth leaf or not.

If the return value of algorithm reachleaf is -1, it means that

there is no path from the rth root to an mth leaf, otherwise

the function returns its rightmost leaf. The algorithm reachleaf

is shown as follows.

In Algorithm 2, NETASPNO adopts the algorithm getocc

to obtain the root-leaf path from leaf lf and its corresponding

nonoverlapping occurrence. The algorithm getocc is shown as

follows.

D. The space and time complexities

Theorem 1. The space complexity of NETASPNO is O(n ∗
m ∗ (T + g)) in the worst case, where n, m, g, and T are the



7

Algorithm 2 NETASPNO

Input: sequence S, pattern P , and similarity constraint T

Output: nonoverlapping set C

1: Use Algorithm 1 to create NetTree

2: for r = the number of roots of NetTree downto 1 step

-1 do;

3: lf= reachleaf (r, NetTree, T )

4: if lf > 0 then

5: oc = getocc(lf,NetTree, T );
6: C = C U oc

7: NetTree− = oc; //delete oc on NetTree;

8: end if

9: end for

Algorithm 3 reachleaf

Input: root r, NetTree, and T

Output: the position of the rightmost leaf

1: start = end = r;

2: for l = 1 to m - 1 step 1 do

3: for j = start to end step 1 do

4: n = NetTree[l][j];
5: nc = the number of children of n

6: for k = 1 to nc step 1 do

7: c = NetTree[l + 1][k]
8: Recalculate NRPDCs for child c with the rth

root according to Lemma 1;

9: end for

10: end for

11: start = the position of the first child on the l + 1th

level;

12: end = the position of the last child on the l+1th level;

13: if start < 0 then return -1;

14: end for

15: lf = end;

16: return lf

length of sequence, the length of pattern, the maximal gap,

and the similarity constraint, respectively.

Proof. We can see that the space complexity of Nettree is

O(n ∗m ∗ (T + g)) in the worst case. The reasons are shown

as follows. The Nettree has m levels, there are no more than n

nodes on the Nettree in the worst case, and each node has no

more than g parents in the worst case and stores T +1 values

for NRPDCs. Therefore, the space and time complexities of

creating the Nettree are O(n ∗ m ∗ (T + g)) and O(n ∗ m ∗
T ∗g), respectively. There are no more than n nonoverlapping

occurrences and each occurrence is composed of m indexes.

So the space complexity of the nonoverlapping set C is O(n∗
m). NETASPNO employs a Nettree and a nonoverlapping set

to calculate and store the occurrences, respectively. Hence, the

space complexity of NETASPNO is O(n ∗m ∗ (T + g)).

Theorem 2. The time complexity of NETASPNO is O(n∗m2∗
T ∗ g) in the worst case.

Proof. We have shown that the time complexity of Algorithm

1, created a Nettree, is O(n ∗ m ∗ T ∗ g) in Theorem 1. We

Algorithm 4 getocc

Input: rightmost leaf lf , NetTree, and similarity constraint

T

Output: nonoverlapping occurrence oc

1: distance = 0;

2: oc[m] = ct = NetTree[m][lf ]; // ct means current node.

3: if ct.match=false then distance++; // ct.match = false

means the subsequence is different from the corresponding

subpattern

4: for j = m downto 2 step -1 do

5: np= the number of parents of ct

6: for i = np downto 1 step -1 do

7: pt = ct[j];
8: pd = 0;

9: if pt.match = false then pd = 1;

10: if pt.used = false and distance+pd ≤ T and∑T

d=distance NR(n
pt
j , d) > 0 then

11: distance+ = pd;

12: oc[m− 1] = ct = pt;

13: break;

14: end if

15: end for

16: end for

17: return oc

analyze the time complexity of Algorithm 3 first. We know that

each node has no more than g children. There are no more

than g ∗ (i − 1) children on the ith level. So no more than

g ∗m∗(m−1) nodes need to recalculate their NRPDCs. Each

node carries out the calculation T + 1 times for its NRPDCs.

Hence, the time complexity of Algorithm 3 is O(g∗T ∗m∗m)
in the worst case. It is easy to see that the time complexity of

Algorithm 4 is O(g∗T ∗m). There are no more than n roots on

the Nettree. Therefore, the time complexity of NETASPNO is

O(n∗m∗T ∗g+n∗(g∗T ∗m∗m+g∗T ∗m)) = O(n∗m2∗T ∗g)
in the worst case.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental environment and data

To evaluate the performance, all experiments are conducted

on a laptop with an Intel (R) Core i7-5500U, with a 2.40

GHZ CPU, 4.00 GB of RAM, and Windows 7 SP1 operating

system. We also propose other two algorithms, NETLAP-

Appro and NETROL (NETtree from Root tO Leaf). NETLAP-

Appro adopts the same principle as NETLAP-Best and it

iterates to find the rightmost root-leaf-path from the rightmost

leaf while NETROL iterates to find the leftmost root-leaf path

from the leftmost root. As we know that the time complexity of

NETLAP-Best is O(m∗m∗n∗g) for the exact pattern matching

issue. It is easy to get that the time complexity of NETLAP-

Appro is also O(m∗m∗n∗g∗T ). So is NETROL. This means

that the three algorithms have the same time complexity.

We develop NETASPNO, NETLAP-Appro, and NETROL by

VC++ 6.0. All these algorithms can be downloaded from

http://wuc.scse.hebut.edu.cn/nettree/netaspno. To evaluate the

performance of NETASPNO impartially, we also use the



8

TABLE IV: Patterns

Name Pattern

P1 a[0,3]t[0,3]a[0,3]t[0,3]a[0,3]t[0,3]a[0,3]t[0,3]a[0,3]t[0,3]a

P2 g[1,5]t[0,6]a[2,7]g[3,9]t[2,5]a[4,9]g[1,8]t[2,9]a

P3 g[1,9]t[1,9]a[1,9]g[1,9]t[1,9]a[1,9]g[1,9]t[1,9]a[1,9]g[1,9]t

P4 g[1,5]t[0,6]a[2,7]g[3,9]t[2,5]a[4,9]g[1,8]t[2,9]a[1,9]g[1,9]t

P5 a[0,10]a[0,10]t[0,10]c[0,10]g[0,10]g

P6 a[0,5]t[0,7]c[0,9]g[0,11]g

P7 a[0,5]t[0,7]c[0,6]g[0,8]t[0,7]c[0,9]g

P8 a[5,6]c[4,7]g[3,8]t[2,8]a[1,7]c[0,9]g

P9 c[0,5]t[0,5]g[0,5]a[0,5]a

TABLE V: The real DNA sequences

Name From Locus Length

S1 Segment 1 CY058563 2286

S2 Segment 2 CY058562 2299

S3 Segment 3 CY058561 2169

S4 Segment 4 CY058556 1720

S5 Segment 5 CY058559 1516

S6 Segment 6 CY058558 1418

S7 Segment 7 CY058557 982

S8 Segment 8 CY058560 844

patterns (shown in Table IV) and the DNA sequences (shown

in Table V) as benchmark patterns and sequences, which were

employed to evaluate the performances of NETLAP-Best [25],

SONG[28] and SBO [36]. These real DNA sequences can be

downloaded from http://www.ncbi.nlm.nih.gov.

B. Correctness

As we know, when similarity constraint T is 0, the approx-

imate version transforms into the exact version automatically.

To show the correctness of NETASPNO, in this subsection, we

therefore set T as 0. The numbers of occurrences are shown in

Table VI. The same results can be obtained using NETLAP-

Best to deal with the exact version. Therefore, we can safely

say that NETASPNO is correct.

C. Performance

For a practical application, it is meaningless to set T very

high, especially for a short pattern. We know that the length

of P9 is 5. Therefore, in this paper, we set T as 1 or 2. Fig.

5 and Fig. 6 report the numbers of occurrences of T = 1 and

T = 2, respectively.

To show the results concisely, we sum up the occurrences

of the same pattern in the eight sequences of T = 1 and T = 2
which are shown in Tables VII and VIII, respectively. Since

NETROL, NETLAP-Appro, and NETASPNO are heuristic

algorithms, we select the max result obtained by the three

algorithms as the best result. The results that are close to the

best results are shown in bold in the tables.

The approximation ratio ρ = (the result)/(the best result) is

used to show the results visually. The results of T = 1 and T

= 2 are shown in Fig. 7 and Fig. 8, respectively.

According to Table VII and Table VIII and Fig. 5 and

Fig. 6, we can say that NETASPNO has better performance

than the others. In this paper, nine patterns are selected.

NETASPNO obtains the best results on six patterns for both

T = 1 and T = 2. For instance, from Table VII, we can

see that NETROL and NETLAP-Appro find 2336 and 2222

occurrences for P4 in eight sequences, respectively, when

T is 2, while NETASPNO finds 2502. From Table VI, we

also notice that the results of NETASPNO are the same with

the best results on five patterns, P1, P2, P3, P4, and P8.

This means that NETASPNO obtains the max results on all

5*8 = 40 instances. Further, statistics show that NETASPNO

obtains the max results 40 times and 49 times for T = 1 and

T = 2, respectively. Therefore, NETASPNO is considerably

better than the others. The reason for this is that NETASPNO

employs a more effective strategy to find nonoverlapping

occurrences.

We show the running time for T = 1 and T = 2 in Table

IX and Table X, respectively.

From Table IX and Table X, we can see that NETASPNO is

faster than the others in all instances. For instance, NETROL

and NETLAP-Appro take 1.87 s and 1.30 s for P1, respec-

tively while NETASPNO takes 0.77 s. Generally, NETASPNO

is two to three times faster than the others. The reason is

shown as follows. NETLAP-Appro adopts the same principle

as NETLAP-Best which employs a more complex strategy to

solve the issue. For example, in Example 3, NETLAP-Best

gets the rightmost occurrence 〈5, 6, 8, 9〉 from the rightmost

leaf n9
4 first. Then NETLAP-Best finds all useless nodes on

the Nettree and deletes them after deleting nodes n5
1, n6

2, n8
3,

and n9
4. Therefore, node n7

3 must be found out and deleted.

Apparently, NETASPNO does not need to find this kind of

nodes. Hence, NETASPNO employs a more effective pruning

strategy.

We can also see that the running time of NETROL and

NETLAP-Appro is almost the same. For example, NETROL

takes 76.04 s and NETLAP-Appro takes 77.67 s for all 72

instances in T = 2. The reason is that NETROL employs the

similar principle as NETLAP-Appro.

From Table IX and Table X, we can see that the running

time of NETASPNO for T=2 is almost twice that of T = 1. For

example, the running time of NETASPNO for P1 with T = 2
is 1.48 s while that for T = 1 is 0.77 s. All other experiments

show the similar phenomenon. This phenomenon therefore

verifies the correctness of time complexity of NETASPNO.

According to the above experimental results, we can safely

say that NETASPNO has better performance than the other

two algorithms.

V. CONCLUSION

In this paper, we address a type of approximate pattern

matching, named approximate pattern matching under the

nonoverlapping condition. Comparing with the exact pattern

matching version, the new problem is more general and more

challenging. We propose an effective algorithm, NETASPNO,

which transforms an instance of approximate pattern matching

into a Nettree at first. Due to the similarity constraint, some of

the parent-child relationships cannot be selected to find a root-

leaf path. A concept called NRPDCs is proposed to handle the

issue. Then NETASPNO iterates to find the rightmost root-leaf

path from the rightmost root as a nonoverlapping occurrence.

It is not necessary for NETASPNO to detect the useless



9

TABLE VI: The numbers of occurrences of T = 0

Sequence P1 P2 P3 P4 P5 P6 P7 P8 P9

S1 33 126 203 113 270 228 138 95 163

S2 19 142 228 133 270 233 164 91 188

S3 20 130 221 124 272 235 158 71 181

S4 29 108 178 101 205 184 132 57 139

S5 26 91 138 85 179 155 107 59 120

S6 19 79 135 72 173 146 102 49 121

S7 10 64 102 60 135 112 84 42 84

S8 5 54 78 47 90 86 65 33 73

Fig. 5: The number of occurrences of T = 1

TABLE VII: When T = 1, the sum of the number of occurrences of pattern in the eight sequences

Sequence P1 P2 P3 P4 P5 P6 P7 P8 P9

NETROL 842 1790 1973 1611 3019 3146 2065 1720 3020

NETLAP-Appro 840 1747 1992 1529 3070 2940 2055 1676 2781

NETASPNO 850 1832 2049 1638 3025 3033 2083 1737 2935

The best result 850 1839 2052 1644 3074 3146 2099 1740 3022

TABLE VIII: When T = 2, the sum of the number of occurrences of pattern in the eight sequences

Sequence P1 P2 P3 P4 P5 P6 P7 P8 P9

NETROL 1867 2785 2502 2336 4178 4716 3204 3076 5321

NETLAP-Appro 1869 2748 2524 2222 4626 4933 3171 3068 4952

NETASPNO 1952 2920 2760 2502 4385 4783 3297 3197 5305

The best result 1952 2920 2760 2502 4627 4933 3320 3197 5337



10

Fig. 6: The number of occurrences of T = 2

TABLE IX: The running time for T= 1 (s)

Sequence P1 P2 P3 P4 P5 P6 P7 P8 P9

NETROL 1.87 2.29 5.85 3.01 3.73 1.62 1.90 1.22 1.01

NETLAP-Appro 1.30 1.84 4.88 2.45 2.70 1.59 1.76 1.25 0.97

NETASPNO 0.77 1.08 2.03 1.36 1.23 0.76 0.98 0.63 0.61

TABLE X: The running time for T= 2 (s)

Sequence P1 P2 P3 P4 P5 P6 P7 P8 P9

NETROL 2.86 5.80 22.40 8.81 17.38 6.22 6.99 2.90 2.68

NETLAP-Appro 2.45 5.69 22.11 8.92 17.32 7.82 7.52 3.22 2.62

NETASPNO 1.48 1.98 3.73 2.56 2.20 1.52 1.90 1.37 1.09

Fig. 7: The approximation ratio of T = 1 Fig. 8: The approximation ratio of T = 2



11

nodes, and therefore NETASPNO employs a more effective

pruning strategy. Experimental results show that NETASPNO

has better performance than the other competitive algorithms.

Nevertheless, the strategy of iteration to find the right-

most root-leaf path is a complete strategy under the exact

pattern matching while this is a heuristic strategy under the

approximate version. The reason for this is as follows. Under

exact nonoverlapping pattern matching, we proved that if

〈a, d〉 and 〈b, c〉 (a < b and c < d) are two suboccur-

rences of a subpattern [25], we can safely say that 〈a, c〉
and 〈b, d〉 are also two suboccurrences of a subpattern. To

find the nonoverlapping occurrences, we can perform iterate

to find the rightmost suboccurrence 〈b, d〉. But due to the

similarity constraint, the conclusion cannot be eternally true

under the approximate version. Here is an example. Suppose

we have pattern P = A[0, 1]B[0, 2]C[0, 1]D and sequence

S = s1s2s3s4s5s6s7s8 = AACBECDD under T = 1. It is

easy to know that both suboccurrences 〈3, 6〉 and 〈4, 5〉 satisfy

the subpattern B[0, 2]C and the similarity constraint. But 〈3, 5〉
does not satisfy the similarity constraint. We can find only

one nonoverlapping occurrence 〈2, 4, 6, 8〉 if we employ the

strategy of the rightmost root-leaf path. Actually, there are two

nonoverlapping occurrence, 〈1, 3, 6, 8〉 and 〈2, 4, 5, 7〉, for this

instance. Therefore, a better performance algorithm should be

studied in the future. Next, we will apply this method to mine

approximate sequence patterns to find more valuable patterns

in the sequences.

REFERENCES

[1] Claude F, Navarro G, Peltola H, et al. String matching with alphabet
sampling. Journal of Discrete Algorithms, 2012, 11: 37-50.

[2] Navarro G. Spaces, trees, and colors: the algorithmic landscape of
document retrieval on sequences. ACM Computing Surveys (CSUR),
2014, 46(4): 52-es.

[3] Le H, Prasanna VK. A memory-efficient and modular approach for large-
scale string pattern matching. IEEE Transactions on Computers (TOC),
2013, 62(5): 844-857.

[4] Hu H, Zheng K, Wang X, Zhou A. GFilter: A general gram filter for
string similarity search. IEEE Transactions on Knowledge and Data

Engineering (TKDE), 2015, 27(4): 1005-1018.

[5] Li F, Yao B, Tang M, Hadjieleftheriou M. Spatial approximate string
search. IEEE Transactions on Knowledge and Data Engineering (TKDE),
2013, 25(6): 1394-1409.

[6] Bille P, Fischer J, Grtz I L, et al. Sparse text indexing in small space.
ACM Transactions on Algorithms (TALG), 2016, 12(3): 39.

[7] Liu J, Ma Z M, Feng X. Answering ordered tree pattern queries over
fuzzy XML data. Knowledge and Information Systems, 2015, 43(2):
473-495.

[8] Navarro G, Nekrich Y. Time-optimal top-k document retrieval. SIAM

Journal on Computing,, 2015, 30(2): 191-204.

[9] Wu Y, Wang L, Ren J, et al. Mining sequential patterns with periodic
wildcard gaps. Applied intelligence, 2014, 41(1): 99-116.

[10] Chen K, Huang G, Lee RC. Bit-parallel algorithms for exact circular
string matching. The Computer Journal, 2014, 57(5): 731-743.

[11] Lin J, Jiang Y, Adjeroh D. Circular pattern discovery. The Computer

Journal, 2014, 58 (5): 1061-1073.

[12] Crochemore M, Iliopoulos C, Makris C, Rytter W, Tsakalidis A, Trichlas
K. Approximate string matching with gaps. Nordic Journal of Computing,
2002,9(1):54-65.

[13] Nip K, Wang Z, Xing W X. A study on several combination problems of
classic shop scheduling and shortest path. Theoretical Computer Science,
2016, 22: 175-187.

[14] Fredriksson K, Grabowski S. Efficient algorithms for pattern matching
with general gaps, character classes, and transposition invariance. Infor-

mation Retrieval, 2008, 11(4): 335-357.

[15] Navarro G, Raffinot M. Fast and simple character classes and bounded
gaps pattern matching, with applications to protein searching. Journal of

Computational Biology, 2003, 10(6): 903-923.
[16] Retwitzer M D, Polishchuk M, Churkin E, et al. RNAPattMatch: a

web server for RNA sequence/structure motif detection based on pattern
matching with flexible gaps. Nucleic Acids Research, 2015, 43(W1):
W507-W512.

[17] Tan C, Min F, Wang M, et al. Discovering patterns with weak-wildcard
gaps. IEEE Access, 2016, 4: 4922-4932.

[18] Ghosh S, Feng M, Nguyen H, et al. Risk prediction for acute hypotensive
patients by using gap constrained sequential contrast patterns. In AMIA

Annual Symposium Proceedings American Medical Informatics Associa-

tion, 2014: 1748.
[19] Yen SJ, Lee YS. Mining non-redundant time-gap sequential patterns.

Applied Intelligence, 2013, 39(4):727-738.
[20] Wang X, Duan L, Dong G, Yu Z, Tang C. Efficient mining of density-

aware distinguishing sequential patterns with gap constraints. Database

Systems for Advanced Applications. Springer International Publishing,
2014: 372-387.

[21] Li C, Yang Q, Wang J, Li M. Efficient mining of gap-constrained sub-
sequences and its various applications. ACM Transactions on Knowledge

Discovery from Data (TKDD), 2012, 6(1): 2-es.
[22] Wu Y, Fu S, Jiang H, et al. Strict approximate pattern matching with

general gaps. Applied Intelligence, 2015, 42(3): 566-580.
[23] Yang H, Duan L, Hu B, et al. Mining top-k distinguishing sequential

patterns with gap constraint. Journal of Software, 2015,26: 2994-3009.
[24] Wang HF, Duan L, Zuo J, et al. Efficient mining of distinguishing

sequential patterns without a predefined gap constraint. Chinese Journal

of Computers, 2016, 39(10): 1979-1991.
[25] Wu Y, Shen C, Jiang H, et al. Strict pattern matching under non-

overlapping condition . Science China Information Sciences, 2017, 60(1):
012101.:1-16.

[26] Ding B, Lo D, Han J, Khoo SC. Efficient mining of closed repetitive
gapped subsequences from a sequence database. In: Ioannidis YE, Lee

DL, Ng RT, eds. Proc. of the IEEE 25th Int’l Conf. on Data Engineering

(ICDE). Shanghai: IEEE , 2009. 1024-1035.
[27] Wu Y, Tong Y, Zhu X, et al. NOSEP: Non-overlapping sequence pattern

mining with gap constraints. IEEE Transactions on Cybernetics, DOI:
10.1109/TCYB.2017.2750691.

[28] Wu Y, Tang Z, Jiang H, et al. Approximate pattern matching with gap
constraints. Journal of Information Science, 2016, 42(5): 639-658.

[29] Hu H, Wang H, Li J, et al. An efficient pruning strategy for approximate
string matching over suffix tree. Knowledge and Information Systems,
2016, 49(1): 121-141.

[30] Wu X, Zhu X, He Y, Araslan A. PMBC: Pattern mining from biological
sequences with wildcard constraints. Computers in Biology and Medicine,
2013, 43(5): 481-492.

[31] Lam H, Morchen F, Fradkin D, Calders T. Mining compressing sequen-
tial patterns. Statistical Analysis and Data Mining, 2012, 7(1): 34–52.

[32] Wu X, Qiang J P, Xie F. Pattern matching with flexible wildcards.
Journal of Computer Science and Technology, 2014, 29(5): 740-750.

[33] He D, Wu X, Zhu X. SAIL-APPROX: An efficient on-line algorithm
for approximate pattern matching with wildcards and length constraints.
Bioinformatics and Biomedicine, 2007. BIBM 2007. IEEE International

Conference on. IEEE, 2007: 151-158.
[34] Warmuth MK, Haussler D. On the complexity of iterated shuffle. Journal

of Computer and System Sciences, 1984, 28(3): 345-358.
[35] Bille P, Grtz I L, Vildhj H W, et al. String matching with variable length

gaps. Theoretical Computer Science, 2012, 443: 25-34.
[36] Wu Y, Wu X, Jiang H, et al. A heuristic algorithm for MPMGOOC.

Chinese Journal of Computers, 2011, 34(8): 1452-1462.

Youxi Wu received the PhD degree in theory and
new technology of electrical engineering at Hebei
University of Technology, Tianjin, China. He is
currently a Ph. D. supervisor and a professor with
Hebei University of Technology, Tianjin. His current
research interests include data mining and machine
learning. He is a senior member of CCF and a
member of IEEE.



12

Shasha Li received the master’s degree in computer
science and technology at Hebei University of Tech-
nology, Tianjin, China. Her current research interests
include data mining.

Jingyu Liu received the PhD degree in computer
science and technology at Beijing Institute of Tech-
nology, Beijing, China. He is an associate professor
with Hebei University of Technology, Tianjin. His
current research interests include bioinformatics and
data mining.

Lei Guo received the PhD degree in Theory and
New Technology of Electrical Engineering at Hebei
University of Technology, Tianjin, China. He is
currently a Ph. D. supervisor and a professor with
Hebei University of Technology, Tianjin. His cur-
rent research interests include image processing and
machine learning.

Xindong Wu received the PhD degree from the
University of Edinburgh, Britain. He is a Yangtze
River Scholar at the Hefei University of Technology
(China), and a Professor of Computer Science in
the School of Computing and Informatics at the
University of Louisiana at Lafayette. His research
interests include data mining, big data analytics,
knowledge based systems, and Web information
exploration. He is the steering committee chair of the
IEEE International Conference on Data Mining and
the editor-in-chief of Knowledge and Information

Systems. He is a Fellow of the IEEE and the AAAS.


