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 
Abstract—The discovery of disease-causing genes is a critical 

step towards understanding the nature of a disease and 
determining a possible cure for it. In recent years, many 
computational methods to identify disease genes have been 
proposed. However, making full use of disease-related (e.g., 
symptoms) and gene-related (e.g., Gene Ontology and protein-
protein interactions) information to improve the performance of 
disease-gene prediction is still an issue. Here, we developed a 
heterogeneous disease-gene-related network (HDGN) embedding 
representation framework for disease gene prediction (called 
HerGePred). Based on the framework, low-dimensional vector 
representation (LVR) of the nodes in the HDGN can be obtained. 
Then, we proposed two specific algorithms, LVRSim and RW-
RDGN, to predict disease genes with high performance. First, to 
validate the rationality of the framework, we analyzed the 
similarity-based overlap distribution of disease pairs and designed 
an experiment for disease-gene association recovery, the results of 
which revealed that the LVR of nodes performs well at preserving 
the local and global network structure of the HDGN. Then, we 
applied 10-fold cross validation and external validation to 
compare our methods to other well-known disease-gene prediction 
algorithms. The experimental results showed that RW-RDGN 
performed better than the state-of-the-art algorithm. The 
prediction results of disease candidate genes is essential for 
molecular mechanism investigation and experimental validation. 
The source code of HerGePred and experimental data are 
available at https://github.com/yangkuoone/HerGePred. 
 

Index Terms—Disease gene prediction, network embedding 
representation, heterogeneous network, network propagation. 
 

I. INTRODUCTION 
he identification of genes involved in genetic and rare 

diseases is a primary step towards revealing the underlying 
molecular mechanisms of diseases and can potentially improve 
clinical therapies for diseases. The investigation of susceptible 
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loci by linkage analysis would involve hundreds of genes and 
require labor intensive efforts to experimental identification of 
the disease-causing genes [1, 2]. In the last several decades, 
computational methods for the identification of disease genes 
have been developed. The basic criterion of in silico gene 
prediction methods is the “guilt by association” principle with 
respect to all known genes related to the given query disease [3]. 
We divided current prediction algorithms into four types 
according to the data types that they utilize: (1) methods using 
protein-protein interaction (PPI) data [4-11]; (2) methods 
integrating PPI and disease phenotypic data [12-17]; (3) 
methods using PPI and other single types of gene-related data 
[18-20], such as gene expression, pathway, transcriptional 
regulation, or Gene Ontology (GO); and (4) methods using 
multiple types of data [1, 21-25], such as literature data, disease 
phenotypic data, PPI data, GO annotations, gene expression, 
protein domain-dependent sequences, protein pathway data, 
protein sequences, signaling networks and transcriptional 
regulation. Current prediction methods were mainly divided 
into four types based on their algorithm principles: (1) network 
propagation on PPI networks or heterogeneous networks [1, 6, 
8, 14, 16, 25]; (2) shortest path analysis on PPI networks or 
integrated networks [22, 26]; (3) correlation analysis methods 
[5, 12, 13, 17-19, 21, 23, 27]; and (4) cluster-based or 
classification-based methods [4, 7, 9, 20, 28-30]. In addition to 
the aforementioned algorithms, there are other kinds of 
prediction algorithms, such as AlignPI [15] with network 
alignment, ProDiGe [24] with kernel data fusion, CATAPULT 
[31] with Katz measure and positive-unlabeled learning 
techniques, Gentrepid [32] with Gentrepid system and multiple-
locus-based approach, DADA [10] and GUILD [11] with node 
degree-bias of related network, and Beegle [33] with literature 
mining and genomic data fusion, to identify disease genes. In 
fact, heterogeneous and multi-source data offer multi-
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dimensional and complementary information representation, 
which has a huge advantage in disease gene prediction over 
homogeneous data. On the one hand, based on these 
heterogeneous data types, random walk on a heterogeneous 
network [25] or heterogeneous data fusion [33] were proposed 

and proven to be feasible schemes. On the other hand, applying 
embedding method to the discovery of biomedical relationships 
(e.g., disease associations [34] and drug-target interaction 
prediction [35]) has been proved with high performance 
prediction results. However, effectively extracting the 

 
Fig. 1. An overview of HerGePred. Firstly, by integrating disease-symptom and disease-gene associations, GO and protein-protein interactions (PPI) 
(Fig 1A), a heterogeneous disease-gene-related network (Fig 1B) was built. Then, a network embedding representation algorithm was applied to learn 
low-dimensional vector representations of the nodes (disease, gene, symptom, and GO) (Fig 1C). Based on the framework, we proposed two specific 
algorithms, LVR-based similarity prediction (LVRSim, Fig 1D) and random walk with restart on reconstructed heterogeneous disease-gene network 
(RW-RDGN, Fig 1E), to predict disease genes. 
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underlying feature representations of disease phenotypes and 
genes from these heterogeneous data sources to improve 
prediction performance still needs be investigated. 

In this study, we developed a heterogeneous disease-gene-
related network embedding representation framework for 
disease gene prediction (Fig. 1). First, we built a heterogeneous 
disease-gene-related network (HDGN) that includes disease-
gene associations and disease-related and gene-related 
information. Then, we applied network embedding 
representation algorithms on the HDGN to obtain low-
dimensional vector representations (LVR) of the nodes under a 
unified dimension. To validate the reliability of the framework, 
we analyzed the similarity-based overlap distribution of disease 
pairs and designed an experiment for disease-gene association 
recovery, the results of which revealed that the LVR of nodes 
performed well at preserving local and global network structure 
information in the HDGN. Second, we proposed two specific 
algorithms, LVR-based similarity prediction (LVRSim) and 
random walk with restart on a reconstructed heterogeneous 
disease-gene network (RW-RDGN), to predict disease genes. 
Finally, we applied 10-fold cross validation and external 
validation to evaluate our algorithms, which showed that RW-
RDGN performed better than the other algorithms. 

II. MATERIALS AND METHODS 

A. Datasets 
Disease-gene associations. We collected disease-gene 
associations from two databases: DisGeNet [36] and MalaCards 
[37]. First, we obtained 130,820 disease-gene associations 
between 13,074 diseases and 8,947 genes from DisGeNet (i.e. 
curated disease-gene set), which were used for cross validation. 
Second, to evaluate the capability in predicting new candidate 
genes of the proposed algorithms, we collected two independent 
datasets from DisGeNet that integrated animal model and 
literature data and MalaCards databases. Meanwhile, we 
removed the overlapped associations between cross validation 
and each independent dataset to guarantee true independence. 
Finally, 430,286 disease-gene associations that exclude curated 
set among 11,925 diseases and 15,993 genes and 65,905 
disease-gene association among 5,783 diseases and 8,045 genes 
were collected from the DisGeNet and MalaCards, respectively. 

Protein-protein interactions. We collected 213,888 protein-
protein interactions containing 15,964 proteins from Menche et 
al. [38]. Since the PPI network included most of the protein-

protein interactions of pathways, we did not consider the 
pathway information of proteins when constructing the 
heterogeneous disease-gene-related network. 

Disease-symptom associations. Disease-symptom 
associations were collected from HPO [39] and Orphanet [40] 
databases. In particular, besides of the disease-symptom 
associations derived from HPO, we integrated the disease-
symptom associations from the Orphanet database as well. To 
unify disease codes, we manually mapped OMIM and Orphanet 
disease identifiers to UMLS codes, which resulted in the 
collection of 99,087 disease-symptom associations between 
5,423 distinct disease UMLS codes and 6,540 genes. 

Gene functional annotations. GO annotations were extracted 
from STRING 10 [41]. Finally, we collected 218,337 
annotation records containing 18,584 genes and 14,204 GO 
terms. 

B. Heterogeneous Disease-gene-related Network Embedding 
Representation 
Network embedding representation learning is an algorithm for 
learning low-dimensional feature vectors, and it can effectively 
preserve the local and global structure information of given 
network. Network embedding representation methods are 
useful in many tasks, such as in visualization, label 
classification and link prediction. In this study, we applied two 
well-known network embedding algorithms, node2vec [42] and 
LINE [43], to get a low-dimensional vector representation of 
nodes in the HDGN. 

By integrating disease-gene-related information, we built 
heterogeneous disease-gene-related networks. According to 
edge (association) types in the given network, we defined five 
networks (Table I): (1) embedding disease-gene associations 
(DGA) (termed embDG); (2) embedding DGA and disease-
symptom associations (DSA) (termed embDGS); (3) 
embedding DGA and protein-protein interaction associations 
(PPI) (termed embDGG); (4) embedding DGA, PPI and gene-
GO term associations (GGA) (termed embDGGG); and (5) 
embedding DGA, PPI and DSA (termed embDGSG). Given a 
heterogeneous network 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸) , 𝑉𝑉  and 𝐸𝐸  represent nodes 
and edges of the network, respectively. Then, we applied 
network embedding representation algorithms (node2vec and 
LINE) to learn the LVR of nodes in the network. The node 𝑣𝑣 
can be mapped to a low-dimensional vector 𝑁𝑁(𝑣𝑣) . For any 
given heterogeneous network, the algorithm can learn the LVR 
of nodes in the corresponding network. 

TABLE I 
HETEROGENEOUS DISEASE-GENE-RELATED NETWORK 

Networks 
Edge types of network Node types of network 

Disease-gene 
associations 

Disease-symptom 
associations 

Protein-protein 
interactions 

Gene-GO 
associations Disease Gene Symptom GO 

embDG √ × × × √ √ × × 
embDGS √ √ × × √ √ √ × 
embDGG √ × √ × √ √ × × 
embDGGG √ × √ √ √ √ × √ 
embDGSG √ √ √ × √ √ √ × 

The symbols√  and ×  represent the given networks contain and do not contain the corresponding edges (disease-gene associations, disease-symptom 
associations, protein-protein interactions, or gene-GO associations) or nodes (diseases, genes, symptoms or GO). 
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C. LVR-based Similarity Calculation of Disease Pairs and 
Gene Pairs 
Based on the heterogeneous network embedding representation 
framework, we can get the LVR of nodes in the HDGN. The 
LVR-based cosine similarity of node pairs (disease pairs and 
gene pairs) can be measured. Taking similarity calculation of 
disease pairs as examples, given the disease pair 𝑣𝑣�� and 𝑣𝑣�� , 
𝑁𝑁(𝑣𝑣��) and 𝑁𝑁(𝑣𝑣��) are their vector representations. Then, the 
LVR-based cosine similarity of the disease pair can be 
measured by (1) as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁(𝑣𝑣��), 𝑁𝑁(𝑣𝑣��)� = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥, 𝑦𝑦) =
𝑥𝑥 ∙ 𝑦𝑦

|𝑥𝑥| ∙ |𝑦𝑦| (1) 

Similarly, based on the LVR of genes, the LVR-based cosine 
similarity of gene pairs can also be measured. For the five 
defined networks, we can obtain the LVR of diseases and genes 
and measure the LVR-based cosine similarity of disease pairs 
and gene pairs. Otherwise, we can also calculate the gene-based 
and symptom-based cosine similarity of disease pairs. 

D. Similarity-based Overlap Analysis of Disease Pairs 
Gene associated with phenotypically similar diseases exhibited 
functional similarities across different genomic data [25]. To 
validate the correlations between the LVR-based and gene-
based or symptom-based similarities of disease pairs, we 
quantified the LVR-based average similarity of disease pairs 
under the corresponding gene-based similarities of disease pairs. 
The Pearson Correlation Coefficient (PCC) between gene-
based and LVR-based similarities of disease pairs was also 
calculated. Similarly, symptom-based similarity of disease 
pairs was also calculated and compared to the LVR-based 
similarity. To further illustrate the accordance results of disease 
pairs, we compared the overlap results to the results of random 
control using Fisher- Yates method [44]. We randomly shuffled 
LVR of diseases for 100 times, and calculated the average ratios 
of overlap results. 

E. LVR-based Similarity Method to Predict Disease Genes 
The low-dimensional vector representations of nodes not only 
fused local structure information but also considered global 
structure information of the network, which was verified by the 
similarity-based overlap results. Therefore, we proposed a 
LVR-based similarity method to predict disease genes. 
Mathematically, given the disease node 𝑣𝑣� and gene node 𝑣𝑣�, 
we can measure the correlation between them by calculating the 
LVR-based cosine similarity  𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁(𝑣𝑣�), 𝑁𝑁(𝑣𝑣�) �  of their 
vectors 𝑁𝑁(𝑣𝑣�)  and 𝑁𝑁(𝑣𝑣�) . By calculating and sorting the 
correlation between the query disease and all candidate genes, 
we can get a ranking list of candidate genes for the query 
disease. 

F. Random Walk on Reconstructed Disease-gene Network to 
Predict Disease Genes 
Since the LVR of nodes (diseases and genes) in the HDGN can 
fuse more related information (local and global information of 
HDGN), LVR-based disease similarity may be a more 
appropriate similarity measure than the gene-based or 
symptom-based similarity of disease pairs, which was 

applicable to the LVR-based similarity of gene pairs. Hence, we 
proposed a random walk with restart method on the 
reconstructed heterogeneous disease-gene network (RW-
RDGN) to predict disease genes. 

First, the LVR-based similarity of disease pairs and gene 
pairs were calculated. We reconstructed the LVR-based 
disease-disease network and gene-gene network, in which 
nodes represent diseases or genes and edges represent disease 
pairs or gene pairs with a similarity larger than the given 
threshold. The network may contain many low confident edges 
with small similarities. We select only 𝛼𝛼  neighbor disease 
nodes and 𝛽𝛽 neighbor gene nodes with the highest similarity for 
each disease and gene to build more confident disease-disease 
and gene-gene networks. Given a disease-disease network, a 
gene-gene network and known disease-gene associations, we 
built a reconstructed heterogeneous disease-gene network 
(RDGN), which included a disease layer, a gene layer, and the 
interconnections between the two layers. 

Afterwards, given a query disease, we simulated a random 
walk with an initial probability 𝒑𝒑(�). Then, for each next step, 
the walker would start a new journey with a probability 𝜃𝜃 or 
move to neighbors of the current node with a probability 1 − 𝜃𝜃. 
When moving to neighbors, the walker would jump from the 
disease layer to the gene layer or vice versa with a probability 
𝜑𝜑  or wander in either disease layer or gene layer with a 
probability 1 − 𝜑𝜑 . The RDGN is denoted by 𝑰𝑰 = (𝑫𝑫, 𝑮𝑮, 𝑹𝑹) , 
where 𝑫𝑫 = (𝑑𝑑��)�×�  is the weight matrix of the disease-
disease network, 𝑮𝑮 = (𝑔𝑔��)�×�  is the weight matrix of the 
gene-gene network, and 𝑹𝑹 = (𝑎𝑎��)�×� is the adjacency matrix 
of the disease-gene network in which 𝑚𝑚 and 𝑛𝑛 are the numbers 
of disease and genes, respectively. For disease matrix 𝑫𝑫 and 
gene matrix 𝑮𝑮 , the weights of disease-disease or gene-gene 
edges equal to the similarities between disease nodes or gene 
nodes. In the matrix 𝑹𝑹, the weights of disease-gene edges equal 
to 1 (the gene is associated with the disease) or 0 (if not). By 
row-normalizing 𝑫𝑫, 𝑮𝑮, 𝑹𝑹 and 𝑹𝑹𝑻𝑻, we can obtain 𝑼𝑼 = (𝑢𝑢��)�×�, 
𝑽𝑽 = (𝑣𝑣��)�×� , 𝑨𝑨 = (𝑟𝑟��)�×� , and 𝑩𝑩 = (𝑠𝑠��)�×� , where 𝑢𝑢�� =
𝑑𝑑��/ ∑ 𝑑𝑑��

�
��� , 𝑣𝑣�� = 𝑔𝑔��/ ∑ 𝑔𝑔��

�
��� , 𝑟𝑟�� = 𝑎𝑎��/ ∑ 𝑎𝑎��

�
���  and 

𝑠𝑠�� = 𝑎𝑎��/ ∑ 𝑎𝑎��
�
��� . Then, the transition matrix 𝑻𝑻 is defined as 

follows: 

𝑻𝑻 = (𝑡𝑡��)(���)×(���) = �
(1 − 𝜑𝜑)𝑼𝑼 𝜑𝜑𝑨𝑨

𝜑𝜑𝑩𝑩 (1 − 𝜑𝜑)𝑽𝑽� (2) 

We row-normalized 𝑻𝑻  to get 𝑾𝑾 = (𝑤𝑤��)(���)×(���) , where 
𝑤𝑤�� = 𝑡𝑡��/ ∑ 𝑡𝑡��

���
��� . Random walk with restart was simulated 

by the following iteration equation: 

𝒑𝒑(�) = (1 − 𝜃𝜃)𝑾𝑾�𝒑𝒑(���) + 𝜃𝜃𝒑𝒑(�) (3) 

where the initial probability 𝒑𝒑(�) is set to (�𝒖𝒖(�)��, �𝒗𝒗(�)��)�, 
and 𝒖𝒖(�) = (𝑢𝑢(�))�×�  and 𝒗𝒗(�) = (𝑣𝑣(�))�×�  are the initial 
probabilities of the disease and gene layers, respectively, which 
were extracted from disease matrix 𝑫𝑫 and gene matrix 𝑮𝑮. After 
a number of steps, when 𝐿𝐿� norm of probability ∆𝒑𝒑 (= 𝒑𝒑(���) −
𝒑𝒑(�)) is smaller than the given threshold, the iteration reached a 
steady state 𝒑𝒑(�). The steady-state probability 𝒑𝒑(�) included two 
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parts: disease scores 𝒖𝒖(�) and gene scores 𝒗𝒗(�). For the above 
parameters ( 𝛼𝛼𝛼 𝛼𝛼𝛼 𝛼𝛼𝛼 and 𝜃𝜃 ), we adopted the optimized 
parameters that were tuned in the study [45] of herb-target 
prediction. Sorting all predicted genes by the scores, the top 𝑛𝑛 
genes of the ranking list were selected as the candidate genes of 
the query disease. 

G. Experimental Setting and Evaluation Metrics 
We selected curated disease-gene associations from the 
DisGeNet database as a benchmark dataset and applied the 
conventional 10-fold cross validation to evaluate the disease-
gene prediction algorithms. We adopted several classic disease-
gene prediction algorithms, CIPHER [13], PRINCE [14], 
pgWalk [25], DADA [10] and GUILD [11] as baseline methods. 
We adopted the default parameters suggested in the original 
studies in our experimental settings. In addition, if there were 
multiple versions for the proposed algorithms, we selected the 
version with best performance as baselines. For example, for 
CIPHER and GUILD, the prediction results of CIPHER- SP 
and NetCombo were showed, respectively. 

We used precision (PR), recall (RE), F1-score (F1) [46] and 
association precision (AP) as evaluation metrics in our 
experiments. Given a test disease set 𝐷𝐷  with 𝑀𝑀  diseases, for 
every test disease 𝑑𝑑 𝑑 𝑑𝑑, 𝑇𝑇𝑇𝑇𝑇𝑇 represents the test gene set of 
disease 𝑑𝑑. Given the gene ranking list of disease 𝑑𝑑, we selected 
the top 𝑖𝑖  genes 𝑅𝑅�(𝑑𝑑)  of the ranking list ( 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ) as 
candidate genes. Then, the precision, recall and F1-score in 
TOP@i can be defined as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
1
𝑀𝑀
�

|𝑇𝑇(𝑑𝑑) ∩ 𝑅𝑅�(𝑑𝑑)|
|𝑅𝑅�(𝑑𝑑)|�∈�

 (4) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
1
𝑀𝑀
�

|𝑇𝑇(𝑑𝑑) ∩ 𝑅𝑅�(𝑑𝑑)|
|𝑇𝑇(𝑑𝑑)|�∈�

 (5) 
 

F1 − score = 2 ∙
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∙ recall
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 (6) 

Otherwise, for every test disease 𝑑𝑑, the top 𝑘𝑘 genes 𝑅𝑅�(𝑑𝑑) of 
the ranking list were also selected (𝑘𝑘 equals the number of test 
genes of disease 𝑑𝑑 ). Then, the association precision can be 
defined as follows: 

𝐴𝐴𝐴𝐴 =
∑ |𝑇𝑇(𝑑𝑑) ∩ 𝑅𝑅�(𝑑𝑑)|�∈�

∑ |𝑅𝑅�(𝑑𝑑)|�∈�
 (7) 

In general, the more known genes of disease 𝑑𝑑 in 𝑅𝑅�(𝑑𝑑), the 
better the performance of the prediction algorithm, that is, a 
bigger 𝐴𝐴𝐴𝐴  indicates better performance (0 ≤ 𝐴𝐴𝐴𝐴𝐴𝐴  ) of the 
prediction algorithm.  

III. RESULTS 

A. Rationality Validation of Heterogeneous Network 
Embedding Representation Method 
To validate the rationality of the heterogeneous disease-gene-
related network embedding representation framework, we 
analyzed the gene-based (and symptom-based) and LVR-based 
overlap distribution of disease pairs and designed an 
experiment of disease-gene association recovery, the results of 

which indicated that the low-dimensional vector representation 
of nodes exhibits good performance in preserving the local and 
global network structure of the HDGN. 

Based on the obtained networks, we compared actual overlap 
distribution with that of random permutation. The results (Fig. 
2) showed there exists the consistency of disease pairs with 
gene-based similarity (shared genes) and LVR-based similarity. 
For example, for the embDG network, the disease pairs with 
weak gene-based similarity (0.1-0.2) have weak LVR-based 
average similarity (0.37; Expected: 0.19±0.0015). Nevertheless, 
for the disease pairs with high gene similarity (0.9-0.1), their 
LVR-based average similarity are also high (0.83; Expected: 
0.19±0.0021), which indicated that the disease pairs with more 
shared genes are more likely to have higher LVR-based 
similarity (PCC=0.81). Meanwhile, we measured the 
accordance between the symptom-based and LVR-based 
similarity of disease pairs and found that positive correlations 
exist as well (embDGS: PCC=0.31; embDGSG: PCC=0.18). 

Since the LVR-based similarity method can be used to 
measure the correlation of given disease-gene pairs, we try to 
recover the known genes of diseases using LVRSim when 
retaining all known disease-gene associations. We listed the 

Fig. 2.  The similarity-based overlap analysis of disease pairs. We showed the 
gene-based and LVR-based overlap distribution of disease pairs (Fig 1A, B, C, 
and D). The horizontal axis represents the gene-based similarity bins of disease 
pairs and the vertical axis represents the LVR-based average similarity of 
disease pairs under the corresponding similarity bins. The mazarine and green 
bars represent observed and expected overlap results, respectively. Fig 1E and 
1F showed the symptom-based and LVR-based overlap distribution of disease 
pairs. The horizontal axis represents the symptom-based similarity bins of 
disease pairs. 
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recovery performance of each algorithm (LVRSim_N based on 
node2vec and LVRSim_L based on LINE) under each network 
(Table Ⅱ). Among all the results, the LVRSim_N algorithm 
with the embDGG network yielded the best performance 
(AP=0.762; PR=0.630 and RE=0.780 for TOP@3; PR=0.495 
and RE=0.840 for TOP@10). For the algorithm LVRSim_N, 
the embDGG network exhibited the best performance, whereas 
for the algorithm LVRSim_L, the embDGGG network 
exhibited the best performance (AP=0.261; PR=0.331 and 
RE=0.308 for TOP@3; PR=0.346 and RE=0.899 for TOP@10). 
For all the networks, the LVRSim_L algorithm showed low 
performance (AP<0.3; PR<0.4 and RE <0.4 for TOP@3; 
PR<0.2 and RE<0.4 for TOP@10) in disease-gene recovery. 
However, the LVRSim_N algorithm exhibited high 
performance (AP>0.5; PR>0.6 and RE>0.7 for TOP@3; 
PR>0.33 and RE>0.87 for TOP@10), which indicated that 
LVRSim_N had better performance in the embedding 
representation of the HDGNs. For different networks, the 
results showed that the algorithm with embDGS and embDGG 
networks had better performance than the algorithm with 
embDG network, which indicates that considering more 
information (e.g., disease-symptom associations or PPI 
network) can improve the recovery performance in disease-
gene associations. Compared with the embDGS network 
(AP=0.690; PR=0.623 and RE=0.767 for TOP@3; PR=0.346 
and RE=0.892 for TOP@10), the embDGG network had better 
performance, which indicated that the PPI network would be 
more effective for improving the recovery performance in 
disease-gene associations. However, when fusing more 
information, such as in the embDGGG network (AP=0.743; 
PR=0.630 and RE=0.781 for TOP@3; PR=0.345 and 
RE=0.899 for TOP@10), there was no obvious improvement in 
association recovery. Meanwhile, LVRSim_N with embDGSG 
network (AP=0.597) had lower performance than the embDGG 
and embDGS networks, which indicated that mutual 
interference may exist in disease-symptom associations and PPI 
network information. 

B. LVR-based Similarity Model (LVRSim and RW-RDGN) to 
Predict Disease Genes 
Based on the heterogeneous disease-gene-related network 
embedding representation framework, we proposed the 
LVRSim and RW-RDGN algorithms to predict disease genes. 
We collected a benchmark dataset and two external datasets to 
evaluate the performance of the prediction algorithms. For 
LVRSim and RW-RDGN algorithms, we adopted the four 
networks, embDG, embDGS, embDGG and embDGSG, as 
experimental networks. The experimental results of disease 
gene recovery indicated LVRSim with node2vec performs 
much better than LINE, so the proposed LVRSim and RW-
RDGN are based on node2vec method in the following 
experiments. 

We showed the performance of disease gene prediction 
algorithms (Table Ⅲ) and marked the best performance among 
baseline algorithms and all algorithms by italic and bold text, 
respectively. First, among these baseline algorithms, pgWalk 
obtained the best performance (AP: 0.258; PR=0.222 and 
RE=0.305 for TOP@3). We conducted Student's t test [47] on 
best prediction results of baseline and our algorithms to indicate 
the statistical significance with p-value (values in the bracket of 
Table Ⅲ). The RW-RDGN algorithm with the embDGG 
network yielded the highest performance: AP improved by 
13.80% (P=1.42E-13), PR and RE improved by 9.40% 
(P=1.80E-10) and 6.36% (P=8.19E-08), respectively, for 
TOP@3, PR and RE improved by 18.10% (P=6.39E-14) and 
14.66% (P=2.00E-14), respectively, for TOP@10 than pgWalk, 
which indicated that compared with the current classic 
algorithms, RW-RDGN had better performance in disease gene 
prediction. In detail, as for different networks, in accordance 
with the experimental results of disease-gene association 
recovery, RW-RDGN with the embDGG network obtained the 
best performance. In the term of AP, the LVRSim algorithm 
with the embDGG network showed high performance 
(AP=0.239). However, in the terms of precision and recall for 
TOP@3, the LVRSim with embDGS network showed high 
performance (PR=0.213 and RE=0.285 for TOP@3). The 
performance of the LVRSim algorithm was better than the 
performance of PRINCE and CIPHER but was worse than that 
of pgWalk, which indicated that random walk on the 
heterogeneous disease-gene network had better prediction 
performance than LVRSim. Therefore, the RW-RDGN 
algorithm integrating LVR-based similarity and random walk 
with restart would be a potential method for disease gene 
prediction that had better performance than pgWalk. In addition, 
to fully show the performance of prediction algorithms, we 
showed the prediction results with two additional test disease 
sets, one filtered from the terminology type of diseases 
belonging to “T047” and another for having at least ten 
candidate genes. The prediction results (Table S1 and S2 at 
https://github.com/yangkuoone/HerGePred/tree/master/predict
ion_results) indicated the proposed algorithms perform better 
than the baseline algorithms. For example, in two additional 
experiments, RW-RDGN yielded the highest performance: PR 
and RE improved by 14.31% and 18.21%, 27.09% and 19.26% 
for TOP@3 than pgWalk (best in baselines), respectively. 

TABLE Ⅱ 
THE EXPERIMENTAL RESULTS OF DISEASE-GENE ASSOCIATION RECOVERY 

Networks Algorithms AP 
TOP@3 TOP@10 

PR RE PR RE 

EmbDG LVRSim_N 0.594 0.626 0.778 0.341 0.897 
LVRSim_L 0.162 0.159 0.250 0.079 0.272 

EmbDGS LVRSim_N 0.690 0.623 0.767 0.346 0.892 
LVRSim_L 0.214 0.212 0.212 0.113 0.244 

EmbDGG LVRSim_N 0.762 0.630 0.780 0.346 0.899 
LVRSim_L 0.259 0.304 0.283 0.152 0.309 

EmbDGSG LVRSim_N 0.597 0.616 0.757 0.341 0.885 
LVRSim_L 0.244 0.281 0.213 0.147 0.251 

EmbDGGG LVRSim_N 0.743 0.630 0.781 0.345 0.899 
LVRSim_L 0.261 0.331 0.308 0.156 0.334 

The symbols AP, PR, and RE represent the association precision, precision 
and recall metrics, respectively. TOP@3 and TOP@10 represent the top 3 and 
10 candidate genes of a ranked gene list, respectively. The meaning of these 
symbols are applied to the following tables as well. 



 
 

7

However, there are candidate genes that are not in the test 
dataset but are still likely to be potential disease genes that have 
been recorded in other databases. Hence, we showed the 
performance of prediction algorithms (Table Ⅳ) on an external 
dataset (MalaCards and DisGeNet). From the MalaCards 
dataset, RW-RDGN with embDGG obtained higher 
performance than GUILD (best in baselines): PR improved by 
7.07% (P=0.053) for TOP@3; PR and RE improved by 21.34% 
(P=3.69E-07) and 17.59% (P=5.49E-04), respectively, for 
TOP@10. From the DisGeNet dataset, RW-RDGN with 
embDGG and GUILD (best in baselines) obtained similar 
performance. As a whole, our method obtained higher 
performance than the baseline algorithms for both cross-
validations on benchmark data and external validations. 

C. Case Study: the Top 10 Predicted Genes of Specific 
Diseases 
To further illustrate the biological insights of our algorithms, we evaluated the prediction results of RW-RDGN with the 

embDGG network of six diseases: amyotrophic lateral sclerosis 

TABLE Ⅲ 
PERFORMANCE COMPARISON OF DISEASE GENE PREDICTION ALGORITHMS 

Networks Algorithms AP 
TOP@3 TOP@10 

PR RE F1 PR RE F1 

- pgWalk 0.258±0.003 
(1.42E-13) 

0.222±0.003 
(1.80E-10) 

0.305±0.005 
(8.19E-08) 

0.219±0.003 
(9.06E-09) 

0.105±0.001 
(6.39E-14) 

0.416±0.003 
(2.00E-14) 

0.145±0.002 
(1.22E-14) 

- PRINCE 0.019±0.003 0.006±0.003 0.008±0.007 0.005±0.004 0.005±0.002 0.020±0.011 0.006±0.003 
- CIPHER 0.003±0.002 0.002±0.001 0.003±0.003 0.002±0.001 0.001±0.0003 0.006±0.003 0.001±0.001 
- DADA 0.087±0.001 0.010±0.006 0.021±0.011 0.012±0.007 0.004±0.001 0.029±0.009 0.007±0.002 
- GUILD 0.091±0.007 0.010±0.003 0.021±0.010 0.013±0.004 0.004±0.002 0.030±0.011 0.007±0.003 
EmbDG LVRSim 0.138±0.003 0.152±0.004 0.242±0.006 0.164±0.003 0.070±0.001 0.338±0.004 0.104±0.001 
EmbDGS LVRSim 0.216±0.004 0.213±0.003 0.285±0.004 0.207±0.002 0.098±0.002 0.394±0.003 0.136±0.001 
EmbDGG LVRSim 0.239±0.004 0.200±0.003 0.264±0.006 0.191±0.003 0.101±0.002 0.386±0.007 0.136±0.002 
EmbDGSG LVRSim 0.166±0.003 0.184±0.002 0.256±0.007 0.184±0.003 0.078±0.002 0.347±0.007 0.113±0.002 
EmbDG RW-RDGN 0.239±0.005 0.211±0.002 0.316±0.003 0.220±0.002 0.112±0.002 0.470±0.006 0.158±0.002 
EmbDGS RW-RDGN 0.268±0.005 0.232±0.002 0.315±0.004 0.227±0.002 0.118±0.002 0.465±0.005 0.163±0.002 
EmbDGG RW-RDGN 0.294±0.005 0.243±0.003 0.325±0.004 0.233±0.003 0.124±0.002 0.477±0.008 0.167±0.003 
EmbDGSG RW-RDGN 0.184±0.003 0.204±0.003 0.299±0.004 0.211±0.003 0.092±0.001 0.428±0.006 0.136±0.002 

The italic and bold values represent the best performance in baseline algorithms and all prediction algorithms, respectively. The values in brackets are P-values with 
t-test of the baseline and our algorithms with best performance. 
 

TABLE Ⅴ 
PREDICTION PERFORMANCE OF SPECIFIC DISEASES 

Disease (CUI) 
TOP@10 

PR PR (MC) PR (DGN) 

Amyotrophic lateral 
sclerosis (C0002736) 

0.4 0.1 0.2 

Anemia (C0002871) 0.4 0.3 0.2 
Renal cell carcinoma 

(C0007134) 
0.4 0.3 0.4 

Idiopathic pulmonary 
arterial hypertension 
(C3203102) 

0.4 0.1 0.3 

Hypothyroidism 
(C0020676) 

0.5 0.1 0.1 

Pulmonary hypertension 
(C0020542) 

0.5 0.2 0.2 

 

TABLE Ⅳ 
PERFORMANCE COMPARISON OF PREDICTION ALGORITHMS ON EXTERNAL DATASET 

Networks Algorithms 
TOP@3 (MC) TOP@10 (MC) TOP@3 (DGN) TOP@10 (DGN) 

PR RE PR RE PR RE PR RE 

- pgWalk 0.105±0.006 0.027±0.002 0.076±0.004 0.061±0.003 0.135±0.003 0.018±0.001 0.116±0.002 0.039±0.002 
- PRINCE 0.024±0.005 0.004±0.002 0.026±0.005 0.015±0.005 0.067±0.007 0.002±0.001 0.076±0.003 0.011±0.001 
- CIPHER 0.013±0.002 0.002±0.000 0.007±0.001 0.004±0.001 0.022±0.003 0.001±0.000 0.015±0.002 0.002±0.001 
- DADA 0.113±0.009 0.030±0.004 0.080±0.004 

(3.31E-08) 
0.071±0.005 

(3.13E-04) 
0.147±0.005 

(1.66E-04) 0.021±0.002 0.121±0.004 0.044±0.003 
(0.319) 

- GUILD 0.113±0.007 
(0.053) 

0.033±0.004 
(0.349) 

0.080±0.004 
(3.69E-07) 

0.070±0.006 
(5.49E-04) 0.144±0.006 0.022±0.002 

(1.42E-02) 
0.124±0.004 

(0.835) 
0.044±0.004 

(0.477) 
EmbDG LVRSim 0.099±0.005 0.028±0.002 0.073±0.005 0.065±0.005 0.083±0.003 0.013±0.001 0.069±0.002 0.030±0.002 
EmbDGS LVRSim 0.092±0.007 0.025±0.002 0.070±0.004 0.062±0.004 0.081±0.003 0.012±0.001 0.071±0.002 0.030±0.002 
EmbDGG LVRSim 0.111±0.007 0.031±0.002 0.088±0.004 0.078±0.004 0.100±0.003 0.014±0.001 0.089±0.002 0.035±0.003 
EmbDGSG LVRSim 0.099±0.005 0.026±0.002 0.073±0.004 0.062±0.003 0.092±0.003 0.012±0.001 0.080±0.002 0.030±0.002 
EmbDG RW-RDGN 0.117±0.005 0.033±0.002 0.094±0.006 0.080±0.005 0.123±0.004 0.018±0.002 0.116±0.003 0.044±0.003 
EmbDGS RW-RDGN 0.114±0.007 0.032±0.002 0.094±0.004 0.080±0.002 0.129±0.005 0.018±0.002 0.119±0.002 0.045±0.003 
EmbDGG RW-RDGN 0.121±0.006 0.034±0.002 0.097±0.004 0.083±0.005 0.132±0.005 0.018±0.003 0.124±0.003 0.045±0.003 
EmbDGSG RW-RDGN 0.121±0.008 0.033±0.001 0.096±0.004 0.080±0.003 0.136±0.003 0.018±0.002 0.120±0.002 0.043±0.003 

The symbols MC and DGN represent external validation of MalaCards and DisGeNet, respectively. 
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(CUI: C0002736), anemia (CUI: C0002871), renal cell 
carcinoma (CUI: C0007134), idiopathic pulmonary arterial 
hypertension (CUI: C3203102), hypothyroidism (CUI: 
C0020676) and pulmonary hypertension (CUI: C0020542) as 
examples. The prediction performance (Table Ⅴ) and the top 10 
predicted genes (Table Ⅵ) of these diseases were listed. For 
example, for renal cell carcinoma, the four candidate genes 
(marked by TS): EP300 (rank=1), TP53 (rank=6), PTEN 
(rank=7) and DCC (rank=8) in the top 10 candidate genes are 
the known genes in the benchmark (precision=0.4). In addition, 
FHIT (rank=2), DIRC3 (rank=3) and HSPBAP1 (rank=4) are 
known genes of renal cell carcinoma in the MalaCards database 
(marked by MC). Besides of CREBBP (rank=5), which is not 
verified, the two remaining genes, TMEM127 (rank=9) and 
KRAS (rank=10), were included in the DisGeNet literature 
dataset (marked by DGN). For hypothyroidism, the genes: TPO 
(rank=1), HESX1 (rank=4), THRB (rank=5), SLC5A5 (rank=6) 
and KCNJ10 (rank=7) were well-known associated genes 
(precision=0.5). Furthermore, the novel gene NKX2-1 (rank=2) 
appeared in both MalaCards database and DisGeNet literature 

database. To fully evaluate the candidate genes, we manually 
searched the published biomedical literature to perform final 
confirmations. Recent study [48] (RF3) showed that LHX3 and 
OTX2 were associated with hypothyroidism. Similarly, another 
research [49] (RF4) indicated that GLI2 is associated with 
hypothyroidism. In addition, the association between anemia 
and ERCC4 also has been verified by Manandhar et al. [50] 
(RF1) and Bogliolo et al. [51] (RF2). Meanwhile, we conducted 
the shortest path analysis [45] between the top 10 predicted 
genes and known genes of anemia. The result (Fig 3) indicated 
the candidate genes are closer to the known genes compared to 
random expectations. The reason is that network embedding 
method could make the closer genes located in the network 
obtain more similar vector representations. These results 
indicated that a high degree of the novel genes predicted by our 
methods might be true associated genes for a given disease. 

IV. DISCUSSION 
In genetic research, network propagation methods, e.g., random 
walks [52], information diffusion [53] and electrical resistance  
[54], which act as a universal amplifier of genetic associations  
[55], have been applied successfully to identify gene functions 
[56], disease characterization [57], and drug targets [58]. 
Meanwhile, network embedding representation methods, such 
as DeepWalk [59], LINE [43] and node2vec [42], have been 
widely applied in network classification [60] and link 
prediction [42]. Here, we developed a heterogeneous disease-
gene-related network embedding representation framework for 
disease gene prediction. The experimental results indicated that 
RW-RDGN performed better than current existing methods of 
disease-gene prediction. 

The advantages of RW-RDGN are attributed to several 
aspects. First, we integrated multiple types of disease-related 
and gene-related data into a heterogeneous disease-gene-related 
network and applied the network embedding representation 
method to obtain low-dimensional vectors of the nodes, which 
fused and preserved local and global structure information of 
the given network. Second, compared with the original disease-
gene network in pgWalk, the reconstructed disease-gene 
network based on LVR-based similarity of nodes can take full 

TABLE Ⅵ 
TOP 10 CANDIDATE GENES OF SPECIFIC DISEASES 

Rank 
Amyotrophic 
lateral sclerosis 
(C0002736) 

Anemia 
(C0002871) 

Renal cell carcinoma 
(C0007134) 

Idiopathic pulmonary 
arterial hypertension 
(C3203102) 

Hypothyroidism 
(C0020676) 

Pulmonary 
hypertension 
(C0020542) 

1 GRN (MC, DGN) HFE2 (MC) EP300 (TS) ENG (MC, DGN) TPO (TS) CSF2RB 
2 TBK1 (TS) PRF1 (TS) FHIT (MC, DGN) DLL4 LHX3 (RF3) ENG (MC, DGN) 
3 DAO (TS) SLC7A7 (TS) DIRC3 (MC) TNNT2 NKX2-1 (MC, 

DGN) 
NOS2 (MC, DGN) 

4 PRPH (TS) HFE (MC, DGN) HSPBAP1 (MC, DGN) MEGF10 HESX1 (TS) COL1A1 (TS) 
5 PLA2G6 BCS1L CREBBP KCNK3 (TS) THRB (TS) SMAD9 (TS) 
6 VAPB (TS) TFR2 (MC, DGN) TP53 (TS) EIF2AK4 (DGN) SLC5A5 (TS) ACTA2 (TS) 
7 CHD2 TERT (TS) PTEN (TS) LIFR (TS) KCNJ10 (TS) CACNA1D (TS) 
8 HNRNPA2B1 

(DGN) 
ERCC4 (RF1, 

RF2) 
DCC (TS) LIPT1 (TS) GLI2 (RF4) TGFB2 

9 POLG WRAP53 (TS) TMEM127 (DGN) GJA1 (TS) OTX2 (RF3) MFAP5 
10 FTL IVD KRAS (DGN) MIR204 (DGN) TBX3 PAM16 (TS) 

The symbols TS, MC, DGN, and RF (1-4) represent that the associations between candidate genes and given diseases are validated by the benchmark test 
dataset, MalaCards dataset, DisGeNet dataset, or biomedical literatures, respectively. 

 
Fig. 3.  The distribution of shortest path length between top 10 predicted genes 
and known genes of anemia in PPI network. The horizontal axis represents 
shortest path length, and the vertical axis represents the proportion with respect 
to the length. The comparison of observed and expected results indicated the 
predicted genes of anemia are closer to the known genes than random results. 
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advantage of heterogeneous network information. Compared 
with the algorithm LINE that capture the first-order or second-
order proximity between the nodes of network, the node2vec 
with a biased random walk that efficiently explores diverse 
neighborhoods can obtain richer vector representations.  Finally, 
we made full use of the advantages of the network embedding 
representation and network propagation method (i.e., random 
walk with restart in the heterogeneous network) to improve 
prediction performance. 

Two potential applications of our disease gene prediction 
framework could be considered. On the one hand, the prediction 
results can be used to guide the selection of candidate genes in 
diseases that have not been studied yet or find new disease-
causing genes in common diseases, which would benefit the 
treatment of complex diseases, such as cancer [61]. On the other 
hand, the HerGePred method provided a universal 
heterogeneous network embedding prediction framework that 
can be extended easily to other prediction tasks, such as disease-
single nucleotide polymorphism (SNP) identification and 
disease-microRNA identification. 

Our approach can be improved with respect to the following 
aspects. First, in our framework, the embedding representation 
methods (node2vec and LINE) that we used were adept at 
processing homogeneous node types. Designing a specific 
network embedding representation method for heterogeneous 
disease-gene-related networks is still a challenge. In general, 
for the specific prediction task (e.g., disease genes), different 
node or edge types should be distinguished with different 
weights. Therefore, our further experiments would be focusing 
on adapting the strengths of typical nodes (e.g., diseases and 
genes) and their edges (e.g., disease-gene associations that be 
used to train) for learning the network embedding 
representations. Second, the appropriate data fusion with more 
useful biomedical features, such as drug-target network, tissue 
specific network and gene expressions, can improve the 
prediction performance of HerGePred, which would be 
investigated in our future work as well. Meanwhile, 
investigating the contribution of hierarchical structures of 
different ontologies (e.g., symptom ontology, Gene Ontology 
and disease ontology) for disease-gene prediction will be a 
meaningful work in future. Finally, disease-gene prediction 
could be modelled as a classification task if the different links 
between diseases and genes have been annotated with positive 
and negative labels. In this direction, we could adopt the low-
dimensional features of node pairs (e.g., disease-gene 
associations) [42] to represent links and use various 
classification methods to train the prediction models. However, 
it should be noted that the disjoint cross validation [62-64] 
would be a necessary option to assure more reliable prediction 
results. 
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