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Multi-Dimensional Infrastructure Resilience

Modeling: An Application to Hurricane-Prone

Electric Power Distribution Systems
Roshanak Nateghi, Member, IEEE

Abstract—Despite the scientific consensus on the multivariate
nature of resilience, the majority of the existing approaches
either focus on modeling a single dimension of resilience, or
model its various dimensions separately. In this paper, we propose
leveraging one of the most recent advances in statistical machine
learning to characterize the multivariate inoperability of an
electric power distribution system as a non-linear function of
the system’s topology, hurricane hazard characteristics, as well
as the service area’s climate and topography. The model can then
be used as a predictive tool to assess various investment strategies
for enhancing the multivariate resilience of the system. The re-
sults established the number of customers served, tree-trimming
frequency, hurricane intensity, land-cover types and soil moisture
as the key predictors of the distribution system’s multivariate
inoperability. The variable influence heat-map helped identify
the clusters of predictors that jointly influence one or more
measures of inoperability. Moreover, the partial dependence plots
were leveraged to examine the non-linear relationships between
the focal predictors and the various measures of hurricane
impact. The estimated multivariate inoperability model was then
used to assess resilience enhancement strategies. The proposed
approach can help infrastructure managers and urban planners
to approximate the multivariate resilience of infrastructure holis-
tically, predict the system’s resilience under various stochastic
perturbation regimes, and identify effective strategies to improve
the overall resilience of the system.

Index Terms—Infrastructure resilience analytics, hurricane-
induced outages, multi-dimensional resilience modeling, multi-
variate resilience.

I. INTRODUCTION

The U.S. critical infrastructure and the communities that

rely on their services are exceedingly more vulnerable to

climatic shocks [1, 2]. The need for accurate and holistic

disaster resilience modeling has been brought back to the lime-

light following the recent devastations by hurricanes Harvey,

Irma, Jose and Maria that have crippled many communities

in the U.S. and the Caribbean Islands. The expansive power

outages in the aftermath of Hurricane Maria in Puerto Rico,

which left much of the island in the dark and constrained their

access to clean water, have had dire economic repercussions

and adversely affected the public health and social well-

being of many residents in Puerto Rico. Mountains of debris

still remaining months after the impacts of hurricanes Irma

and Harvey in Florida and Texas has negatively affected the

business continuity and public health of many communities

R. Nateghi is jointly appointed between the School of of Industrial Engi-
neering, and the Division of Environmental and Ecological Engineering at Pur-
due University, West Lafayette, IN, 47906 USA e-mail: Rnateghi@purdue.edu

Manuscript received December 05, 2017

in these affected regions. These recent devastations call for a

paradigm shift to a more holistic conceptualization of disaster

resilience in order to foster improved adaptive capacity in the

affected communities.

Resilience engineering is an emerging field, concerned

with conceptualizing infrastructure performance and assessing

system inoperability during and after perturbations and shocks

such as climate hazards [3–5]. Accurate and holistic concep-

tualization of infrastructure resilience can facilitate proactive

preparation, response and mitigation planning. It can therefore

strengthen and accelerate infrastructure recovery, foster grace-

ful degradation against hazards, and minimize the large-scale

social costs that are typical of natural hazard impacts.

According to the National Academy of Sciences (NAS),

disaster resilience is defined as “the ability to plan and prepare

for, absorb, recover from, and adapt to adverse events” [6].

As stated by Linkov et al. [7] “resilience, as a property of

a system, must transition from just a buzzword to an oper-

ational paradigm for system management, especially under

climate change.” Despite much progress in conceptualizing

resilience, significant knowledge gaps remain [8, 9]. These

gaps are rooted in “the failure to recognize the necessity

of a pluralistic understanding of resilience that limits the

perspective of many scholars working in resilience research”

[10]. Despite the consensus on the multivariate nature of

resilience in the scientific community [11–15], many of the

infrastructure resilience models focus on estimating a single—

often technical—dimension of resilience. For example, many

approaches involve modeling a single performance measure

such as the number of the protective devices activated during

disaster impacts (e.g., [16–19]), the duration of loss of service

(e.g., [20, 21]) and the fraction of customers without power

(e.g., [22–24]). More recently, it has been suggested to in-

clude the stress dimension in resilience assessment to mimic

the conceptualization of resilience in material science [25].

The more ‘holistic’, multi-dimensional conceptualization of

resilience that also includes other important dimensions such

as social and economic factors is either based on aggregating

multiple resilience indicators [26] which fall short of capturing

the dynamic nature of resilience, or involves modeling the

various dimensions of resilience separately [12] which could

under-estimate the synergies between different dimensions of

resilience.

To address the gaps identified above, we propose a novel

empirical framework to conceptualize the multivariate re-

silience of an infrastructure system. Considering that “re-

Digital Object Identifier: 10.1109/ACCESS.2018.2792680

2169-3536 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



2

silience is better understood as the outcome of a process

that includes: sensing, learning, anticipation, and adaptation

[9]”, we illustrate how various types of data (i.e.,‘sensing’)

can be leveraged to estimate the multivariate inoperability

of an infrastructure system as a function of the system’s

topology, hazard characteristics and other environmental con-

ditions (i.e.,‘learning’). The model can then be used as a

predictive tool to best prepare for and response to future

climate hazards (i.e.,‘anticipating’). Moreover, the model can

be used to simulate ‘what-if’ scenarios to identify strategies

for enhancing the resilience of the system (i.e.,‘adaptation’).

To illustrate the applicability of the proposed approach,

data from Hurricane Katrina’s impact on an electric power

distribution system located in the Central Gulf Coast Region

of the U.S. were used. More specifically, a recently developed

multivariate, ensemble, tree boosting algorithm was leveraged

to (a) simultaneously estimate the spatial distribution of the

number of electric power outages, the number of customers

without power and the cumulative length of power restoration,

and (b) establish the cluster of focal variables that are critical

for approximating the multivariate resilience manifold.

The structure of this paper is as follows. The motivation

behind conducting multi-dimensional infrastructure resilience

modeling is expanded upon in Section II. The data and

methods are described in Section III. The results are delineated

in Section IV, followed by a summary of the concluding

remarks in Section V.

II. BACKGROUND

Reliable provision of services such as energy, water and

mobility, supplied through critical infrastructure, is essential

for ensuring the national security and sustaining the eco-

nomic productivity and social well-being of every society. The

U.S. critical infrastructure is increasingly prone to climatic

risks that cause billions of dollars in losses annually [27].

For example, the electric disturbance event data (OE-417)

collected by the Department of Energy revealed that severe

climate events were among the most frequent cause of power

outages in the U.S. since the early 2000’s [28, 29]. Due to

the increased vulnerability of our infrastructure to climate

extremes, resilience has gained national attention in recent

times [6, 30]. Significant research progress has been made

in modeling infrastructure resilience. The existing approaches

can be categorized as: (a) conceptual and analytical techniques

[1, 4, 31]; (b) hazard and impact simulation [23, 32, 33]; (c)

system optimization [1, 34–37]; (d) probabilistic risk analysis

[12, 25, 38–40]; (e) statistical methods and machine learning

algorithms [20, 22, 24, 41–44]; (f) robust decision-making

under uncertainty [45–49]; (g) input-output modeling [50, 51];

and (h) network-based approaches and graph theory [52–55].

While the existing approaches have contributed to our

capability to support resilience enhancement decisions, fun-

damental research gaps remain. More specifically, the exist-

ing infrastructure resilience models either (a) characterize a

single—often technical—dimension of resilience (e.g., model-

ing the recovery of interrupted service by [20, 21, 56, 57]);

rendering them unsuitable for multi-dimensional analysis of

the resilience metrics and integrating other (e.g., social) dimen-

sions of resilience [58], or (b) model the various dimension

of resilience separately (e.g., [12]); which, while helpful in

providing a pluralistic understanding of the resilience of the

system, fall short of characterizing the potential synergies and

interactions between the different dimensions of resilience.

To address these gaps, we propose leveraging a data-driven,

multivariate analysis to model the complex interplay between

stochastic hazards, system topology, and the topography of

the region and accurately approximate the multi-dimensional

resilience manifold over the high-dimensional parameter space

that characterizes the entire system of interest. Since oper-

ationalizing resilience hinges on identifying “the resilience

of what, to what, and for whom” [59], and requires clear

systems boundaries, we will assess the resilience of a power

distribution system to hurricanes from the perspective of

the state utility commission and the utility company serving

the region. While we leverage data from an electric power

distribution system impacted by hurricane Katrina as a case

study, in the presence of adequate data, the approach can be

extended to any other type of urban infrastructure impacted

by hydro-meteorological hazards. The central thesis in this

paper is that leveraging a multivariate approach that allows

for simultaneous estimation of the joint spatial distribution of

the various quantitative measure of inoperability—as a (non-

linear) function of hazard characteristics, system’s topology,

and the region’s land-cover and topography—can facilitate a

more holistic characterization of a system’s resilience and thus

can motivate more effective investment prioritization schemes.

III. DATA AND METHODS

A. Data

Previous literature has established a wide range of variables

that are necessary for estimating electric power outage risks

and resilience due to extreme weather and climate events

[2, 17, 20–22, 60, 61]. The data used in this paper were

provided by an electric utility company that serves the central

Gulf Coast region of the U.S. The electric utility’s service area

consists of 6,681 grid cells with dimension of 12,000×8,000

ft (3.66×2.44 km). The service area under study was heavily

impacted by Hurricane Katrina, with more than 80% of the

customers affected and outage restorations taking up to 12

days.

The categories of the input data used in the analysis are

summarized in Table I. The first three rows in Table I represent

the multivariate response. More specifically, outage duration

represents the cumulative sum of the duration of power outage

restorations (in minutes). Outage counts refer to the number of

protective devices that were activated and led to non-transitory

(i.e., < 5 minutes) loss of power. The number of customers

affected refers to the number of customer meters that lost

power during Hurricane Katrina.

The independent variables used in this analysis comprise of

sixty-three covariates that characterize the hurricane hazards,

the topology of the system as well as the topography, climate

and land-cover of the service area. To characterize the inten-

sity of the hurricane, the Willoughby’s parametric wind-filed
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model [62, 63] was used to estimate the 3-second gust wind

speeds and the durations of winds (in minutes) blowing above

20 ms−1 at the centroid of each grid cell. The threshold of

20 ms−1 is based on the design wind-load of the utility poles

in the service area [20]. The tree-trimming metric represents

a length-weighted time since last clearing for a given grid-

cell, with larger values indicating less frequent tree-trimming

[2]. Details of the number of poles, transformers, switches,

relays, re-closers as well as miles of overhead and underground

lines, as well as the number of customers served in each grid-

cell were provided by the utility company. The topography

of the service area was characterized by various statistics

associated with the elevation, aspect ratio and slope of the

terrain. Compound topographical index (CTI)—a measure of

relative wetness of a particular region—as well as soil-type and

soil moisture anomaly (the day before the hurricane’s landfall,

at various depths of 0-10 cm, 10-40 cm, 40-clay) were also

included in the analysis. As suggested by [64] standardized

precipitation index (SPI)—a statistical measure of precipitation

deviations from normal conditions—for six different lagged

times of 1, 2 , 3 , 6 , 12 and 24 months, were used. The

SPI index was used as a proxy for the drought or wetness

conditions of the region. The mean annual precipitation (MAP)

in each grid-cell was used as a proxy for latitudinal diversity

gradient [20, 65]. Various types of land cover were also

included in the analysis in order to take into account the

differences in power outage risks in different land-uses [66].

The land cover data used in the analysis is available from the

National Land Cover Database (NLCD) 2001. The NLCD’s 21

types of land cover were aggregated into the following eight

classes of:

1) water: open water or areas with permanent ice/snow

cover;

2) developed: including residential, commercial, and indus-

trial areas;

The developed area is partitioned based on the intensity

of development. The lowest intensity development is

open space with impervious cover below 20% (e.g.,

parks and golf courses). The low intensity development

has impervious cover in the range of 20-49% (e.g.,

single-family housing). The medium intensity develop-

ment has higher impervious cover in the range of 50-

70%. The high intensity development has impervious

cover above 80% (e.g., apartment complexes, com-

mercial or industrial complexes). The percentage cover

development for each class of land cover was calculated

at the grid cell level and included into the analysis.

3) barren: areas covered by rock, sand and silt with minimal

vegetation cover;

4) forest: areas covered with trees taller than 6 meters;

5) shrub-lands: covered with woody vegetation and trees

shorter than 6 meters;

6) grass: areas dominated by herbaceous vegetation that are

not subjected to intensive landscaping management;

7) cultivated: areas subjected to intensive management such

as pastures or cultivated crops;

8) wetland: areas with soil that is saturated or covered with

TABLE I: Summary of the input data

Variable Description

Outage Duration Cumulative duration (mins) of restoration
Outage Counts No. of protective devices activated leading

to non-transitory loss of power
Customers Affected No. of customer meters without power

Wind Speed 3-seconds wind gusts (ms
−1)

Wind Duration Duration (mins) of winds above 20 ms
−1

Tree Trimming Length-weighted time since last trimming
Protective devices No. of poles, switches and transformers
Overhead Miles of overhead lines
Aspect Ratio Min, Max, x̄, σ̂ of the land’s aspect ratio
Elevation Min, Max, x̄, σ̂ of the land’s elevation
Slope Min,Max, x̄, σ̂ of the slope of the land
MAP Mean annual precipitation
SPI Standardized precipitation index
CTI Compound topographic index
Soil Soil moisture prior to a hurricane landfall,

soil type, and soil clay content
Land cover Water, barren, forest, shrub, pasture,

wetland, developed

TABLE II: Summary statistics of the multivariate response

Response Variable Mean Skewness Kurtosis

No. of Customers Affected 90.0 8.6 96.6
Outage Duration 3082.0 7.7 77.9
Outage Counts 78.0 6.7 63.6

water.

The summary statistics of the multivariate response, i.e.,

the duration and number of outages, as well as the number of

customers without power are summarized in Table II.

All of the three response variables are right-skewed, with the

number of customers without power more heavy-tailed than

the other variables.

B. Data-driven, Multi-dimensional Resilience Modeling

We propose leveraging one of the most recent advancements

in the field of supervised learning theory to spatially estimate

the joint distribution of various dimensions of resilience as a

(non-linear) function of hazard characteristics, system topol-

ogy and the area’s climate, land-cover and topography. In this

section, we first provide a theoretical grounding in the general

area of supervised learning, and then focus on introducing

ensemble, tree-based learning methods. The introduction will

be followed by a brief description of the recent multivariate

extension of ensemble tree boosting that was leveraged in this

paper. The section will close by summarizing the proposed

data-driven, multi-dimensional resilience modeling approach.

1) Theoretical Background Information: Supervised learn-

ing has been extensively used in the areas of infrastructure risk,

reliability and resilience modeling [2, 18, 21, 22, 24, 28, 67–

71].

Mathematically, supervised learning can be described as:

y = f(X) + ǫ where y represents the process of interest; X

represents the of input variables used to approximate the

response function; and the stochastic, additive noise ǫ is

referred to as irreducible error. The goal of supervised learning

is to leverage data and approximate the response surface such
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that the loss function of interest L is minimized over the

domain of the input space X [72–74].

L =

∫
D

ω(X)∆[f̂(X), f(X)]dX (1)

where ω represents a weight function and ∆ represents some

measure of distance (e.g., Euclidean or Mahalanobis distance)

[73, 74].

label=–

• Parametric versus Non-Parametric Supervised Learning

Methods:

Supervised learning algorithms range widely in their degree

of complexity and flexibility and can be either parametric

or non-parametric. The most popular approach is parametric

modeling (e.g., generalized linear regression) where a para-

metric function is fitted to the data (e.g., via least-squares),

such that: f̂(X) = g(X|{β̂j}
p
1). The advantage of parametric

modeling is that by assuming a functional form, the problem

of estimating the complex response function is reduced to

estimating a set of β parameters, which renders the method

simple to compute and interpret. However, such an approach

is ‘rigid’, and its limited flexibility means that it often fails to

approximate the true function accurately.

On the other hand, non-parametric models such as artificial

neural networks, support vector machines, and tree-based

algorithms do not make assumptions about the shape of the

function. Instead, they use data in novel ways to approximate

it. While they have the advantage of not assuming unrealistic

functional form and thereby better approximating the true

function, they can be very data-intensive.

label=–

• Tree-based Algorithms:

One class of non-parametric algorithms that has been widely

popular in infrastructure risk and resilience analysis is en-

semble tree-based methods [16, 18, 20, 22, 64, 67]. Tee-

based methods are widely popular because while they are

competitive, in-terms of predictive accuracy, with many of

the of state-of-the-art algorithms [75], the lend themselves

more easily to interpretation and statistical inferencing when

compared to ‘black-box’ methods such as artificial neural

networks and support vector machines [74].

Tree-based data-miners (e.g., CART) are ‘learned’ by split-

ting the data space recursively into nodes [74]. Mathematically,

they can be represented by the following piecewise function:

F (X) =
∑J

j=1
λjI(X ∈ Rj) (2)

where the predictors split the data recursively into Rj regions,

and λj is the prediction in each region [74]. The indicator

function I(X ∈ Rj) identifies which observations in X

belong to region Rj . Therefore, the tree T (X) is a piecewise

approximation of the unknown, but complex response function

F (X). To avoid over-fitting, the grown tree is “pruned’ back

based on a “cost-complexity criterion” [76]. In addition to

accounting for non-linearities and interactions, decision tree-

based algorithms can impute missing values in the data using a

procedure called “surrogate splitting” [74]. In the presence of

missing values in the splitting variable, a “surrogate” variable

is identified and selected that best approximates the original

split value. Individual observations with missing values are

then modeled according to the split on the surrogate rather

than the original splitting variable. label=–

• Tree Ensembles:

Meta-algorithms such as “boosting’ and “bagging’ can be

applied to tree algorithms to create ensembles [74]. Tree-

ensembles are robust to outliers and noise [74]. They of-

ten exhibit superior predictive accuracy compared to most

other state-of-the-art statistical and machine-learning algo-

rithms [2, 18, 20, 67, 75], rendering them an ideal approach

for infrastructure risk, reliability, and resilience analysis. In

bagging (aka bootstrap aggregating) multiple trees are built

using bootstrap samples of the training data, and the pre-

diction of the ensemble is the average of predictions across

all trees. Bagging reduces the prediction error by decreasing

variance and minimizing the influence of outliers. Boosting,

on the other hand, builds a tree ensemble by fitting trees that

incrementally enhance the predictive accuracy of the model.

More specifically, boosting involves iteratively creating an

ensemble of trees such that in each iteration a greater weight

is given to the observations that have been poorly predicted in

previous trees [77]. In other words, the subsequent trees boost

the performance of the overall model by selecting predictor

variables and split values that better estimate the observations

that are most poorly predicted. This procedure of iteratively

fitting decision trees to the poorly predicted observations has

been demonstrated to be equivalent to estimating an additive

model of decision trees via the gradient descent algorithm

[74, 78] as shown below:

y = F (X) =
∑M

m=1
Tm(X, θm)ν (3)

Where F (X) is approximated using the additive model of

m = 1, . . .M trees. Since there is no closed form solution for

estimating the parameters θm simultaneously across all trees,

the gradient descent algorithm is often used for parameter

estimation. In other words, the parameters are estimated by

fitting each tree to the first derivative of the loss function (i.e.,

the gradient) [79]. Each tree m has split variables θm and

values of ν represents the step-size and controls how quickly

the model fits the observed data. The size and depth of the

trees, and the step-size ν are meta-parameters that regulate

the complexity of the ensemble model, and are typically tuned

based on out-of-sample cross-validation.
2) Multivariate, Tree Boosting: The approach leveraged

in this paper is based on a recently developed multivariate

tree boosting algorithm [78] which allows for identifying the

key predictors of the multivariate response manifold with

non-linear effects and interactions. Multivariate tree boosting

algorithm also facilitates selecting predictors that account

for the covariance between the pairs of response variables;

which can be implemented by maximizing the covariance

discrepancy (D) at each gradient descent step in growing trees.

Maximizing D directly corresponds to selecting predictors that

account for the covariance in the multivariate response.

The covariance discrepancy can be mathematically repre-

sented as:
Dm,r = ||Σ̂(m−1) − Σ̂(m,r)|| (4)
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where D measures the discrepancy between the sample co-

variance matrix of the response variables at the previous step

Σ̂(m−1), and the sample covariance matrix at step m, Σ̂(m,r),

after training a tree to the response variable y(r). At the first

step, the sample covariance matrix is: Σ̂(0) = S. It can be in-

ferred that Dm,r measures the amount of covariance explained

in the multivariate response by the predictors selected to fit the

tree to y(r) in step m. D therefore, measures the improvement

in how well the model fits the sample covariance matrix at each

iteration. The multivariate ensemble tree boosting algorithm is

summarized below:

Algorithm 1 Multivariate Ensemble Tree Boosting, using

Covariance Discrepancy D [78]

1: for m in 1, . . . ,M steps (trees) do

2: for r in 1, . . . , R quantitative response variables do

3: train tree m(r) to residuals, and estimate the covari-

ance discrepancy Dm,r (equation 4)

4: end for

5: Select the response y(r) corresponding to the tree that

yielded the maximum Dm,r (equation 4)

6: Update residuals by subtracting the predictions of the

tree fitted to y(r), multiplied by step-size.

7: end for

In the first iteration (i.e., m = 1), the model predictions

are set to the average values of the response variables, and

the residuals are estimated by measuring the deviations of the

response variables from their average values. The trees are

estimated for each response variable by minimizing the L2-

norm (i.e., the squared error loss). At each gradient descent

iteration m, one tree is chosen whose selected predictors lead

to maximized covariance discrepancy (equation 4).

The optimal number of the tree ensemble is selected based

on cross-validation. More specifically, the number of trees that

lead to the minimum mean squared error (shown below) will

be selected:

MSE =
1

nR

∑n

i=1
(Yi − Ŷi)

2
(5)

where Yi is the vector of observations in each grid-cell i =
1, . . . , n that were not used in the training the model for R

response variables and Ŷi is the predicted values based on the

multivariate boosted trees.

Inferences for the multi-dimensional models developed us-

ing the multivariate tree boosting algorithm can be made

based on the following metrics of: (1) measuring the relative

influence of each predictor on individual outcome variables,

and identifying the clusters of predictors that jointly influence

one or more response variables; (2) visualizing the partial

dependence between the predictors and the outcome variables;

and (3) detecting predictors with potential non-linear effects.

Each of these metrics will be briefly discussed below:

label=–

• Variable selection based on relative influence of individ-

ual predictors:

For ensemble, tree-based methods, the relative influence of

a given predictor is characterized by measuring the sum of

squared error due to any split on that predictor, summed over

all trees in the the prediction model [74, 80]. The calculated

sums of squared errors help rank the independent variables

according to their relative influence, which is often reported

as a percent of the total reductions in error attributed to

all predictors. In the case of multivariate response variables,

the univariate relative influence is first calculated for each

predictor and for each of the response variables. Summing

the importance over all response variables establishes a global

measure of importance for the predictor across all response

variables. Moreover, to help with the multivariate, tree-based

modeling inferences, the predictors can be grouped using

clustering techniques. More specifically, The relative influence

measures can be clustered by first calculating the distance

(e.g., Euclidean or Manhattan distance) between columns

(i.e., the predictors) and the rows (i.e., pairs of response

variables), respectively. Predictors that explain similar patterns

of covariance in the response variables will be closer to one

another as will pairs of response variables that are functions of

a similar subset of predictor variables. The calculated distance

matrices can be used to group the predictors that explain

covariance in similar pairs of response variables, and the pairs

of responses that are dependent on similar subsets of predictors

by hierarchical clustering technique [78, 81].

label=–

• Visualizing the partial dependence between the predictors

and the response variables:

Partial Dependence Plots (PDP) [74, 82] are usually leveraged

to make statistical inferences based on non-parametric models

such as ensemble tree-based methods. The partial dependence

between the multivariate response and the input variable of

interest can be calculated using the following equation [74].

fj(xj) = Ex
−j

[f(xj , x−j)] =

∫
f(xj , x−j)dP (x

−j) (6)

The estimated PDP provides the average value of the response

function where all other input variables are accounted for, and

varies over its marginal distribution.

label=–

• Detecting predictors with potentially non-linear and non-

additive effects:

In tree-based models, two-way interactions between the input

variables can be detected by checking if the estimated values

(as a function of the pair of predictors) deviate from the

linear combination of the two predictors. Such deviations

signal that the joint influence of the predictors is not additive

and potentially has a non-linear effect [78, 83]. Significant

deviations from additivity can be identified by estimating the

response as a function of any pair of predictors, over a grid of

all possible levels of the two predictors. The estimated values

are then regressed onto the grid. Large residuals resulting from

this model would indicate that the estimated values are not

a linear combination of the predictors, thereby signaling the

presence of non-linearity or interaction effects. For compu-

tational simplicity, and in the presence of many predictors,

detecting potential non-linearities can be focused on the most

important predictors which are identified via calculating the

relative influence of the predictors described above.
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3) Proposed Approach: The multi-dimensional infrastruc-

ture resilience modeling approach is algorithmically summa-

rized below:

Algorithm 2 Data-driven, Multivariate, Resilience Modeling

Approach

1: for a given hazard environment do

2: identify the multivariate measures of system inoperabil-

ity

3: collect relevant data

4: leverage Algorithm 1 (Section III-B2) to estimate the

multivariate inoperability measures as a function the

input parameter space

5: asses model accuracy and create spatial visualization

6: if accuracy > acceptable threshold set by the stake-

holder (e.g., errors < 10%) then

7: identify the key predictors of the multivariate inop-

erability and plot heat-maps

8: asses the (non-linear) influence of the key predictors

on the multivariate response through partial depen-

dence plots

9: else

10: improve data collection, further model tuning

11: end if

12: end for

13: generate credible resilience investment scenarios

14: for Scenarios s in 1 . . . S do

15: run the multivariate algorithm and calculate %improve-

ment in the multivariate resilience

16: end for

17: identify the non-dominated solution(s)

The approach warrants direct engagement with stakeholders

to identify the relevant resilience metrics and acceptable accu-

racy thresholds. The implementation of the proposed approach

is presented in the next section.

IV. RESULTS

An ensemble of boosted, multivariate trees was trained with

the data described in Section III-A. The multivariate response

variables include (1) the cumulative duration of outages, (2)

the number of customer meters without power, and (3) the

number of outages (i.e., the number of protective devices

activated, leading to non-transitory loss of power). In building

each of the trees in the ensemble model, 50% bootstrap sample

of the data were used to train the multivariate model and

the remaining 50% holdout sample was used to estimate the

predictive accuracy. The optimal number of multivariate trees

were selected based on five-fold cross-validation [74]; which

suggested 435 trees would yield the lowest out-of-sample

prediction error.

As discussed earlier in Section III-B, the goal of supervised

learning is to leverage data to best approximate the response

surface; and the performance of a trained supervised learner

is typically assessed by measuring how much the predictions

deviate from the observed data (e.g., via mean absolute

deviation and/or mean squared error) [74]. The performance

TABLE III: Model Performance

Variable Model MSE MAE

Outage Duration Multivariate Model 0.28 0.22
Null Model 0.42 0.99

No. of Customers-out Multivariate Model 0.27 0.18
Null Model 0.38 0.99

Outage Counts Multivariate Model 0.22 0.23
Null Model 0.47 0.99

of the multivariate model in predicting each of the response

variables is summarized in Table III. The table shows the

mean squared error (MSE), and the mean absolute deviation

(MAE) associated with the model’s prediction as well as the

error associated with a null (aka ‘mean-only’ model); where

the mean of the response is used instead of a statistical

model. In statistical analyses, the null model is used as a

benchmark to assess the degree to which a statistical model

is capable of prediction beyond it’s historical average. It can

be seen that the multivariate, ensemble model is a substantial

improvement over the null model and the difference between

the errors associated with the multivariate and null models are

statistically significant (based on the results of non-parametric

sign-tests with p-values < 2.2 × 10−16 for all pairs of error

vectors).

It can also be observed from Figure 1 that the multivariate

model yields reasonable fit to the data. The correlations

between the predicted and observed values are: 85% for the

cumulative outage durations, 86% for the number of customer-

meters out, and 88% for the number of outages. Note that the

outcome variables were standardized to avoid biased variable

selection due to different scales in the multivariate response.

Figure 2 visualizes the spatial distribution of the model’s

errors in the region of interest. Note that the state and

county boundaries are not depicted to keep the region under

study anonymous. It can be seen that the percentage error in

most areas are below 10%. The red squares represent over-

prediction and the blue squares represent under-prediction.

The map reveals that the model tends to over-predict in urban

areas and under-predict in rural communities. Moreover, the

few grid-cells with percentage errors higher than 10% tend

to be primarily in urban regions. We hypothesize that adding

other attributes that can help capture the structural differences

between rural and urban counties may help improve the

model’s performance.

Figure 3 depicts the heat-map of the relative variable influ-

ence for the most important predictors which were selected

and ranked based on their contribution to the out-of-sample

accuracy of the multivariate model. The heat-map is a useful

visualization tool since it also leverages hierarchical clustering

to group the most important predictors that explain similar

patterns in the covariance of the response manifold. Inspecting

Figure 3 reveals that the number of customers served in each

grid-cell, and the utility company’s tree-trimming frequency

are the most important predictors of the multivariate inop-

erability measure. The association between the number of

customers and the multivariate response is intuitive, since a

larger number of customers indicates a higher extent of the

vulnerability of the system to (climate) hazards. Moreover,
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Fig. 1: Visualization of model performance

identification of trimming cycles as the key predictor is con-

sistent with the previous research [16, 40, 84] that established

trees as the key predictor of storm-induced damage. Figure 3

also reveals that the number of customers is most predictive of

the number of customer-meters without power (with a relative

importance of 54.3), and that the trimming frequency is most

predictive of the number of outages (with a relative importance

of 20.5). The measures of hurricanes intensity (i.e., wind-

gusts and durations of strong winds) are more predictive of

the duration of recovery as opposed to the number of outages

Fig. 2: Spatial visualization of model’s performance. The areas in
red represent over-prediction and the blue areas represent under-
prediction

and customer-meters out. This is expected since more intense

hurricanes are associated with higher likelihoods of damaged

assets which may need to be replaced and therefore cause

longer recovery rates. Figure 3 also shows that while various

types of land-cover (e.g., low, medium and high development

areas) are more predictive of the number of customers with-

out power, the service area’s climate and topography (e.g.,

minimum and maximum elevation, standardized precipitation

index, saturated soil and standard deviation of the compound

topographic index) are more predictive of outage duration.

This finding is consistent with the anecdotal experiences

of post-disaster responders, as the area’s topography (e.g.,
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Fig. 3: Variable Influence

Fig. 4: Partial dependence plot of the number of outages versus
trimming cycles index and the number of customers served

elevation) and level of soil saturation can hamper the response

crew’s access to the heavily impacted areas. The importance

of land-cover types in predicting the multivariate response

is not surprising. Developed open spaces and medium in-

tensity developments are generally associated with suburban

neighborhoods, while the high intensity developed areas are

associated with urban regions; all of which are endowed with

a relatively high presence of electric power distribution system

assets. Developed land-cover type, therefore, serves as proxy

variables for the varying degree of the vulnerability of the

electric power infrastructure system in these areas.

To examine the (non-linear) influence of the most important

predictors on the inoperability measure, partial dependencies

were plotted. The functional form of the partial dependence of

each of the response variables on the tree-trimming frequency

and the number of customers served in each grid-cell were

found to be very similar; differing only in the range of the

response values along the z axis. For the sake of brevity, we

have plotted the partial dependence of the number of outages

on the tree-trimming index and the number of customers

served.

Figure 4 reveals that higher numbers of customers and less

frequent tree-trimming (i.e., the higher values of the trimming

index) are both associated with more outages. The small dip

in Figure 4 for the number of customers between 2000–

4000 and the plateau after a threshold of 6000 customers

can be attributed to more developed urban areas with mostly

Fig. 5: Partial dependence plot of outage durations versus duration
of strong winds and 3-second gust wind-speed

under-grounded power distribution systems that tend to be less

vulnerable to storm impacts.

Plotting the hurricane intensity versus the cumulative dura-

tion of recovery reveals interesting threshold effects that are

critical in engineering resilience modeling. Figure 5 reveals

that experiencing wind-gusts of over 25 ms−1 and strong

winds blowing over 30 minutes are associated with a sig-

nificant step-function increase in outage duration. This result

has very important implications, particularly for the resilience

engineering community which assesses the fragility of power

systems assets as a function of peak winds alone, and does

not account for the durations of strong winds.

A. Scenario-based Analysis

One of the primary goals of applying resilience theory to

empirical case studies is to assess the current state of the sys-

tem and predict the system’s inoperability and resilience under

(uncertain) perturbations [15]. Such empirical assessments can

then be leveraged by stakeholders and decision makers to (1)

identify actions that may alter the system’s resilience, and (2)

identify strategies that focus on enhancing particular priorities

such as improving the social equity in addition to ensuring

the overall economic prosperity [15]. The model presented

earlier in this paper can be used to implement such scenario-

based analyses and provide support for decisions to improve

the resilience of the system to future impacts.

The variable influence heat-map depicted in Figure 3 indi-

cates that the tree-trimming frequency is a key predictors of

the multivariate resilience metric. The decision-makers of the

region could potentially contemplate two competing options

of either increasing the frequency of tree-trimming in the

more densely-vegetated regions or under-grounding the most

vulnerable distribution assets in the heavily impacted areas.

The analysis helped identify 50 densely-vegetated grid-cells

with the least frequent trimming cycles that had rendered

the system vulnerable during the hurricane impact. Trimming

the trees in these areas—to ensure minimized risk of tree-

induced outages—can help significantly shrink the tail of the

multivariate outage distribution. Moreover, we identified 5
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TABLE IV: Percentage change in inoperability (i.e., the multivariate
response manifold) associated with resilience investment scenarios
of (1) more frequent tree-trimming, and (2) under-grounding the
distribution system in the most vulnerable grid-cells. The percentage
reduction has been calculated relative to the baseline (or ‘do nothing’
scenario)

Scenario Durations Customers Out Outage No.

Tree-Trimming -68% -11% -56%
Under-grounding -84% -79% -65%

adjacent (coastal) grid-cells that were most vulnerable to the

hurricane’s impact. Under-grounding these 5 grid-cells could

also mitigate the impact of the hurricane. More specifically,

running the multivariate prediction model for the two hypo-

thetical resilience investment scenarios of: 1) more aggressive

and frequent trimming of the trees in the identified grid-cells

and 2) under-grounding the most vulnerable sections of the

distribution system in 5 (coastal) grid cells can help assess

the potential alleviating effects of each scenario under a future

hurricane impact with similar hazard characteristics to Katrina.

The results are summarized in Table IV. It can be seen that

under-grounding only 5 grid-cells can be more effective in

mitigating the hurricane impacts than frequent tree-trimming

in 50 grid-cells. The results also suggest that while a more

frequent tree-trimming strategy can be compelling, it will be

more effective for reducing the number and duration of outages

and will be a less effective measure for reducing the number

of customers without power.

Under constrained resources, the optimal resilience invest-

ment decision will be based on the least cost solution which

has the maximum benefit in-terms of reduced overall impacts.

Additional information about the cost of under-grounding the

vulnerable coastal region of around 42 km2 versus conducting

a more frequent tree-trimming in an area of about 432 km2,

and also further knowledge of the types of customers who

will experience reduced outages and their concomitant value

of lost load (VOLL) estimates [1] can help make such critical

resource allocation decisions. A similar analysis could also

be implemented for an ensemble of simulated hurricanes,

with varying intensities, to compare how the resilience of the

system would differ under stronger or weaker storms.

V. CONCLUSION

Infrastructure resilience is an emerging area of research

which is concerned with conceptualizing and measuring the

performance and inoperability of critical systems during and

after the impact of extreme events. Despite the scientific

consensus on the multifaceted nature of the resilience, the

majority of the existing efforts in the engineering community

treat resilience as a 1−dimensional concept, and implement

univariate analysis to characterize the resilience of the system

of interest. In this paper, we propose leveraging a data-driven,

multivariate framework to characterize the multi-dimensional

resilience of a system. The proposed framework allows for

establishing the clusters of focal variables that are critical for

estimating the multivariate resilience manifold. Approximating

the multivariate resilience, combined with a scenario-based

approach—for considering alternative future risk-mitigation

investment strategies—provide a powerful surrogate model

of the current state of resilience of the system which can

help characterize the likelihood of change in the multivariate

resilience under specified systems conditions and stochastic

perturbation regimes.

We conducted the empirical multivariate resilience analysis

for a power distribution system impacted by Hurricane Ka-

trina. The model allowed for simultaneously predicting the

spatial distribution of the number of outages, the number of

customers without power and the total cumulative outage dura-

tions at each grid-cell with reasonable accuracy. Moreover, the

model helped identify the clusters of focal variables such as the

number of customers served, tree-trimming cycles, land-cover

types and soil moisture levels that are key to explaining the

covariance of the multivariate response. The developed model

can adequately capture the non-linear dependencies and the

hierarchical structure of the data. Subject to data availability,

the proposed multi-dimensional resilience modeling approach

can be easily extended to account for other (quantitative)

resilience metrics of interest. This type of analysis allows the

decision makers to understand the key factors in determining

the multivariate resilience of the system, and can be a powerful

tool for assessing the effectiveness of alternative investment

decisions in improving the various dimensions of the resilience

of the system of interest.
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