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Abstract—This paper describes high-level findings from an
innovative network of high-precision phasor measurement units,
or micro-PMUs (µPMUs), designed to provide an unprecedented
level of visibility for power distribution systems. We present
capabilities of the technology developed in the course of a three-
year ARPA-E funded project, along with challenges and lessons
learned through field deployments in collaboration with multiple
electric utilities. Beyond specific applications and use cases for
µPMU data studied in the context of this project, this paper
discusses a broader range of diagnostic applications that appear
promising for future work, especially in the presence of high
penetrations of variable distributed energy resources.
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I. INTRODUCTION

Historically, with mostly radial power distribution and one-

way power flow, it was only necessary to evaluate the envelope

of design conditions, e.g. peak loads or fault currents, rather

than continually observe the operating state. But the growth of

distributed energy resources introduces variability, uncertainty,

and opportunities to recruit diverse resources for grid services,

prompting an interest in tools such as advanced sensors and

more comprehensive monitoring to better observe, understand

and manage the grid at the distribution scale [1]. To address

this need, the University of California at Berkeley (UCB), in

conjunction with Power Standards Lab (PSL) and Lawrence

Berkeley National Lab (LBNL), has worked to develop a

high-precision, micro-phasor measurement unit (µPMU) and

to study its applications for diagnostic and control purposes

in distribution systems.

A µPMU provides ultra-precise, synchronized measure-

ments of voltage (and optionally current) magnitudes and

phase angles, or synchrophasors. The µPMU hardware in this

project builds on an existing commercial power disturbance

recorder capable both of storing and analyzing data locally

and of communicating live [2]. The key innovation is a

precise time-stamping of measurements via GPS to allow the

comparison of phase angles (i.e., the timing of the voltage

waveform) at different locations. After developing and test-

ing the µPMU, the project team developed a live network

of µPMUs and a powerful time-series database called the
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Berkeley Tree Database (BTrDB) [3] to allow for monitoring

and visualizing distribution grid behaviors in near real-time.

Beyond the pilot test site on the LBNL and UCB campus,

several dozen µPMUs were installed on distribution circuits

of partnering electric utilities during 2014-2016. The costs

of these pilot installations were dominated by the installation

labor costs added to the three-year communication costs at

0.5GB per day via cellular modems. The cost of the µPMU

instruments themselves, developed for this research project,

was approximately $3,500 per measurement point, optimized

for precision research purposes.

The rest of this paper is organized as follows: Section II

provides background on synchrophasor technology and the

interpretation of PMU measurements. Section III describes

the network and database developed to accommodate the rich

µPMU data streams. Section IV presents an overview of

relevant distribution system applications in both the operations

and planning context, providing some illustrative examples

and updating recent progress in their development. Section

V discusses data quality and limitations in relation to differ-

ent applications, Section VI introduces an open dataset, and

Section VII concludes the paper.

II. SYNCHROPHASOR TECHNOLOGY

Today, synchrophasors are used almost exclusively to

observe transmission systems. Deployment of transmission

PMUs has grown dramatically in recent years [4], as syn-

chrophasor data provide unique insights into power flow and

angle stability on a.c. networks: they make it possible to di-

rectly observe the state variables, voltage magnitude and phase

angle at each node, that uniquely determine the operating state

of the system through the power flow equations. In transmis-

sion systems, where branch impedances are overwhelmingly

inductive, real and reactive power flow can be mathematically

decoupled to a very good approximation, and real power flow

P between two nodes varies mainly with the voltage angle

difference δ (that is, the phase shift of the voltage waveform

as observed at different locations relative to the same clock),

according to the relationship

P12 ≈
V1V2

X
sin δ12 (1)

where X is the line inductance and V1 and V2 are the

voltage magnitudes. Direct measurement of the state variable
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δ can not only serve as a proxy for local current measure-

ments (assuming network impedances are known), but can

help estimate the system state beyond instrumented nodes,

since voltage phasors, unlike currents, are not sensitive to the

branch on which they are measured. Moreover, synchrophasors

are invaluable for characterizing dynamic behaviors such as

oscillations, since it is possible to simultaneously observe

position (steady-state phase angle), rate of change of angle

(frequency), and rate of change of frequency (ROCOF).

For synchrophasor applications of interest at the transmis-

sion level, algorithms compare measurements across large

distances, even if the PMUs happen to be installed on dis-

tribution circuits—say, at substations, or plugged into 120-V

wall outlets [5], [6]. Such analysis provides important in-

sights for wide-area monitoring, including frequency and angle

stability, grid oscillation modes and damping, or significant

disturbance events [7], [8]. By contrast, this paper addresses

applications concerned with power flows on medium-voltage

distribution systems to inform local decisions. The emphasis

here is on comparing data from multiple locations behind the

same distribution substation, even if measurements from more

distant PMUs are also sometimes drawn on. For example, an

algorithm may seek to determine the cause and effects of a

fault on a distribution circuit based on voltage and current

phasors along the feeder, while checking synchronized data

from elsewhere to rule out a disturbance propagated from the

transmission side.

Synchrophasor measurements suitable to inform local,

distribution-centric analysis are more challenging to make,

for several reasons. Because power flows are smaller and

distances shorter, voltage phase angle differences of interest

are typically two orders of magnitude smaller than those across

transmission systems i.e., hundredths to tenths of a degree, not

whole or tens of degrees, where a 10 millidegree phase shift

at 60Hz is equivalent to 0.46µs. At the same time, magnitude

and phase angle signals are small compared to measurement

noise and nonrandom measurement errors, and the signal itself

typically contains many layers of variation on different time

scales that may or may not be of interest for a particular

interpretation of the measurement.

Another problem for drawing intelligence from the phasor

data here is that distribution networks tend to have significant

resistive components, meaning that real and reactive power

flow cannot be decoupled and the standard transmission ap-

proximation of Eqn. 1 becomes invalid. A better approxima-

tion, based on the DistFlow equations for radial systems [9],

is given by the pair of equations for voltage magnitudes and

angles

|V1|
2
− |V2|

2
≈ 2(RP +XQ) (2)

δ1 − δ2 ≈
XP −RQ

|V1| |V2|
(3)

where the ratio of inductance X to resistance R will deter-

mine the sensitivity of real power P and reactive power Q to

V and δ, respectively [10].

Moreover, since neither loads nor impedances can be as-

sumed equal across all three phases in distribution systems, it

may be necessary to use an unbalanced three-phase model,

which adds substantial computational complexity [11]. Be-

cause analysis for the unbalanced three-phase case is so un-

wieldy, its use in practice has been mainly limited to protection

studies. With the advent of single-phase generation sources and

electric vehicle loads, however, distribution planning and oper-

ations will likely see an increasing need to employ three-phase

models, along with measurement data from each individual

phase.

The µPMU devices used in this project have reliably

measured angle separations as small as 0.01o and voltage

magnitudes to within 10-4 per-unit. The detailed capabilities

of the µPMU device built by PSL are described in [2], [12].

Devices may be connected directly to single- or three-phase

secondary distribution circuits up to 690V, or to the primary

(medium-voltage) distribution network by way of transducers

such as potential and current transformers (PTs and CTs) that

are typically found at distribution substations or line devices.

µPMUs communicate via Ethernet or cellular modem. In

the research implementation, each µPMU streams magnitude

and phase angle values for each voltage and current channel

at two samples per cycle, or 120 Hz. This paper uses the

term “µPMU” generically for devices (from any manufacturer)

specifically designed to measure distribution-level phase angle

separations—i.e., small fractions of a degree—and “PMU” to

include devices that meet expectations for the transmission

context, with typical accuracies on the order of 1o.

III. NETWORKING SYSTEM OVERVIEW

The real potential for leveraging phasor data in practical ap-

plications lies in clever networking and data management. The

ARPA-E project addressed this with an innovative architecture

for synchrophasor data analysis on distributed commodity

hardware. At the center is an original feature-loaded timeseries

store called the Berkeley Tree Database (BTrDB). Able to

handle sustained writes and reads exceeding 16 million points

per second per cluster node, advanced query functionality and

extremely efficient storage, this database enables pioneering

analysis and visualization techniques [3].

Leveraging this database, a distillate framework has been

created that allows for nimble development of scalable analysis

pipelines with strict assurances on result integrity in the face

of asynchronous changes in data and out-of-order arrival. This

leads to exceptional handling of both real-time and historical

data: for instance, over 216 billion raw and 515 billion derived

datapoints from 13 µPMUs were archived in as little as

3.9TB [3]; the project’s archives now exceed 100TB. On four

large EC2 nodes, BTrDB achieves over 119M queried values

per second (>10GbE line rate) and over 53M inserted values

per second of 8 byte time and 8 byte value pairs, while

computing statistical aggregates. It returns results of 2K points

summarizing anything from the raw values (9 ms) to 4 billion

points (a year) in 100-250ms [13]. We have demonstrated

that the system can scale to handle sophisticated analyses and

storage for tens of thousands of µPMUs on commercial off-

the-shelf servers [3].

Figure 1 shows the architecture and deployment design for

this BTrDB system [13]. Security is addressed in the following
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Fig. 1. System architecture overview, adapted from [13]

ways: The plotting service is limited to password-protected

user access to the database over an encrypted channel; only

data from registered IP addresses or serial numbers is stored;

and the µPMU instrument implements a range of secure

transfer protocols including SFTP and HTTPS. Additional

research is in progress to enhance the security of data transfers

from the µPMU instruments to the destination database [14],

[15].

With µPMUs installed at multiple places on a distribution

feeder (e.g. the substation, the end of the feeder, and key

distributed generation equipment), the BTrDB system can

support the analysis and operation of an single feeder, many

feeders originating at the same substation, or even assist in the

detection of transmission-level phenomena [12].

µPMUs stream raw data into the database by way of the

chunk loader. To enable human-centric analyses, the data is

then automatically ”distilled” into globally timestamp-aligned

clean streams using the GPS lock stream and continually-

evolving heuristics for good data. These streams become the

inputs for a set of additional algorithms (”distillers”) that

create a directed data flow graph for a single phase of an

individual µPMU. These are repeated for the other phases,

and again for each of the other µPMUs [3].

The communication timing can vary and be optimized by

application, e.g., once per cycle, once every few seconds, or

anomaly-triggered. The data can flow to multiple networking

nodes, where each node can be armed with different analytic

tools. A networking node can be located on a portable comput-

ing station with the proper communication link. The analyzed

data can be visualized at the node, sent to users as is or

filtered, or sent when a threshold for anomaly detection is met.

Examples include a summary sent to the distribution system

operator, or a control instruction sent from the networking

node to the relevant devices [12].

The networking infrastructure is agnostic to the particular

sensor device connecting to it because standard protocols and

file formats are employed. A major goal of the BTrDB system

is to facilitate the greatest diversity of devices, information,

and applications all playing together well in power system

operations [12].

IV. APPLICATIONS FOR µPMU DATA

A broad spectrum of potential distribution system applica-

tions could hypothetically be supported by PMU or µPMU

data, as has been noted in the literature. [16]–[19]. We distin-

guish between diagnostic and control applications. Diagnostic

applications help operators and planners better understand the

present or past condition of the distribution system, which

may inform decisions about equipment maintenance, network

upgrades or resource interconnection. Control applications

inform specific actions to be taken in more or less real-time

to directly alter the operating state of the network, including

circuit topology reconfigurations, power injections from dis-

tributed resources, or demand response. This paper focuses

on diagnostics, which are closer to commercial readiness than

controls based on PMU data. The overall benefits of ultra-

precise, high-resolution and time-synchronized synchrophasor

measurements can be summarized as improved situational

awareness regarding distribution circuits. Use cases for this

type of information range widely and may apply to both

operations and planning. Some applications require only high-

resolution, time stamped voltage magnitude measurements;

some are supported by current measurements (loads); and

others (frequency, oscillation and island detection) depend

on voltage phase angle data of various accuracy levels. This

section provides an overview of specific applications and use

cases that have been demonstrated and those that hold future

promise.

A. Event detection and classification

Our team has used µPMU measurements extensively to

detect and explain disturbance events [20]. The diagnostic

strength tends to derive more from precision time stamp-

ing and very high-resolution magnitude measurements, now

comparable across multiple locations, than from calculations

explicitly using the phase angle. The µPMU data here present

an alternative to distribution system SCADA measurements,

which tend to have resolution on the order of several seconds

and often are poorly aligned in time with each other. Event

detection leverages the inherent high-speed search capability

of BTrDB, which makes it possible not only to locate small

events inside large data sets, but to iteratively tune search

parameters. Use cases span a broad range from identifying

and preventing hazardous conditions or equipment damage to

helping assign responsibility for disturbances or power quality

impacts.

• Voltage sag detection and analysis. The first practical

application from our project, developed by LBNL, scans

the BTrDB database for voltage sags and notifies users by

email [21]. An automated algorithm distinguishes locally

caused disturbances on a feeder from those originating

elsewhere on the transmission grid, by comparing per-

unit voltage sags at multiple locations, as well as changes

in current and their precise timing. This analysis can

establish, for example, whether a load or generator trip

was caused internally, by other nearby devices, or distant

sources. The reliability and detail of event classification,

along with the ability to locate disturbance origins by
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triangulation, will improve with denser deployment of

µPMUs and algorithm refinement through learning.

• High-impedance faults. The most important type of local

cause for voltage sags are faults with sufficiently high

impedance, and thus small current, that do not trip protec-

tive devices. High-impedance faults created by animals or

arc flashes that are typically invisible to operators can be

identified with µPMU measurements, and distinguished

from other local voltage sag causes such as motor starts,

through the detailed time-series behavior of voltage and

current [20].

• Equipment health diagnostics. Our team has demonstrated

µPMU-based early diagnosis of a tap changer malfunc-

tion on a substation transformer based on analyzing

detailed voltage signatures during and after tap change

events, enabling timely correction by the utility [20]. Note

that voltage phase angle changes can help distinguish tap

changes from other magnitude step changes [22]. This ap-

plication likely extends to many distribution devices with

significant potential for economic savings and improved

safety.

• Fault location. In theory, µPMU measurements can en-

hance fault location along circuit sections between protec-

tive devices based on estimating the impedance between

measurement point and the fault [23]. The expected

advantage of high-precision phasor data as compared to

SCADA-based techniques is a combination of improved

location accuracy and/or fewer sensors, owing to explicit

measurement of δ and more precise time-alignment of

sensor data from different locations.

B. Topology and Cyber-attack Detection

PMU measurements can be used to confirm the topology of

a distribution network, i.e. the open/closed status of switches

or breakers. Use cases for topology detection with advanced

sensing include situations where SCADA data from remote

terminal units are either unavailable or considered unreliable

for any reason [24]. Certainty about the actual topology

is important for preventing customer outages and constraint

violations (e.g. unintentional network loops, unsafe voltage

across a switch while closing, high or low customer voltages,

excessive load on a circuit section) through subsequent opera-

tions. A special case of interest is the detection of cyber-attacks

that would deliberately conceal or falsify information, to either

mask a physical attack or trick operators into taking actions

that inadvertently sabotage the grid. Such attacks could be

identified by checking the consistency of SCADA data against

independent µPMU data that reside on a separate, indepen-

dent cyber-network. To escape detection, an attacker would

then have to simultaneously attack both networks in perfect

coordination, a vastly higher security threshold. Cyber-attacks

could also be identified by detecting unexpected operations or

topology changes via the physical µPMU measurements alone.

Topology detection algorithms draw on essentially three

different approaches, each of which still await extensive testing

in the field:

• Residual State Estimation Error. This approach, which

depends on absolute measurement accuracy, relates the

residual error of the distribution state estimation to a

discrepancy between the assumed and the actual network

topology. A suitable algorithm can then identify which of

a set of possible topologies minimizes the residual error,

and is thus the most plausible actual topology [25].

• Time-series Signature of Topology Changes. Rather than

scrutinizing the steady operating state under a given

topology, this approach focuses on detecting and inter-

preting the transitions between states, as switches or

breakers are being opened or closed. In doing so, it

sidesteps the accuracy problem, relying instead on relative

changes observable at high sampling rates over time spans

on the order of several cycles. In one example of the time-

series approach, measurements at different locations on

the network are compared against a library of behaviors

expected under a set of possible topology transitions [26],

[27].

• Source Impedance Method. This approach, which also

relies on the time series, is discussed further below.

It examines the effective source impedance looking up

into the network through step changes in voltage and

current phasors that reflect reconfigurations of the circuit

topology. Development of this technique is supported by

the DOE CEDS project [28].

C. Model Validation

Beyond the topology status that might change on the order

of hours or days, the more permanent physical characteristics

and connectivity of a distribution network also require empir-

ical measurement for validation. Because of the high level of

detail involved and the cost of verifying information in the

field, distribution circuit models are notoriously inaccurate;

yet these models form the basis of many essential analyses,

especially in the planning context [29]. An important example

is the interconnection of distributed solar generation, where

a correct model is crucial for the prediction of physical

impacts on the circuit. High-precision µPMU measurements of

a combination of voltages and currents may confirm, correct,

or improve the detail of distribution network models. Specific

items of interest include:

• Load models. Detailed time-series measurements of volt-

age and current at the feeder level can validate and

improve analytic tools such as ZIP-models of aggregate

load, used to predict load response to voltage changes.

• Generator models. A topic of particular interest is the

dynamic response of switch-controlled devices (inverters)

to voltage conditions and transient events at fine time

scales. The context may be either preventing unintended

effects (such as cascading trips) or leveraging these re-

sources for grid services (such as VAR support, harmonic

cancellation, transient mitigation, or synthetic inertia).

• Phase (ABC) identification. PMUs allow for relatively

straightforward phase identification by direct comparison

of phase angles, with the caveat that delta-wye con-

nections shift angles by 30o. Because angle differences
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(a) Voltage magnitudes, time scale in seconds. (b) Voltage phase angle disturbances with
corresponding signatures on each phase.

(c) Zoomed-in view showing individual
data points (120 per sec).

Fig. 2. µPMU voltage measurements on three phases in Berkeley (blue) and Alameda (red).

associated with distribution power flows are much smaller

than 30o, it is straightforward to match A,B,C phases

on a single feeder by inspection, although this becomes

more difficult when reference locations are separated

by multiple transformers with unknown configurations

or sequencing. A complementary method draws on the

time-series to correlate voltage changes on the different

phases [30], preferably during large asymmetrical distur-

bances. This is illustrated by the example in Figure 2,

which shows voltage magnitudes and phase angles (rel-

ative to the same clock) during an event observed at

two Bay Area locations, Berkeley and Alameda, sepa-

rated by the 115-kV transmission network and multiple

transformers. Without any network model information

about the phase correspondence between these sites, we

can confidently identify it from Figure 2b based on the

different shape of the angle disturbance for each phase,

despite the matching phases being shifted by 180◦. We

could have matched Phase 1 between the two locations

based on the smaller per-unit magnitude of the voltage

sag in Figure 2a, but the association between Phases 2

and 3 by magnitude alone is less conclusive. Using PMU

data obviates the need for specific equipment to actively

inject a signal for phase identification.

• Line segment impedances. Measurement of both current

and voltage phasors at each end of any given line segment

or device should, in principle, yield the impedance of that

segment through simple application of Ohm’s law. We

have found this to be surprisingly difficult in practice,

as discussed below, since small errors have large impact.

A likely path to improving impedance calculations is the

application of suitable regression techniques.

• Transformer and other device models. The impedance of

any device should be possible to compute in analogous

fashion to line segments. The case of transformers is

special and interesting because actual impedance varies

significantly with load, and this behavior may hold impor-

tant diagnostic clues for equipment health [20]. Moreover,

there is particular interest in developing high-fidelity

transformer models to capture voltage magnitude and

phase shifts as a function of load, since this would allow

making good inferences about the primary distribution

system from convenient and comparatively inexpensive

sensor locations (e.g. wall outlets) on the secondary side.

The standard three-phase formulation of Ohm’s Law shown

in Eqn. 4 for a line segment connecting locations 1 and

2 includes complex terms for the voltage phasor difference

between the two locations, the self- and mutual impedances

Zii and Zik of the line segment, and current on each phase

(measured at either location).





Va,1 − Va,2

Vb,1 − Vb,2

Vc,1 − Vc,2



 =





Zaa Zab Zac

Zba Zbb Zbc

Zca Zcb Zcc









Ia
Ib
Ic



 (4)

For three identical conductors we expect Zaa = Zbb =

Zcc along with Zik = Zki, but since distribution lines are

rarely transposed, we cannot assume equal mutual impedances

(which depend on geometry). Given values for all the V and I

terms from a set of µPMU measurements (6 pairs of voltage

and 3 pairs of current magnitude and angle values taken at the

same time), we can, in principle, solve for Z.
For the purpose of comparison to circuit model data, it may

be desirable to express the voltage, current and impedance

terms as symmetrical (zero-, positive-, and negative-sequence)

components. One complication for model validation is that

the actual geometry and spacing of underground conductors

is not readily verifiable. In any case, this approach is highly

susceptible to measurement error, considering that a typical

voltage drop on such a segment (i.e., our signal) would be on

the order of 0.001 to 0.01 p.u. and <1o, which is similar to

the error of a revenue-grade instrument transformer.
One modification, summarized by Eqn. 6, is to consider the

line segment impedance Zsegment as the difference between the

network source impedances observed from the two end points

of the segment during a significant step change of current and

voltage.

Zloc,t =
Vloc,t − Vloc,t−x

Iloc,t − Iloc,t−x

(5)

Zsegment = Zloc1,t − Zloc2,t (6)

Equation 5 (written for a single phase in the interest of

clarity) shows the source impedance at a single location as
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the ratio of differences between pairs of voltage and current

measurements taken at time t and t-x, where x should be

a small interval (say, on the order of a cycle or several

samples) so as to minimize the opportunity for other, external

factors to impact voltage, and t should be chosen such that a

significant change in current (and presumably voltage) occurs

during x. Taking the difference between measurements reduces

the impact of systematic transducer errors, to the extent that

these are stable over the interval x, and the calculation may

be repeated for different times ti. This formulation can be

expanded into matrix form to account for the unbalanced three-

phase case. The algorithm may begin by searching for suitable

step change events and conclude by reporting the mean and

standard deviation of computed segment impedance values.

This example illustrates the peculiar character of distribution-

centric as compared to transmission-centric algorithms for

utilizing PMU data: namely, an emphasis on techniques for

extracting information about very small quantities in the pres-

ence of significant noise and uncertainty about basic network

properties.

D. DG characterization

A critical motivation for increased distribution monitoring

is to better understand how distributed generation affects the

grid, for purposes of guaranteeing safety and power quality,

estimating feeder hosting capacity, and evaluating both costs

and benefits associated with distributed resources (such as

rooftop solar or larger, commercial PV arrays interconnected

at the primary distribution voltage). Key items of local concern

include effects on customer voltage and implications for

protection systems of reverse power flow. Operators at both the

transmission and distribution level also care to better anticipate

aggregate net load, DG responses to transients, and exposure

of the system to loss of generation. DG characterization may

include the following:

• Correlate feeder voltage changes with DG behavior.

Voltage volatility may be caused by either loads or

variable generation on a circuit, and detailed observations

including statistical analyses on various time scales may

be needed to determine the actual impacts of DG. BTrDB

is a particularly useful platform for this purpose because

of its seamless transition through time scales from sub-

cycle to years. Use cases include assuring proper service

voltage levels, preventing excessive operation (hunting)

of legacy voltage regulation equipment, and addressing

voltage flicker.

• Detect reverse power flow. Phasor measurements of volt-

age and current unambiguously identify the direction of

power flow, which conventional magnitude-only measure-

ments fail to do. The ability to detect reverse power flow

in real-time (and the option take remedial action such

as temporary curtailment) should help relieve the need

for conservative planning margins in DG interconnection.

Figure 3 illustrates power flow reversal due to a large

PV array on a cloudy and a sunny day, as seen through

the voltage phase angle difference between PV array and

substation, which changes sign during the day. Power

flow direction at a single location could also be inferred

from the current phase angle relative to voltage, but

without capturing power flow on a feeder that may have

multiple branches.

• Disaggregate net metered DG from load: When the

distribution utility lacks access to separate load and

generation telemetry, DG masks an unknown amount

of load, which implies greater system exposure to con-

tingencies. Innovative algorithms can leverage available

insolation data with µPMU measurements for a high-

fidelity estimate of individual PV generation even when

not directly metered [20], [31].

E. Microgrid Operation

Microgrids hold particular interest in the context of grid

resilience. They give occasion for more aggressive operational

strategies than typical distribution feeders, such as the follow-

ing:

• Islanding: deciding when to separate the microgrid from

the main grid to operate as a power island. Analytics

based on µPMU data may provide better early indication

of grid conditions (such as frequency or voltage instabil-

ity) that warrant intentional islanding for local reliability

reasons.

• Load and generation balance: controlling power injections

from generation and/or storage to match instantaneous

load on the microgrid during islanded operation, and

shedding non-critical loads in a deliberate manner when

necessary. While essential for balancing a power island,

strong local control capabilities may also be used to

provide ancillary services to the main grid.

• Resynchronization: reconnecting an islanded microgrid to

the main grid. Performing this transition without inter-

ruptions or transients requires matching frequency and

phase angle across the point of common coupling [32].

One advantage of using PMUs for this purpose is that

they need not be co-located with the breaker.

F. Distribution State Estimation

State estimation is the process of reconciling available

physical measurements (of imperfect accuracy) with math-

ematical relationships (based on an assumed model) so as

to obtain a best-fit estimate of the state variables (voltage

magnitude and phase at each node) that uniquely describe

power flow throughout the network [33]. This analysis is

concerned with (quasi-)steady-state operation over at least sev-

eral seconds, not transient disturbances or dynamic response.

In the transmission context, the condition of redundancy is

generally satisfied (i.e. there are at least as many measurements

as nodes), so that the focus of state estimation is on cor-

recting erroneous measurements. Distribution networks, while

smaller in geographic extent, have much greater numbers of

nodes (including essentially every service transformer) that

are often without any direct instrumentation. Estimating the

operating state of a distribution system thus introduces the

challenge of performing some type of extrapolation from
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Fig. 3. Voltage phase angle difference (green) between substation and a large PV array on a 12-kV circuit; current injection by the PV array (blue) and
net current measured at the substation (brown). The phase angle difference δ, a distillate stream in BTrDB, alternately correlates and anti-correlates with net
current as the feeder imports and exports power. While the sign of δ changes with real power flow, current magnitude does not indicate direction and never
crosses zero due to reactive power flow. The δ step change in late morning of Oct. 8 is associated with a tap change operation.

available empirical data. A Bayesian approach developed in

the context of µPMU research, which uses a linear power flow

approximation, makes use of historical information about loads

as ”pseudo-measurements” and trades off the high precision

of µPMU measurements against the number of sensors on

a circuit [34]. Irrespective of the particular algorithm used,

the success of distribution state estimation is sensitive to

the absolute accuracy of voltage magnitude and phase angle

measurements obtainable in the field, while accounting for

transducer errors. Use cases for distribution state estimation

include a broad spectrum of operations and planning decisions

that hinge on knowledge of steady-state voltages and power

flows throughout a network, including the efficient control of

distributed resources.

G. Phasor-based Control

Control of distributed resources on the basis of µPMU mea-

surements has been confined to the simulation environment so

far, but holds interesting promise. The underlying idea is that

voltage phasors holistically reflect any changes in the operating

state of the system, including generation and load as well as

connectivity changes or other contingencies. By tracking a

target phasor rather than injecting a predetermined amount of

power, a resource can inherently counteract changes occurring

elsewhere in the network, requiring fewer measurements and

less communication. Explicit phasor measurements also reduce

the computational needs for power flow and the dependence of

algorithms on potentially inaccurate input data. Use cases for

phasor-based control may include managing net power flows,

reducing voltage volatility, or matching phasors at tie switches

or points of common coupling [35]. To date, our project

has developed new linear approximations for the relationship

between the measurable phasor profile and P,Q injections that

will be suitable as a basis for control [10], and demonstrated

the ability to track a reference phasor by simulated inverter

control on a small test feeder with significant phase imbal-

ance [11]. We expect phasor-based control to become an

important area of future research.

H. Transmission versus Distribution Analytics

It is worth reflecting on some fundamental differences

between transmission- and distribution-centered use cases and

algorithms for PMU data, areas of overlap notwithstanding.

The goal is always to provide increased visibility and situa-

tional awareness, which can extend both above and below the

substation—for example, in detecting and locating the source

of disturbance events. However, on the transmission side,

PMUs augment extensive telemetry already in place for pur-

poses of power measurements in near real-time. Synchropha-

sors crucially improve upon these conventional measurements

by revealing subtle changes in the time dimension, as seen in

oscillations and damping, or studying the relationships among

quantities over large distances across the network. Across

transmission systems, time-aligned frequency measurements,

even without explicit phasor differences, can be highly in-

formative [7]. The key point of interest is the propagation of

changes, especially the potential of disturbances to cause large

outages, while local steady-state quantities are already known

to a good approximation.
By contrast, existing SCADA and customer meter data leave

vast gaps of knowledge about distribution circuits, where even

the physical properties and connectivity of the network itself

are often in question. Many of the above distribution system

applications are thus concerned with establishing a baseline

awareness of the operating state, as much as characterizing

departures from it. The goal is often to identify contributions

from specific individual sources, and their impacts short dis-

tances away. Two resulting difficulties are that the relevant

signals to be measured are small, and that algorithms must

account for many variables, including unknowns.

V. DATA REQUIREMENTS AND LIMITATIONS

Our research team has aimed to articulate the requirements

that various power distribution-related applications will impose
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TABLE I
EXPECTED DATA REQUIREMENTS FOR DIFFERENT CLASSES OF µPMU APPLICATIONS

Application Measurement Quantities Time Resolution Accuracy Latency & Continuity

Voltage magnitude profile &
variability

Voltage magnitudes crucial,
Voltage phase angle useful for
recognition of tap changes

1 sec or better resolution
is useful, synchronization be-
tween & among measurement
locations critical

Changes in time of interest,
absolute accuracy to 0.5%
error adequate

Retain complete history

Awareness of real-time loads Current magnitudes very use-
ful, V phase angle can be
proxy for current iff network
impedances are known; cur-
rent phase angle useful for
P,Q decomposition & reverse
power flow

1 cycle or better resolution re-
veals transient behaviors, full
time domain characterization
with up to 30 kHz sampling
of interest to reveal harmonics

Absolute 0.5% error likely ad-
equate

Operationally relevant latency
on the order of 1 sec

Outage management Voltage & current magnitudes 1 sec likely adequate 1% error likely adequate 1 sec latency likely adequate

System frequency & oscilla-
tion detection

Voltage phase angle essential 1 cycle or better & synchro-
nization essential

Changes in time, not absolute
accuracy of interest, 1% error
adequate if stable

Retain complete history; la-
tency requirement may vary,
sub-second critical if inform-
ing protection

Island detection; Microgrid is-
landing & resynchronization

Voltage phase angle essential 1 cycle or better resolution Insensitive to magnitude er-
ror, phase angle error stable to
0.01o

Continuous monitoring, sub-
second latency critical if in-
forming protection

Distribution state estimation
& SE-based topology detec-
tion

Voltage phasors; sensitive to
placement & number of sen-
sors; network model & load
data important

Synchronization critical Absolute accuracy on the or-
der of 0.0001 p.u., requires
correction for transducer er-
rors

Operationally relevant latency
on the order of 1 sec

Topology detection based on
time-series signatures

Voltage phasors 1 cycle or better & synchro-
nization critical

Changes in time, not absolute
accuracy of interest, 0.5% er-
ror adequate if stable

Retain complete history, op-
erationally relevant latency on
the order of 1 sec

Topology detection based on
source impedance

Voltage & current phasors 1 cycle or better & synchro-
nization critical

Changes in time, not absolute
accuracy of interest, 0.5% er-
ror adequate if stable

Operationally relevant latency
on the order of 1 sec

(ABC) Phase identification Voltage phase angles essential 1 sec or better for time-
series approach; synchroniza-
tion critical

Absolute accuracy of phase
angle on the order of 1o likely
adequate

No particular need for latency
or continuity

Model validation for line seg-
ment impedances

Voltage & current phasors Synchronization critical Absolute accuracy of all pha-
sors is limiting factor, as good
as 0.0001 p.u. for shorter seg-
ments

No particular need for latency
or continuity

DG Characterization; Trans-
former, generator & load
models

Voltage & current phasors 1 cycle or better reveals
dynamic behaviors; synchro-
nization between primary &
secondary side of transformer
critical

Changes in time, not absolute
accuracy of interest, 0.5% er-
ror adequate if stable

No particular need for latency
or continuity

Event detection & classifica-
tion

Voltage & current magnitudes
adequate for most events,
phase angles useful

1 cycle or better, synchroniza-
tion critical

Changes in time, not absolute
accuracy of interest, 0.5% er-
ror adequate if stable

Continuous monitoring, oper-
ationally relevant latency on
the order of 1 sec

Fault location Voltage & current phasors 1 cycle or better, synchroniza-
tion critical

Absolute accuracy of all pha-
sors is limiting factor

Continuous monitoring, la-
tency on the order of 1 sec

Phasor-based control Voltage phasors 1 cycle or better Absolute accuracy critical for
steady-state optimization, but
stable errors acceptable for
disturbance rejection

Continuous monitoring, la-
tency critical
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on the following measurement characteristics: temporal data

resolution; absolute and relative measurement accuracy; com-

munication volume, latency and continuity of data transfer;

and placement of µPMUs on the distribution circuit. Some of

these requirements are summarized in Table I.

With respect to these requirements, a key distinction lies

between applications addressing steady-state versus dynamic

circuit behaviors. Steady-state applications such as distribution

state estimation depend most critically upon comparisons of

measurements between different locations made at a single

point in time, such as a phase angle difference or a per-

unit change in voltage magnitude between two network nodes.

Here we require absolute accuracy such that the measurement

error is small compared to the signal of interest, perhaps as

small as 0.0001 p.u. to discriminate voltages on lightly loaded

networks with small impedances. Measurements of absolute

quantities for steady-state power flow are thus significantly

impacted by transducer errors: even revenue-grade instrument

PTs and CTs have magnitude errors up to ±0.3% and in-

troduce angle shifts on the order of a full degree, much

greater than phase angle differences of interest seen along

distribution feeders. This concern does not apply to phase

identification, where angle differences of interest are much

greater than 1o. Table I accordingly reflects the most stringent

accuracy requirements in voltage magnitude and angle for

state estimation, model validation, fault location, and phasor-

based control. Successful development and commercialization

of these applications will hinge on effective techniques for

transducer calibration.

By contrast, applications that are concerned with dynamic

behaviors hinge on the observation of time changes in mea-

surements at a given location, so that only relative accuracy

matters, and measurement errors are acceptable if they are

stable over time (which we have found to be the case). Instead,

for dynamic applications, the temporal resolution becomes

more important. Table I thus indicates greater tolerance in the

absolute measurement errors for event detection, voltage vari-

ability assessment, topology detection, phase identification and

DG characterization, as these applications focus on changes

in time. A 0.5% magnitude error is still consistent with the

accuracy of standard distribution power flow solvers, and 1%

seems tolerable where only angle, not magnitude is of interest.

With respect to temporal resolution, we distinguish the

sampling rate or granularity of data reporting, versus the

accuracy of the time stamp, which provides for synchroniza-

tion of measurements from different locations. Because the

very notions of “rms magnitude” and “phase angle” presume

the existence of a sinusoidal waveform, synchrophasor data

are only meaningful on a per-cycle basis [36]–[38]. The

phasor description is distinct from explicit sampling in the

time domain at much higher rates that describes the actual

waveform, including harmonics and sub-cycle transients, in

what is typically meant by a “power quality measurement.”

We generally assume that the power flow of interest through

the T&D network is associated with only the fundamental

(i.e. 50 or 60 Hz) frequency. Therefore, while power quality

measurements benefit from time stamping for the purpose of

identifying and comparing disturbance events as observed at

different locations (with precision on the order of a cycle), they

do not rely on the ultra-precise time stamping to within frac-

tions of a degree (several orders of magnitude better) needed

to identify a comparative phase angle shift. PSL’s device can

serve either function: in power quality or “PQube” mode it

records 512 samples per cycle in the time domain based

on an internal clock, whereas in µPMU mode it computes

and records the phasor only twice per cycle but requires a

GPS signal for this phasor to be meaningful relative to other

locations.

Our team has found that even prior to interpreting phase

angles, the mere availability of synchronized rms voltage

and current magnitude measurements at 120-Hz granularity

across distribution systems provides significantly more insight

than conventional SCADA instrumentation, which typically

reports at several second intervals and whose time stamps

may diverge by seconds or even minutes between locations.

Many transient events, including high-impedance faults and

responses to switching operations, occur at time scales on

the order of cycles and are clearly captured by µPMUs, but

are not observed at all by SCADA or misrepresented due to

sampling [20]. It is conceivable that a network of much less

accurate sensors with a comparatively crude time stamp on the

order of a cycle could economically serve the needs of a useful

subset of diagnostic applications (including event detection,

some forensics, and outage management).

For certain applications such as phase identification and

oscillation detection, however, the voltage phase angle pro-

vides unique insight. Applications based on calculating power

flows over specific network sections—namely, state estimation,

SE-based topology detection, validation of network and de-

vice models, fault location, and phasor-based control—require

some combination of complete voltage and current phasors

and complex impedances in order to apply Ohm’s Law. Fur-

thermore, characterization of real-time loads, DG resources,

and their impacts on distribution feeders substantially benefits

from direct measurement of current angle relative to voltage,

which easily reveals power flow direction and distinguishes

displacement power factor from the effects of harmonic dis-

tortion. These considerations are reflected in the Measurement

Quantities column of Table I.

Finally, it is worth noting the distinction between appli-

cations that draw on network models in order to interpret

and utilize µPMU data, and those that rely purely on direct,

empirical measurements. While much of the theoretical de-

velopment in this field is necessarily predicated on accurate

models, the typical shortcomings of available distribution

circuit models in practice [29] suggest an advantage for non-

model based approaches wherever possible, particularly for

control applications [39].

VI. OPEN µPMU DATASET

To facilitate the development of synchrophasor-based ap-

plications, a subset of µPMU data from the LBNL campus,

along with metadata and circuit model information, is being

released for academic use by the research community. This

unique “Open µPMU” resource includes three-phase voltage
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and current magnitude and angle measurements at 120 Hz

from three locations (12-kV substation, feeder, and building

transformer) for the period of Oct. 1-Dec. 31, 2015. Data can

be downloaded as a raw csv file in bulk (approx. 130GB), or

accessed and visualized through the BTrDB plotter, along with

instructions, from powerdata.lbl.gov [40].

VII. CONCLUSION

High-resolution measurement of voltage and current phasors

may offer significant new options for actively managing distri-

bution systems with diverse resources and growing complexity.

A plethora of interesting applications in varying states of

maturity await further research and development to leverage

the opportunities introduced by ultra-high precision µPMU

measurements. Because of their versatility, the business case

for µPMU sensor networks (much like transmission PMUs)

will most likely be made based on the basis of simultaneously

supporting multiple needs with a single comprehensive data

architecture, in contrast to the traditional approach of justifying

dedicated sensors for specific use cases in siloed applications.

Along with the capabilities of new sensor hardware, the

novel BTrDB infrastructure means that power system analysis

and operation should no longer be constrained by the ability

to view, store, and rapidly search large data streams: instead

of worrying about what kind of data manipulation is possible,

the power engineering community may now focus on what is

useful in practice to do with extremely rich measurement data.

Many applications will be enhanced by the future integration

of heterogeneous time-synchronized data [41]. Another key

priority is the development of practical techniques for calibrat-

ing transducer errors. As work progresses in the nascent field

of distribution synchrophasors, we anticipate an increasingly

sharp definition of the intersection between what data quality

is economically attainable, and what is required by different

applications or use cases with demonstrated practical value.

Our results so far suggest, reassuringly, that this intersection

is not the empty set.
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