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Abstract—This paper presents a scalable method for improving
the solutions of AC Optimal Power Flow (AC OPF) with respect
to deviations in predicted power injections from wind and
other uncertain generation resources. The focus of the paper
is on providing solutions that are more robust to short-term
deviations, and that optimize both the initial operating point and
a parametrized response policy for control during fluctuations.
We formulate this as a chance-constrained optimization problem.
To obtain a tractable representation of the chance constraints,
we introduce a number of modelling assumptions and leverage
recent theoretical results to reformulate the problem as a convex,
second-order cone program, which is efficiently solvable even for
large instances. Our experiments demonstrate that the proposed
procedure improves the feasibility and cost performance of the
OPF solution, while the additional computation time is on the
same magnitude as a single deterministic AC OPF calculation.

I. INTRODUCTION

Optimal power flow (OPF) is an integral part of many
operational decision support tools in transmission system
operation. Typical OPF formulations aim to optimize dispatch
settings of controllable generators given their operating limits,
forecasted operating conditions, power flow and nodal voltage
constraints, and security margins. The recent push toward inte-
grating renewable energy resources with intermittent outputs
has introduced a new degree of uncertainty and complexity
in transmission operations. First, it requires dealing with non-
convex and nonlinear AC power flow equations, which makes
even the deterministic OPF problem NP-hard [1]. Second, it
is difficult to model uncertainty propagation throughout the
network. One approach to circumvent those challenges is to
replace the AC power flow equations with the linear DC
approximation, which neglects power losses, assumes small
angle differences, and parameterizes the voltage magnitudes.
The linearity and convexity of the DC approximation enables
the application of scenario-based [2], chance-constrained [3]
and robust [4]-[6] optimization techniques to deal with the
uncertainty of renewable generation resources in a tractable
manner.

Recent efforts to solve an uncertainty-aware AC OPF in-
clude [7]-[12]. Vrakopoulou et al. [7] describe a chance
constrained OPF (CC-OPF) model based on a convex AC
power flow relaxation and a scenario sampling approach to
represent the uncertainty of nodal power injections. The model
in [8] is a two-stage robust AC OPF model that exploits
convex relaxations of the inner problem. While the two above
methods relax the power flow equations and hence cannot
provide robust guarantees, [9] devises an inner approximation
for the robust AC OPEF, at the expense of assuming controllable
injections at every node. In [10], convex relaxations to provide
conservative estimates on the impact of uncertainty for each
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constraint, thus guaranteeing robust feasibility of engineering
limits for any uncertainty realization. The CC-OPF model in
[11] uses the full AC power flow equations for the forecasted
operating point, while the impacts of uncertainty are modeled
using linearized AC power flow equations. The CC-OPF for
distribution networks in [12] also models linearized AC power
flow equations, but does not enforce flow limits.

While many of the above mentioned papers have been
shown to provide good results on test cases, the techniques
are frequently prohibitively expensive for large instances (e.g.,
because they use semidefinite programming), while still lack-
ing rigorous guarantees on solution feasibility. Since rigorous
guarantees appear prohibitively conservative and hard obtain
in practice, this paper focuses on computational tractability
and proposes an approximate, scalable AC CC-OPF method.
Our formulation leverages a deterministic AC OPF solution,
which is typically already available in practice, and then uses
a chance-constrained formulation to robustify the solution
against uncertain nodal power injections. To obtain a tractable
AC CC-OPF formulation, we introduce a number of modelling
assumptions. First, we suggest affine response policies to
model the real-time response to power injection uncertainty.
Second, we linearize the AC power flow equations around
the deterministic AC OPF solution. Finally, we reformulate
the chance constraints into convex second-order cone (SOC)
constraints. Relative to previous studies, e.g. [12], we also
enforce chance constraints on apparent power flows, which
quadratically depend on the uncertainty, using the recent result
for quadratic chance constraints in [13]. The resulting AC
CC-OPF is a SOC program (SOCP) with a similar number
of constraints as the deterministic AC OPF; such SOCPs
have shown to be tractable even for large instances [3], [11].
The numerical experiments demonstrate that the proposed AC
CC-OPF is on par with the deterministic AC OPF in terms
of its computational performance, but has superior solution
feasibility and cost performance. The ability to optimize the
response policy also improves operational performance.

II. CC AC-OPF FORMULATION

This section formulates an AC CC-OPF starting from a
standard deterministic AC OPF. To this end, we first review
necessary preliminaries and then state the deterministic AC
OPF model. To model the impact of uncertainty from renew-
able energy sources, we introduce a model for power injection
uncertainty, as well as general response policies that would
compensate for a power mismatch. We then state the AC CC-
OPF, and discuss the challenges related to solving the problem.
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A. Preliminaries

1) Power injections: Let N denote the set of nodes with
m = [N/, and let vector pg indexed as p¢,; for i € G denote
the total active power output of conventional generators at
every node 7. For simplicity of notation, it is assumed that
there is one generator per node, such that G = A. Nodes
without generation or with more than one generator can be
handled by setting the limits to zero or by changing notations,
respectively; both modifications do not require changes in the
proposed method. Similarly, pp indexed as pp; denotes the
total active power demand at every node, and the active power
injections from renewable energy generators is denoted by the
vector pyy indexed as py ;. The corresponding reactive power
injections are denoted by q¢, qp, qu. Thus, the vectors of net
active and reactive power injections at all nodes are given by:

(1a)
(1b)

pP=pc —Pp +pu
q=4c —qp + qu-

In the following, we assume there is no curtailment of undis-
patchable renewable generation, i.e. py is a function solely
of available wind and solar irradiation, and that all loads
pp are fixed. These assumptions can be relaxed by modeling
renewable curtailment, load shedding or demand response.

2) Nodal voltages: Vectors v and 6 indexed as v; and 0;
stand for the voltage magnitudes and voltage angles, respec-
tively, at every node ¢ € N. The range of acceptable voltage
magnitudes is defined as v € [vmi”, vm”}.

3) Power flows: Let L denote the set of tuples 73, such that
there is a line between node ¢ and node j. Note that we treat
both ij and ji as distinct elements of £, and for simplicity,
we assume that there is not more than one line connecting two
nodes. If there is more than one line connecting node ¢ and
j (e.g. multi-circuit lines), they can be equivalently converted
in one line. Note that 20 = |L£|, where [ is the number of
physical lines. The vectors f? and f? indexed as f; and f},
then denote the active and reactive power flows from node i
to node j along line 75. Note that the power flows ;é
and qu #* jl, due to line power losses. The apparent power
flow limits are given by the vector s™** indexed as s;;*".

The active and reactive power flows on each transmission
line ij € £ from node ¢ to node j depend nonlinearly on the
voltage magnitudes v and voltage angles 6 at these nodes:

fj(v, 0) = v;v; |Gy cos(6;
Z-qj(v, (9) = V;Vj [Gij sin(9i -

- 9]) + Bij Sil’l(ei —
(9]‘) — Bij COS(@Z' -

0;)] (2a)
6;)], (2b)

where G;; and B;; are the real and imaginary parts of the
network admittance matrix ¥ = G + jB. The system is
balanced when the power flows leaving each node is equal
to the net injection at that node:

pl—vG”—&—Z pv@ (3a)
JujeL

UB“—&—Z (v, 0), (3b)
JujeL

where the first term represent the contributions from the nodal
shunt elements. In the following, we will use F (p, ¢,v,0) =0
to denote the nodal power balance equations (1) - (3).

4) pq, pv and Ov nodes: As follows from (3), there are four
variables p, ¢, v, 6 and two equations per node. This implies
that only two of the four variables p,q,v,60 can be chosen
independently, while the others are implicitly determined
through (3). In typical power system operations, there are three
types of nodes, namely pg, pv and fv nodes. The pv and pq
nodes are characterized as nodes that maintain constant values
of active power and voltage magnitude (p;,v;) and active
and reactive power (p;,q;), respectively. The pv nodes are
typically generation nodes, where the generators control their
reactive power output to maintain constant voltage magnitudes
v;. The pq nodes are any node where the power injections
are directly specified, such as load nodes or nodes without
generation or load. The Ov node is referred to as the reference
or slack bus. At this node, the voltage angle and magnitude
(0;,v;) are kept constant, while the active and reactive power
injections are implicitly determined. Note that any bus can
have a combination of load, generation and renewable power.

5) Production cost: The production cost of each generator
is defined as ¢;(pg ;) and is typically well approximated by a
convex (e.g. linear or convex quadratic) function [14].

B. Deterministic AC OPF

The standard deterministic AC OPF problem, as found in
e.g. [15], can be formulated as follows:

p%n%g ;vci (pc.i) (4a)
st. F(p,q,v,0)=0, (4b)
PET < pai < past, Vie N (4c)

a& " < qa,i < B9, Vie N (4d)

v;"m <y <0t Vi eN (de)
(50, 0)) (0, 0))°<(s7;°%)?, Wij € L (4D

Orep = 0. (4g)

Eq. (4a) minimizes the total operating cost defined as the sum
of production costs of all conventional generators. Eq. (4b)
enforces the active and reactive nodal power balance as defined
in (2)-(3). Eq. (4c)-(4d) impose limits on the active and
reactive power output of conventional generators. The nodal
voltages and apparent power flow limits are limited in Eq. (4e)-
(4f). Eq. (4g) sets the voltage angle at the reference node.

The AC OPF in (4) returns the generation set points pq, g
and voltage magnitudes v that are to be fixed during steady-
state operations at pv nodes. As typical for pg nodes, active
and reactive power demands are also fixed in (4).

C. Chance-Constrained AC Optimal Power Flow

The AC OPF in (4) assumes that the power injections are
perfectly known at the time of scheduling. In practice, this is
not true, as both load and renewable generation might vary
from their forecasted value. To ensure secure operation, it is
therefore important to account for the impact of uncertainty on



system operation. This paper will consider variations only in
the renewable energy production. However, the method can be
extended to incorporate other types of intermittent injections,
such as load or distributed energy resources.

Assume that w is a vector of real-time deviations of each
renewable generator from its forecasted active power output
pu, such that the real-time renewable power production is
given by py(w) = py + w. The variation in active power
is driven by variations in the primary energy source, such
as the current wind speed or solar irradiation. The reactive
power output corresponding to the same uncertainty realization
qu(w) is typically linked to the active power generation
through a set of grid requirements, e.g. maintaining a given
constant power factor or contributions to local voltage control.

As the power injections from renewable generators change,
the controllable generators must adapt their active and reactive
power pg(w) and gg(w) to the uncertainty realization w.
In particular, the response from the generators must ensure
that the power injections py(w), qu(w), pa(w), gc(w) yield
a feasible power flow solution, i.e., one that satisfies power
flows in (4b) and determines nodal voltages v(w) and 6(w).
In addition, the generation response pg(w), ¢(w) must be
chosen to respect the power output limits (4c)-(4d), and satisty
constraints on the voltage magnitudes (4e) and power flows
(41).

Without assuming a specific generation response, the AC
CC-OPF can be formulated as:

w0 e, %;/E i(p.i(w)] oy
ac()w(),0() *
s.t. Vieg, Vjen, Vijec

F0(w),v(w),pw),q(w)) =0V, (5b)
P(pg,i(w) <p&S*) > 1 —ep, (5¢)
P(pg,i(w) = pEs) > 1—ep, (5d)
P(gc,i(w) < q&i") > 1 — €q, (5e)
Pge,i(w) > ¢&7) 21— eq, (5f)
P(vj(w) < ") > 1 — ey, (52)
P(vj(w) > vi"") > 1 — ey, (5h)
P((f5 (@) + (fE(@)? < (s5™)) =1 —er,  (50)
Oref(w) =0 (59)

Here, expectations [E and probabilities [P are defined over the
distribution of w. The nodal power injections p(w) and ¢(w)
are derived from (1) as:

(5k)
(5D

p(w) =pc(w) — pp + pu(w)
q(w) = gc(w) — gp + qu(w),

and the active and reactive power flows [fP(w) =
F2(0(w), 6(w)) and f9(w) = f1(v(w), Bw)) are as in (2).
Eq. (52) minimizes the expected total operating cost, includ-
ing the cost of serving the forecasted demand and responding
to deviations w. Eq. (5b) ensures that generation response
is chosen such that the nodal power balance holds for any
realization of uncertainty and system response, i.e. the solution
does not tolerate or assume availability of load shedding. The

limits on the power output of conventional generators, voltage
magnitudes and apparent power flows are enforced using the
separate chance constraints (5¢)-(51). The chance constraints
require that the constraint should hold with a prescribed
(typically high) probability. The risk level associated with
the chance constraint can be regulated by the choice of the
violation probabilities €p, €, €y, 7. As in the deterministic
model, the voltage angle is set to zero at the reference node
(-

The AC CC-OPF as formulated in (5) cannot be solved
using known solution strategies. First, it inherits the nonlinear
and nonconvex properties from the AC power flow equations,
which must be shown to have a solution for all w. Second,
it relies on generic response policies which gives rise to
an infinite set of both decision variables and constraints,
and is hence an infinite-dimensional optimization problem. In
addition, even in the case where the uncertain power injections
w follow a Gaussian distribution, it is challenging to derive
the statistics of the output variables (power flows, voltages
and generation outputs) due to the nonlinearity of the power
flow equations. Therefore, the chance constraints (5c)-(51) are
not known to be tractable in general. Section III presents a
number of simplifying, yet practically feasible, assumptions
to overcome our inability to solve (5).

Other AC CC-OPF approaches, e.g. [7], [16], exploit joint
chance constraints, which limits the probability that any of
the constraints are violated, instead of the separate chance
constraints, which limit the violation probability only for indi-
vidual constraints. Our choice of separate chance constraints
is motivated as follows. First, separate chance constraints can
be viewed as more appropriate for power system operations,
as they limit the risk of individual component failures, thus
pointing to particular high-risk components or areas. Second,
while the joint constraints provide only weak guarantees
on violation probability (e.g., via the Bonferroni approxi-
mation [17]) previous OPF studies [11] have shown that
separate chance constraints limit the joint violation probability
effectively due to the low number of active constraints. Finally,
the joint chance constraints are notoriously difficult to enforce.
Existing approaches with joint feasibility guarantees are either
overly conservative, e.g. in [7], [11], [16], or computationally
demanding [17].

III. A TRACTABLE AC CC-OPF FORMULATION

This section presents modeling choices to obtain a compu-
tationally tractable approximation of the AC CC-OPF (§).

A. System Response

To overcome the infinite dimensionality of (5), we de-
velop a family of finitely parameterized response policies
qu (W), pc(w), ga(w),v(w),(w). As described below, some
of these policies can be defined explicitly with respect to
w, while some can only be formalized using the implicit
constraints dictated by the AC power flow model (4b).



1) Renewable Reactive Power Generation: The active and
reactive power outputs of wind power generators are inher-
ently related. While different grid operators have different
requirements on the reactive power control from renewable
generators, we adopt a common approach to maintain a
constant power factor cos(¢), in which the reactive power
output will change following the deviation of the active power
output:

qu,i(w) = vipu,i(W) = vipu,i + Yiwi, (6)
where v; = /(1 — cos? ¢;)/ cos ¢;. Although the valid phys-

ical range cos ¢; is [—1, 1], it is typical that cos ¢; ~ 1. The
value of ~; in (6) can be either optimized, if the operator is
able to control the power factor in real-time, or fixed ahead of
time, if otherwise. In the following, ~; is optimized since it is
a more general case, which can be adjusted to model fixed ~;
as a special case.

More general, relative to (6), relationships between the
active and reactive power fluctuations can be considered by
introducing separate random variables to represent reactive
power fluctuations.

2) Generation and Voltage Control: Following fluctuations
w, the controllable generators adjust their reactive and active
power outputs to ensure power balance and maintain the
desired voltage levels. The balancing policy described here
is similar to standard approaches in power system operations
and have been adapted (with some modifications) from [11],
[18].

For the purposes of this paper, we assume that active power
is balanced by activation of reserves, imitating the Automatic
Generation Control (AGC). The total power mismatch 2 =
> ienr wi due to forecast errors is split among generators based
on participation factors o based on the following generation
control policy:

pG,i(w) =pa,i — @i @)
In this paper, we optimize the participation factors « along
with the scheduled power generation. However, a simpler
case with fixed o could also be considered. To ensure that

a given mismatch is balanced by the same amount of reserve
activation, the participation factors are required to sum to 1:

Zai =1.

i€G

(8a)

Since we assume that the generation control policy (7) rep-
resents the activation of reserves, it is natural to introduce
a new set of optimization variables r; which represent the
reserve capacity from each generation i € G. For simplicity,
we consider the reserve capacity assignment to be symmetric,
i.e. the same capacity r; is scheduled for both up- and down-
regulation, although this could easily be generalized. To ensure
sufficient reserves to cover —af) with a high probability, we
enforce the following chance constraints:

P[—OQQ S ri] Z 1—€p, ]P)[—OQ'Q Z —Ti] Z 1—6P,Vi € g
(8b)

where the left-hand side represents the power mismatch and

the right-hand side describes the available reserve capacity.

TABLE I. EXPLICIT AND IMPLICIT (IMPL.) RESPONSE POLICIES

Response Node type
Policy pU Pq v
pu,i(w) PU,i T Wi PU,i + Wi PU,i + Wi
qu,i(w) QUi + Vi Wi QUi+ Yiwi  QUit Vi Wi
peiw) | Pai — @ Q  pei — a; impl.
96.,i(w) impl. 96.i impl.
0;(w) impl. impl. 0
v; (W) V5 impl. V5

Grey background denotes the optimization variables of the AC CC-OPFE.

Finally, we must ensure that the scheduled generation set-
points pg,; are such that the reserves r; can be delivered
without violating the upper and lower generation bounds. This
is done by enforcing

max min

pa +r <pst, PG — 7T > pi (8¢)

The policy in (7) only balances the power mismatch due to
forecast errors w. Due to power flows and voltages changes
following any realization w, the active power losses in the
system will also change. This change in the power losses is
typically small relative to the losses at the forecasted operating
point, and we assume that any changes to the power losses will
be balanced via the fv bus.

For reactive power balancing and voltage control, a dis-
tinction between pv, pg and fv buses becomes significant.
Considering common practice, we assume that the reactive
power injections are constant at pg buses, while generators at
pv and 6v buses adjust their reactive power outputs to keep
the voltage magnitude constant. Note that a centralized voltage
control scheme as in [7], where the reactive power mismatch
is distributed among generators according to optimized partic-
ipation factors, could also be implemented.

3) Explicit and Implicit Nodal Response Policies: Some
optimization variables in the AC CC-OPF are explicitly related
to the initial dispatch pg, qg, the voltage magnitudes v and
the response policy parameters v and «. In particular, the
active and reactive power injections at pv buses, the active
power injection and voltage magnitude at pv buses and the
voltage angle and magnitude at fv buses remain constant for
any w. On the other hand, some variables are not directly
controlled, but rather implicitly determined through the AC
power flow equations. This holds for the active and reactive
power pa(w), qa(w) at the Hv bus, the reactive power g (w)
and voltage angle A(w) at the pv buses and the voltage
magnitude and angle v(w), #(w) at pg buses.

Table I summarizes the variables that are explicitly defined
by the response policies for each node type, and shows the
variables that are only implicitly determined. Relative to the
generic response policies in (5), the response policies in Table I
depend on a finite number of decision variables, namely
the initial dispatch pg,qg, the voltage magnitudes v and
the response policy parameters v and «. Introducing these
response policies yields an optimization problem with a finite
number of decision variables.



B. Linearization of AC Power Flow Equations

The implicit values in Table I are determined through
the AC power flow equations, which are nonlinear and do
not permit an explicit solution. Even guaranteeing that a
solution exists for a range of power injections is an open
research topic [10]. Therefore, this paper aims to obtain a
more robust solution than the deterministic AC OPF, while
maintaining computational efficiency and scalability, rather
than to provide a comprehensive theoretical guarantees for the
probabilistic constraints and for AC power flow solvability.
This motivates to linearize the nodal power balance equations
F(p,q,v,0) = 0 around the forecasted operating point. This
linear model, in combination with the generation control policy
described above, enables us to replace (5b) by a set of linear
constraints and to obtain explicit analytical expressions for the
implicit response policy.

Since F' is a smooth function, we can define its first order
Taylor expansion, or linearization, at a point (p, ¢, v, 0) as

F(p,q,v,0:p,G,0,0) =
F(ﬁa 67670) + JF(ﬁa (17670)((17’(17”79) - (ﬁ? Cja@ag))7 (9)

where Jp is the Jacobian matrix of ' at the given point. We
also define the line flows as analogous linearized functions
fP(v,0;9,0) and f%(v,0;0,0). The use of the linearization
(9) is motivated by its connections with the Karush-Kuhn-
Tucker (KKT) optimality conditions elaborated in the follow-
ing lemma.

Lemma 1. Let (pg,qa,v,0) be a locally optimal solution to
the non-linear, deterministic AC OPF (4), i.e., it satisfies the
first-order optimality conditions of Theorem 12.1 of [19]. Then
(pa,da,,0) is a globally optimal solution to the following
problem with the linearized AC power flow constraints:

Lanin Y ei(pe) (10a)
0 iEN
s.1. F(paqavae;paci'l_}aé) =0, (10b)
(fF;(v,6;0,0))% + (f(v,0;9,0))* <
(s7**)?,Vij € L (10c)
(4c), (4d), (4e), (42). (10d)

Proof. The KKT conditions for (4) and (10) are identical,
hence (pa,qq,v,0) is a locally optimal solution of (10).
Furthermore, (10) is convex, so local optimality implies global
optimality. O

Hence, this linearization based on the first-order Taylor
expansion does not perturb the optimality of (p¢, ¢a, T, 0) for
the forecasted system state where w = 0. This property is
unique to the first-order Taylor expansion, to our knowledge.
In the chance constrained problem (18) later formulated, the
same objective is minimized over a subset of the feasible
region of (10). Hence, if this subset is not too restrictive,
the optimal solution is expected to remain relatively close
to (pa,qq,v,0). This is an intuitive but not fully rigorous
justification for choosing this first-order Taylor expansion.

Given this linearization, we then require that our response
policy satisfies

F(pw), q(w),v(w),0(w); 5,7, 7,0) = 0.

Note that (11) consists of two equations for each node
(from (3a)-(3b)), while Table I provides expressions for two
implicitly defined values per node for any node type. Hence,
the linear system (11) is well posed and yields a unique
solution assuming Jp(p,q,,0) is invertible. As noted in
[20], J(+) is normally invertible for steady-state power grid
conditions, with the exception of bifurcation points. One may
use algorithmic differentiation [21] to efficiently compute Jp
and basic linear algebra to obtain the implicit response policies
as explicit, affine functions of the explicit response policies
analogously to [3].

Instead of using the first-order Taylor expansion to linearize
the AC power flows in (9), our method can use other lineariza-
tion techniques, see [22] for a review of such techniques.
We experimented with using the fast decoupled load flow
linearization [23]; this performed less well than the first-
order Taylor expansion for recovering solutions that satisfy
AC feasibility.

Y

C. Chance Constraint Reformulation

With the linearization of the AC power flow equations,
we can express the generation outputs pg ;(w), ¢a,i(w), the
voltage magnitudes v;(w) and the active and reactive power
flows f;(w), fi;(w) as linear functions of the random de-
viations w. For the chance constraints on pg;(w), ¢a.i(w)
and v;(w) given by (5¢) - (5h), this linearity enables the
use of well-known analytic chance constraint reformulations
previously applied to the DC approximation [3] and other AC
linearizations [11], [12]. However, the power flow constraints
(51) have a quadratic dependence on w, which has not been
treated before. In the following, we first present the refor-
mulation for the standard linear constraints and then extend
the discussion to the quadratic chance constraints based on
new results from [13]. For the derivation, we will assume
that w follows a Gaussian distribution with mean p,, = 0
and known covariance matrix Y,,. However, these results are
extendable to other known or partially known distributions
(using distributionally robust optimization) as discussed below.

1) Chance constraints with linear dependence on w: Under
the assumption of Gaussianity, the chance constraints on (5¢)-
(5h), (8b) with a linear dependence on w have an exact
reformulation given by:

P& < Elpe.i(w)] £ @711 — ep) Stdev(pg i(w)] < pE ",

(12a)
03" < Elgea(w)] £ @71 (1 — eq) Stdevlga i (w)] < ¢f5",
(12b)

v <Efvi(w)] £ @71 (1 — ey) Stdev(v; (w)] <", (120)

where @1 is the inverse Gaussian cumulative distribution.
Because of the linear dependency on w, analytical expressions
for the expectations and standard deviations are easy to obtain.



Using the voltage magnitude v; as an example, the expecta-
tions are E[v; (w)] = v; (1) = v;(0), i.e. linear in the decision
variables, while the standard deviations are defined by:

StdeV[vi<w)] = \/Jvi)w(a,V)TEvai,w(a,v),

where J,, ,(,7y) is a vector of sensitivity factors describing
the change in voltage magnitude v; as a function of the
fluctuation w, derived from the AC power flow linearization
and assumed generation control policies. These sensitivity
factors are linear functions of variables o and ~y. The reformu-
lated chance constraints (12) therefore representable as SOC
constraints.

2) Chance constraints with quadratic dependence on w:
For the quadratic constraint (5i) no directly tractable refor-
mulation is known. It is known to be convex only when
er is very small [24]. Hence, we replace it with the inner
approximation [13, Lemma 17]:

13)

€1 ..
PG <) 21— Vijel  (142)
€r ..
P(lfEw) <tf) > 1~ 5 VijeL (14b)
(t5,)% + (t4)? < (s7°*)%,Vij € L, (14c)

where t7; and t{; are auxiliary decision variables and (14c) is
a deterministic convex quadratic constraint.

We treat absolute value chance constraints in (14a)
and (14b) using the SOC approximation developed in [13,
Lemma 16]. A direct application of this lemma (given that
E[ff;(w)] = %(O).and E| 1%(@] = [;5(0)) implies that (14a)
and (14b) may be inner approximated as:

(15a)

ij

—tr = f2(0) < @—1(215) Stdev([f5;(w)], Vij € £
£ — £55(0) = @7 (1~ ) Stdev[ £ (w)], Vij € £
(15b)
2 @71 (1 - 2 Stdev[f ()], Vij € £ (150)

for * = p and * = ¢ respectively. The constraints (14) and (15)
for p and ¢ together imply that (51) holds with probability €;.
The inner approximation argument for constraints (14) is based
on the union bound and hence results in the coefficients of
2 that appear in the denominators. The inner approximations
of (14a)-(14b) themselves introduce another factor of 1.25.
er is therefore multiplied by the inverse of 2.5 to obtain a
provably conservative approximation. Omitting this factor of
2.5 would result in an outer approximation of (5i). In practice
some factor between 1.0 and 2.5 could be chosen based on
empirical tuning to balance the goal of satisfying the constraint
with the target probability and the possible over-conservatism
of the inner approximation used, in order to preserve feasibility
of the AC CC-OPF. We did not investigate this possibility in
this work.

3) Generalization beyond Gaussian distribution: The as-
sumption that w follows a Gaussian distribution with known
parameters can be relaxed by considering distributional ro-
bustness (i.e. partial knowledge about the distribution) in
two ways. Ref. [25], [26] and [13, Lemma 8] discuss ro-
bustness with respect to the Gaussian parameters, while

[27], [28], [29], [30], [17] discuss ambiguity in the type of
distribution given known g, and X,. In both settings, a
tractable SOCP formulation of the linearized AC CC-OPF can
be obtained, hence enabling more general distributions without
compromising computational tractability.

D. Joint Chance Constraints for the Reserve Capacities

In (8b), we replaced the chance constraints on the active
power generation (5c¢), (5d) with chance constraints on reserve
capacity r;, which only depend on the total power mismatch
(), i.e., a scalar random variable. We thus recast (8b) as:

+ & 1(1 — ep) Stdev]a; Q] =

+ ;@ (1 —ep)StdevQ] <7y, VieG  (16)
which is now a linear constraint in the decision variables
«; and r;, since the standard deviation of the total fluc-
tuation Stdev[Q2] = 1/17%,1 is a constant. Furthermore,
note that Q;_., = ® (1 — ep)Stdev[Q)] is the 1 — ep
quantile of ). Hence, by enforcing (16), it follows that all
the reserve chance constraints (8b) will hold jointly as long
as — 1, < Q < Q1. The safety level 1 — ep in the
reserve constraints hence have a natural interpretation as the
probability of having sufficient reserve capacity available in
the system. Furthermore, if we sum the reserve constraints for
all generators, we obtain a total reserve capacity requirement:

Zaiﬂl—ep =M_cp Zai = _p < ZW-

i€G i€G i€g
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This requirement is similar to probabilistic reserve require-
ments applied in, e.g., Switzerland [31], and can also be
enforced within a deterministic AC OPF.

E. Cost Function Approximation

For simplicity, we replace the objective function (5a) with
the deterministic value ), ¢i(pg,i(0)). This is an exact
reformulation when each ¢; is linear, given that pgﬂv(w) is
an affine function of w, and we assume that w follows a
symmetric distribution with E[w] = 0. In the more common
case where each ¢; is a convex quadratic function, [3] show
an exact reformulation for the Gaussian case. As this work
focuses on feasibility more so than operational costs, we
choose to use the deterministic cost approximation.

Note that the objective function could also be extended to
explicitly account for the cost of reserve provision, i.e., the
remuneration of generators for maintaining reserve capacities
r;. Such models would only require a minor change in the
objective function, for example as modelled in [18].

F. A Tractable Approximation of AC CC-OPF

Given the simplifications made in the previous sections, we
can now state a tractable problem that approximates (5). We
fix a linearization point (p, g, v,