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Abstract

This paper examines how features extracted from full-day data recorded by wearable sensors are able to differentiate between
infants with typical development and those with or at risk for developmental delays. Wearable sensors were used to collect full-day
(8 − 13 hours) leg movement data from infants with typical development (n = 12) and infants at risk for developmental delay
(n = 24). At 24 months, at-risk infants were assessed as having good (n = 10) or poor (n = 9) developmental outcomes. With this
limited size dataset, our statistical analysis indicated that accelerometer features collected earlier in infancy differentiated between
at-risk infants with poor and good outcomes at 24 months, as well as infants with typical development. This paper also tested
how these features performed on a subset of the data for which the infant movement was known, i.e., 5-minute intervals more
representative of clinical observations. Our results on this limited dataset indicated that features for full-day data showed more
group differences than similar features for the 5-minute intervals, supporting the usefulness of full-day movement monitoring.

I. INTRODUCTION

Mobility assessment is an important clinical tool used to

identify individuals with or at risk for mobility impairments,

and to optimize and individualize intervention.

Current mobility analysis typically relies on brief observa-

tions performed by a trained clinician using a clinical rating

scale. One scale commonly used for assessing infant mobility

is the Alberta Infant Motor Score (AIMS) [1]. Assessments

relying on scales have several potential shortcomings: (1)

infants may behave differently when examined in different

settings (e.g., home vs. clinic), (2) the observation period

might be insufficient for the infant to demonstrate his or her

full repertoire of skills, (3) trained healthcare professionals

are needed, and (4) the evaluation is based on subjective

visual observations. Wearable sensors have been proposed as

a method to overcome these shortcomings [2].

Specifically, with the advancement and pervasiveness of

wearable sensors (e.g., Apple Watch, Fitbit), it is now possible

to continuously collect full-day data from individuals. Thus,

there is an unprecedented opportunity to augment a patient’s

clinical visits with these longitudinal datasets. Compared to

traditional monitoring that is most often done at the clinic,

monitoring with wearable technology can be less intrusive

and less expensive, and allows collecting data about overall

activity and health for a longer duration of time. Importantly,
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wearable devices can allow observation of infants in their

natural environment.

While wearable devices have been applied successfully in

the case of identification of cerebral palsy (CP) [3], [4], [5],

they have not been validated when applied to the identification

of infants more broadly at risk of developmental delay. This

paper presents a study in which wearable sensors were used

to record leg movements over a full day from infants broadly

at risk of neuromotor developmental delay.

We analyzed how features extracted from the raw sensor

data (accelerometer and gyroscope) were useful in differen-

tiating between infants at risk of developmental delay and

infants with typical development. We further examined how

the features discriminated between poor or good development

outcomes for the at-risk category assessed at 24 months.

Finally, to evaluate the usefulness of the full-day data, the

performance of these features was compared to that of a

smaller subset of the data, corresponding to a period of 5

minutes. This subset of data was chosen for its temporal

correspondence to typical mobility assessments done in a

controlled clinical environment.

The study design, data collection, data pre-processing, and

features used in the analysis are presented in Section II. The

statistical analysis methodology is described in Section III.

The results are presented in Section IV. We further discuss our

results and related works in V. Finally, we provide conclusions

and discuss future work in Section VI.

II. DATASET

This section explains the study design, describes the dataset,

and elaborates upon the feature extraction.

A. Study Design

In this study∗, full-day leg movement data were collected

from a group of 12 infants with typical development (TD)

∗Institutional Review Board approval was obtained from Oregon Health
& Science University and the University of Southern California. A parent or
legal guardian signed an informed consent form before their child participated.
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Fig. 1: Infant age at time of visit: Connected lines indicate

each infant, while squares represent each visit. TD = typical

development. ARg/ARp = at risk with good/poor outcome at

24 months.

and 24 infants at risk for developmental delay (AR)†. At risk

for developmental delay is defined based on population-based

criteria including pre-term birth and complications at or after

birth. The criteria used to define at risk for developmental

delay can be found, in full, in the reference [8]. Infants

with TD were from singleton, full-term pregnancies with

scores above the 5th percentile on Alberta Infant Motor Scale

(AIMS) [1], [9].

During the study, infants were monitored for three complete

days, at two-month intervals. Age at first visit was 1−8 months

for TD infants and 2−15 months (adjusted for prematurity) for

AR infants as shown in Figure 1. The infants were visited at

their homes each morning, and wearable sensors were placed

on each of their ankles. Wearables were attached with Velcro

to a knee sock and covered by a second sock or custom

leg-warmers with a pocket to hold them in place as shown

in Figure 2. Families were encouraged to go about their

typical daily activities. Infants wore the sensors until bedtime,

resulting in about 8− 13 hours of data.

Most visits included a 5-minute video of the infant’s

spontaneous movement. In this period, infants were awake,

alert, and content. Infants below the age of 7 months were

recorded while they were in a supine position. Infants aged

7 months and older were recorded while supported in a

standing position (held at the trunk), in order to prevent them

from rolling or crawling away during the recording. These

recorded videos were later used by an expert to annotate the

movements of the infants to provide a ground truth, confirming

the accuracy of the movement detection algorithm introduced

in Subsection II-C. The data from this short period, referred to

as controlled environment data, bears similarity to the typical

clinical measurements. It should be noted that not all infant

visits included a controlled environment recording. In total,

120 measures were included in this specific measurement (60

including data from both left and right leg sensors, with each

pair collected in different visits).

In follow-up, the parent or guardian was asked if the child

had any diagnoses at 24 months of age. This information was

†The dataset for infants with typical development was initially collected
and introduced in [6], [7]

Fig. 2: Infant wearing sensors on the front of each ankle.

used to differentiate at-risk infant outcomes. A diagnosis of

developmental delay was labeled as poor (ARp), while no

diagnosis was labeled as good (ARg).

The characteristics of infants who participated in the study

are summarized in Table I. Four infants whose families could

not be reached for follow-up were excluded, as was one who

passed away.

B. Sensor Data

We used APDM Opal wearable sensors [10] (comprised

of 3D-accelerometer, 3D-gyroscope, and 3D-magnetometer).

APDM sensors are wireless, small (48.4mm × 36.1mm ×

12mm) and lightweight (22g) and are thus well suited for this

infant study. The acceleration range is ±6g, and measurements

are reported with 14-bits resolution.

Recordings were made at 20Hz. Recorded data were stored

on the internal memory of each individual sensor. The data

of both left and right sensors were actively synchronized

throughout the recording and were downloaded at the end

of each visit. The video recordings were acquired at 30
frames per second (fps) and later synchronized with wearable

data. During each visit, infants’ anthropometric measurements

(weight, length, and head circumference) were measured,

while motor development status was quantified using the

AIMS [1].

C. Pre-processing and Feature Extraction

For Opal sensors it was reported [11] that pre-processing the

acceleration to remove the effect of gravity introduces further

noise. This was independently verified for the purposes of this

study. Accordingly, the raw acceleration signal was utilized.

To extract single leg movements of infants, we used an

algorithm described in [6]. The algorithm was validated using

the video recordings of infants on the same dataset used for

this study. The algorithm distinguishes separate leg movements

when a leg pauses or changes direction. For each single

movement extracted, the features introduced in [7] were com-

puted: duration of a movement, peak acceleration and average

acceleration during a movement. In our statistical analysis we

included the mean value of the feature computed as the mean

of the daily feature average.
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TABLE I: Baseline characteristics of samples by developmental group, (N=31, TD: Typical development, ARg/ARp: At risk

of developmental delay with good/poor outcome)

Group N Age
Corrected Age a

Male
Length Weight Head

AIMS b Developmental Stage c

<days> <cm> <kg> <cm> C SNC NS

TD 12
162 162

4
60.5 6.4 40.5 19

0
2 10

(74.5-211.5) (74.5-211.5) (59.3-67.5) (5.4-8.3) (38.5-45.3) (8.0-27.5) (16.7%) (83.3%)

ARg 10
260.5 205.5

5
66 6.6 42.3 29.5 3 2 5

(125.0-305.0) (103.0-229.0) (57.0-72.7) (5.5-8.5) (38.0-44.0) (9.0-32.0) (30.0%) (20.0%) (50.0%)

ARp 9
196 102

6
61 6.4 40.3 11

0 0
9

(102.0-254.0) (88.0-154.0) (61.0-63.5) (5.9-7.3) (40.0-41.2) (7.0-15.0) (100.0%)

p-value 0.1 0.45 0.83 >0.99 0.96 0.09
0.04

aPost-term age in days, to account for premature birth
bAlberta Infant Motor Scale (AIMS) raw total score
cC=crawling; SNC=sitting but not yet crawling; NS=not yet sitting

TABLE II: Degree of similarity between right and left legs

Feature Na rb CIc p-value

Duration

91
0.89 0.83 ≤ ρ ≤ 0.92 p ≤ 0.001

Peak Acceleration 0.93 0.90 ≤ ρ ≤ 0.96 p ≤ 0.001
Mean Acceleration 0.92 0.88 ≤ ρ ≤ 0.95 p ≤ 0.001

aTotal number of samples
bThe strength of the relationship
c95% Confidence Interval

III. ANALYSIS

This section analyzes the correlation between left and right

leg sensor data and introduces the statistical methods utilized.

A. Correlation between left and right legs’ data

Since data were collected for both legs, Pearson correlation

coefficients and their 95% confidence intervals (CI) were

calculated in order to assess the degree of similarity for the

salient features extracted from sensors of the left and right

legs. A high correlation for any two methods designed to

measure the same property might in itself suggest that a

widespread sample has been chosen. A high correlation does

not necessarily imply that there is good agreement between the

two methods; consequently, in addition to Pearson-correlation

analysis, Bland-Altman plots were generated to provide a vi-

sual representation of measurement agreement or bias between

data from the two legs.

In this analysis, p-value (the significance level) implied the

probability of the hypothesis that the correlation was due to

chance. Results of this analysis are shown in Table II. Signifi-

cant positive Pearson correlations were observed between right

and left leg data for all outcome measures (all p < 0.001). This

indicated that the results were not due to chance. As there was

no evidence of any strong bias, both legs were considered for

inclusion in the mixed model.

As an example, the scatter and Bland-Altman plots for mean

duration are shown in Figure 3.

B. Statistical Methods

Sample characteristics at baseline (the first visit of every

infant) were summarized and compared by developmental

group. Continuous variables were expressed as median and

interquartile range (IQR) and were analyzed by a Wilcoxon

rank-sum test. Categorical variables were expressed as pro-

portions and were analyzed by Fisher’s exact test. Based on

the results of section III-A, the data from both the left and right

legs of the infants were used in the mixed model analysis.

Linear mixed effects models were used to assess the effects

of developmental group on right and left leg movement

duration, peak acceleration, and mean acceleration. Develop-

mental group and age were included as fixed effects. Due to

the variability of infant ages on-study, and the irregularity

in the time interludes between visit waves for each infant,

corrected age (defined as post-term age in days, to account

for premature birth) was used as the time metric and modeled

as a continuous random effect by right or left leg nested within

infant. Significant effects were assessed using Tukey post-hoc

comparisons.

Although several forms of covariance structure were tested,

the variance components (VC) covariance structure was chosen

due to the limited number of parameters available in our small

sample. Since the rate of change of the outcome measurements

across age can be expected to vary between infants in different

developmental groups, a group×corrected age interaction was

tested and included in the final model only if the term was

significant at p− value < 0.10.

A p − value < 0.10 was considered significant for the

present analysis given our limited sample size. All statistical

analyses were performed using SAS version 9.4, (SAS Insti-

tute, Inc., Cary, NC).

C. Controlled Environment Data vs. Full-Day Data

The full-day data were obtained in an uncontrolled setting

containing unknown factors. Data might contain activity gener-

ated by outside sources, such as a parent picking up the infant.

Moreover, the mood of the infant can be variant over the period

of a full day. Thus, a second analysis employed controlled

environment data capture for a period of 5 minutes; movement

capture in the controlled environment was constrained to

activity exclusive to the child when he or she was alert and

content. Yet, determining whether group differences could be

inferred from noisy, full-day data was a principal goal of this

study, as this kind of data capture represents typical activity

and is environmentally valid. This investigation did not aim to
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Fig. 3: Top: scatter plot of the mean movement duration of the

left and right legs for the full day. Bottom: Bland-Altman plot.

The diagrams illustrate how the measurements of the left and

right leg sensor data were highly correlated. As there was no

evidence of strong bias, both legs were included in the mixed

model analysis.

identify or distinguish among the possible sources of noise in

the full-day data. The same analysis procedures were done for

the controlled environment data, as they were for Section III-B.

IV. RESULTS

A total of 31 infants, across an average of three visits,

contributed 182 measures of right and left leg sensor data.

Infants in different developmental groups were comparable

across all baseline characteristics except developmental stage

(p = 0.04;Table I). Developmental groups did not differ by

median age or corrected age, even after the at-risk group

was split into good and poor developmental outcome groups.

To confirm, the association between developmental stage and

corrected age was tested by a Wilcoxon rank sum test and

found to be significant (p = 0.004).

For the mixed-effects models, a significant group effect was

observed for all three outcomes (duration p = 0.008, peak

acceleration p = 0.03, mean acceleration p = 0.04; Table III),

indicating that the mean duration, peak acceleration, and mean

acceleration of right and left leg movements all varied by

group (TD, ARp, ARg). Typically developing infants’ mean

duration of right and left leg movements [LS-mean (SE):

5.59(0.05)] were significantly higher than both ARp [LS-

mean (SE): 5.22(0.06)] and ARg [LS-mean (SE): 5.27(0.06)]
infants at p < 0.10. Although the mean duration did not vary

with age, the effect of age on duration varied by developmental

group (interaction p = 0.005). ARp infants’ rate of duration

change increased by 0.03(0.01) units per month of infant

age, while TD infants increased by only 0.01(0.02) units

and ARg infants decreased by 0.05(0.02) units. Because

there were no significant group differences in the mean rate

of peak and mean acceleration progression, the interaction

terms were dropped from the relevant models to avoid over-

parameterizing. The mean peak acceleration of right and

left leg movements was significantly lower in ARp infants

compared to TD infants [LS-means (SE): 12.78(0.20) and

13.50(0.17) for ARp and TD infants, respectively]. For mean

acceleration, significant differences were observed between

ARp infants [LS-mean (SE): 10.39(0.06)] and both TD and

ARg infants [LS-mean (SE): 10.56(0.05) and 10.58(0.06),
respectively].

The use of corrected ages in our models accounted for vari-

ability in infant ages between developmental group and across

different visit waves. Since our age adjustments incorporated

both a statistically and biologically significant association

between age and developmental stage, observed differences

in developmental stage at baseline were not considered to be

of concern.

An additional analysis was performed on the data obtained

from the 5-minute controlled condition. Mixed models were

run as described in the methods section. A total of 26 infants

contributing 120 measures of right and left leg sensor data

were included in this analysis. A significant group effect was

observed for peak acceleration (p = 0.04), but not for duration

or mean acceleration as shown in Table IV. The mean peak

acceleration of right and left leg movements was significantly

lower in ARp [LS-mean (SE): 13.33(0.30)] and TD infants

[LS-mean (SE): 13.61(0.36)] compared to ARg [LS-mean

(SE): 14.77(0.35)] infants at p < 0.10. Although there were

no differences by group, the effect of age by group varied for

mean acceleration; the average rate of mean acceleration of

right and left leg movements was lower in ARp infants [LS-

means (SE): 0.01(0.03) units per month] compared to TD
[LS-means (SE): 0.11(0.04) units per month] and ARg infants

[LS-means (SE): 0.10(0.03) units per month]. Due to the small

sample size, results should be interpreted with caution.

V. DISCUSSION

Wearables and nearables are a class of devices that have

been used primarily for activity tracking and fitness monitor-

ing. Fueled by recent advances in electronics miniaturization

and soaring affordability, the newfound ubiquity of such

devices coincides with enhancements in sensor capacity, and

accuracy as well. A new arena arises, both for consumers

in terms of visualizing their everyday behavior, and for re-

searchers, who gain access to anonymous, environmentally

valid motion data from millions of users. Numerous scholars

have used these devices to advance their research interests.
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TABLE III: Mean Duration, Peak Acceleration, and Mean Acceleration by Developmental Group (N = 31, TD: Typical

development, ARg/ARp: At risk of developmental delay with good/poor outcome)

Outcome a Developmental Group
Group Effect Age Effect Group × Age Interaction

TD ARg ARp

Mean Outcome

Duration 5.49 (0.05) b 5.27 (0.06) 5.22 (0.06) c 0.008 0.69 0.005

Peak Acceleration 13.50 (0.17) 13.22 (0.19) 12.78 (0.20) c 0.03 <0.001 NS

Mean Acceleration 10.56 (0.05) 10.58 (0.06) 10.39 (0.06) bc 0.04 <0.001 NS

Mean Rate of Change d

Duration 0.01 (0.02) -0.05 (0.02) 0.03 (0.01) - - -

aData represent least squares means and standard error in the format of [LS-means (SE)].
bSignificantly different from ARg group at Tukey-adjusted p < 0.10.
cSignificantly different from TD group at Tukey-adjusted p < 0.10.
dData represent mean rate of change (SE) for every one month (30 day) increase in infant age.

TABLE IV: Mean Duration, Peak Acceleration, and Mean Acceleration by Developmental Group Under Controlled Conditions

(N = 31, TD: Typical development, ARg/ARp: At risk of developmental delay with good/poor outcome)

Outcome a Developmental Group
Group Effect Age Effect Group × Age Interaction

TD ARg ARp

Mean Outcome

Duration 5.50 (0.14) 5.28 (0.14) 5.63 (0.12) 0.18 0.41 NS

Peak Acceleration 13.61 (0.36) b 14.77 (0.35) 13.33 (0.30) c 0.02 0.22 NS

Mean Acceleration 10.53 (0.14) 10.78 (0.12) 10.33 (0.11) c 0.23 <0.001 0.07

Mean Rate of Change d

Mean Acceleration 0.11 (0.04) 0.10 (0.03) 0.01 (0.03) - - -

aData represent least squares means and standard error in the format of [LS-means (SE)].
bSignificantly different from ARg group at Tukey-adjusted p < 0.10.
cSignificantly different from TD group at Tukey-adjusted p < 0.10.
dData represent mean rate of change (SE) for every one month (30 day) increase in infant age.

Ravi et al. in [12] used data retrieved from accelerometers to

recognize eight motion activities (standing, walking, running,

climbing up stairs, climbing down stairs, sit-ups, vacuuming

and brushing teeth). Brezmes et al. in [13] used accelerometer

data from a mobile phone to recognize activities such as

walking, climbing up and down, sitting up and down, and

falling. Case et al. in [14] compared the accuracy of direct

observation of step counts to that of smartphone applications

and wearable devices. In [15] accelerometer data were used

for de-ambulatory activity recognition using machine learning

approaches. Bianchi in [16] surveyed recent developments in

consumer and clinical devices for sleep, and these sensors have

generated a wave of interest from clinicians for application in

a wide range of diseases, such as Parkinson’s disease [17],

epilepsy [17], stroke [17], sleep disorders [16], and cardiac

disorders [18], [19]. In these studies, wearable data were

shown to be useful, even if noisy and containing inaccuracies,

e.g., fitness bands generate relatively clean but potentially

inaccurate activity data (step counts, activity level, calories

burned) and noisy but accurate raw sensor data (accelerometer,

gyroscope). Most wearable applications rely on processed

activity data, yet for some applications such as infant mobility

monitoring, adult activity models are not appropriate and

features extracted from the raw sensor signals must be used.

Characteristics of spontaneous movements in infants at risk

for CP have been studied and described in detail [20]. This

assessment methodology relies on visual observation by expert

clinicians. However, there is an emerging field of research

using alternate methods such as motion capture cameras and

wearable devices to automate this process and objectively

measure infant movement [21]. Meinecke et al. in [3] used

a motion capture system to record infants at high risk for CP

and with TD for 15 minutes. From the recorded movement

data they extracted 53 features, previously introduced by [20],

that allowed them to differentiate between groups. In [22] the

movements of ten pre-term infants in a Neonatal Intensive

Care Unit were recorded for one hour using both accelerom-

eters and video equipment. A physical therapist annotated

the pre-defined abnormal movements by reviewing the videos.

Using accelerometer data for the detection of these abnormal

movements of interest showed promising results. To address

the limitations of motion capture systems, Heinze et al. in [4]

used four accelerometers on hands and feet to develop a high

accuracy model for early prediction of CP.

In [23] Hadders-Algra illustrated that variation of move-

ment behavior is the key factor for identifying children with,

or at risk of, a developmental motor disorder. Their study also

proposes that capturing this variation is more likely in longer

periods of data capture.

In order to quantify infant movement behavior across a full

day, Smith et al. [6] developed an algorithm to identify single

leg movements in infants. They defined the start and end of

each movement using acceleration and angular velocity thresh-

olds. A new movement was identified each time the infant’s leg

paused or changed direction. They validated their algorithm

using video recordings of infants’ spontaneous movements

and reported a sensitivity of 92%. Next, Trujillo-Priego et al.

in [7] analyzed the kinematic characteristics of each identified
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movement. They calculated the duration of each movement,

and also calculated the average and peak magnitude of the

total acceleration during a given movement.

It has recently been proposed [24], [25] that to further

advance the field of infant mobility assessment, new tech-

nologies must sample development for a minimum of 24 hour

periods, so that the effects of circadian rhythms, behavioral

context, environmental stimuli, mood and motivation, etc.,

may be taken into account. This study starts to do so, us-

ing full-day wearable recordings of infant leg movements.

Participants were infants with TD and AR, and infants AR

were retrospectively classified based on 24-month neuromotor

outcomes. Pre-defined features were extracted from full-day

accelerometer data and indicated that acceleration features

differentiated between at-risk infants with poor developmental

outcomes, at-risk infants with good developmental outcomes,

and infants with typical development. Short period, controlled

environment data sets collected over 5 minutes did not provide

as much differentiation. Our results support the use of full-day

wearable sensor data for early identification of developmental

delay in infants.

VI. CONCLUSION AND FUTURE WORK

This study is unique and important as it analyzed full-day

accelerometer data for infants, showing that simple features

measured earlier in infancy can differentiate between infants

at-risk of developmental delay who demonstrate poor or good

outcomes at 24 months, and infants with typical development.

Furthermore, our findings support the usefulness of wearable

sensor data collected over long periods in an uncontrolled

environment.

The limited number of samples in our dataset, as well as

the broad ranges in age and developmental stage serve as

some critical shortcomings within this investigation, thus the

results should be used with caution. Further work is needed

to validate our results on a larger dataset and to investigate

features that can better model the characteristics of infant

movement (we only analyzed features that mapped full-day

data into single scalars). Ultimately, these features can be

used to build diagnostic tools for the early identification of

developmental delay in infants and for objective measurement

of intervention outcomes.
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