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CAI4CAI: The Rise of Contextual Artificial

Intelligence in Computer Assisted Interventions
Tom Vercauteren, Mathias Unberath, Nicolas Padoy, and Nassir Navab

Abstract—Data-driven computational approaches have evolved
to enable extraction of information from medical images with a
reliability, accuracy and speed which is already transforming
their interpretation and exploitation in clinical practice. While
similar benefits are longed for in the field of interventional imag-
ing, this ambition is challenged by a much higher heterogeneity.
Clinical workflows within interventional suites and operating
theatres are extremely complex and typically rely on poorly
integrated intra-operative devices, sensors, and support infras-
tructures. Taking stock of some of the most exciting developments
in machine learning and artificial intelligence for computer
assisted interventions, we highlight the crucial need to take
context and human factors into account in order to address these
challenges. Contextual artificial intelligence for computer assisted
intervention, or CAI4CAI, arises as an emerging opportunity
feeding into the broader field of surgical data science. Central
challenges being addressed in CAI4CAI include how to integrate
the ensemble of prior knowledge and instantaneous sensory
information from experts, sensors and actuators; how to create
and communicate a faithful and actionable shared representation
of the surgery among a mixed human-AI actor team; how to
design interventional systems and associated cognitive shared
control schemes for online uncertainty-aware collaborative de-
cision making ultimately producing more precise and reliable
interventions.

Index Terms—Artificial intelligence, computer assisted inter-
ventions, interventional workflow, intra-operative imaging, sur-
gical planning, data fusion, surgical scene understanding, context-
aware user interface, machine and deep learning, surgical data
science

I. INTRODUCTION

C
ONTEMPORARY progresses in machine learning and

artificial intelligence have permitted the development of

tools that can assist clinicians in exploiting and quantifying

clinical data including images, textual reports and genetic

information. State-of-the-art algorithms are becoming mature

enough to provide automated analysis when applied to well-

controlled clinical studies and trials [1], [2], but adapting

these tools for patient-specific management remains an active

research area, with the bulk of the research community having

focused on fully automated machine learning tools. These

considerations become especially critical in the highly het-

erogeneous context of surgery and interventional procedures
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which require patient- and team-specific decision support tools

able to draw information from non-standardised interventional

devices integrated in diverse interventional suites.

Compared to computational tasks in radiology, the do-

main of computer-assisted intervention further creates unique

methodological challenges, such as imposing stringent time

constraints in the interventional suite, requiring knowledge of

procedural data, and needing methods that deal with dynamic

environments.

In this paper, keeping a focus on imaging data, we review

existing work, and share insights on future developments, of

machine learning strategies that decipher, support, augment

and integrate in various surgical and interventional workflows

while providing the flexibility required by clinical manage-

ment.

Flexibility is for example mandated to be able to deal with

missing input sources, react to real-time user feedback, adapt

to the patient risk aversion and preferences, handle uncertain

or contradictory information, learn from potentially small and

heterogeneous data, etc. All of which are common in computer

assisted interventions. Imaging sources of particular interest

for surgery and intervention include a wide range of well-

known interventional modalities such as surgical microscopy,

video endoscopy, X-ray fluoroscopy and ultrasound; more

emerging biophotonics imaging modalities such as hyperspec-

tral imaging, endomicroscopy and photoacoustic imaging; but

also span classical radiology modalities such as MRI and

CT which remain the main sources of imaging data for pre-

operative intervention planning and post-operative assessment.

We argue that the stringent need to consider context when

analysing surgical and interventional data coupled with the

heterogeneity of information sources and domain knowledge

in computer assisted intervention applications calls for the de-

velopment of novel domain-specific contextual artificial intel-

ligence solutions, a domain we coin as CAI4CAI. Feeding into

the broader field of Surgical Data Science [3]–[5], CAI4CAI

will focus on the underpinning machine learning methodology

exploiting contextual information and human interaction to

enable the required responsiveness to deliver clinical impact

in surgery and interventional sciences.

To support our claim, we highlight some of the transfor-

mative machine learning research results and methodologies

currently being developed across the spectrum of tasks in

computer assisted interventions.

The impact of machine learning in intervention planning

is discussed in Section II; intra-operative data fusion in

Section III; intelligent intra-operative imaging in Section IV;

surgical and endoscopic vision in Section V; and clinical
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workflow monitoring and support in Section VI.

In these sections, we will highlight how flexible deep-

learning based tools are becoming critical for the design of

effective and efficient intervention planning solutions. During

surgery, navigation solutions are often used to map preop-

erative information in the context of the intervention. How-

ever, navigation does not account for intra-operative changes.

Learning how to co-register images is now leading to intra-

operative registration solutions that are able to cope with

the highly challenging task of aligning pre-operative to intra-

operative images coming from different imaging modalities.

Concurrently, AI methodology is advancing to go beyond

traditional navigation-based data fusion and image overlay to

exploit information coming from complex or synergistic data

sources. This is giving rise to what we refer to as intelli-

gent intra-operative imaging. Data-driven modelling strategies

coming from the computer vision community are acting as

instrumental starting points to achieve semantic information

extraction from interventional data sources including endo-

scopic videos, with applications ranging from automated polyp

detection to surgical activity recognition. To deliver improved

clinical outcomes through AI, all these building blocks are

increasingly being integrated at the level of the complete

surgical workflow with applications spanning the full breath

of surgical data science. In this area, starting from data-

driven mapping of clinical workflow and skills assessment,

AI is now helping make contextual decision support tools

and conditionally autonomous intervention a reality. Finally,

closing thoughts are provided and further budding applications

of CAI4CAI are discussed in Section VII.

II. INTERVENTION PLANNING

A. Clinical Adoption of Intervention Planning Tools

Once a decision is made for a patient to undergo an interven-

tional procedure, for any non-trivial operation, patient-specific

planning of the intervention is required. The steps involved

usually necessitate acquisition of reference pre-operative imag-

ing data, semantic segmentation of anatomical structures in

these images, determination of the surgical approach and elab-

oration of an intra-operative plan leading to optimal outcomes

for the patient. Such a plan might encompass establishing

a surgical path and target, designing or selecting a patient-

specific implant or assistive adjunct tool such as a drill or

saw guide [6]. In the vast majority of cases, such intervention

planning is performed by a team of healthcare professionals,

each with their own expertise, known as the multidisciplinary

team (MDT). Relatively little computer assistance is currently

available for interventional planning in the clinic. Notable

exceptions can be found in the field of neurosurgery, oral

and maxillofacial surgery and orthopedic surgery. What these

specialties share is a relatively static surgical scene thanks to

the proximity of rigid bone structures. Computed tomography

(CT) provides a rich source of 3D imaging information in this

context. Indeed, thanks to the quantitative nature of CT images

and the good contrast of bone, automated segmentation of bone

has proven to be clinically reliable. Since the seminal work of

the Retrospective Registration Evaluation Project (RREP) [7],

Fig. 1. Interactive algorithms are required to deliver context-aware artificial
intelligence. In this example, using the algorithm presented in [8], brain
tumour segmentation is initially performed automatically using a pre-trained
algorithm. As part of the surgical planning, the user may want to refine
the segmentation by providing scribbles to denote areas that should be
excluded (green) or included (pink) irrespective of the initial segmentation.
The algorithm then adapts its output to respect the user input.

it is also clear that preoperative rigid registration of different

imaging modalities such as MR and CT provides a robust

means of fusing soft tissue contrast information with accurate

bone delineation for neurosurgical planning. Such technical

advances have supported the adoption of stereotactic surgery

as a means of accurately targeting and guiding instrument

towards deep seated brain structures for procedures such as

brain biopsies for tumour grading and electrode implantation

for the treatment of movement disorder or the localisation of

epileptic seizure onset zones. While computer assisted surgical

planning and subsequent surgical navigation have become

standard of care in neurosurgery and a few other disciplines,

even in these fields, there is major scope to make the workflow

more efficient through the development of further machine

learning enabled computer assistance.

B. Machine Learning in Interventional Planning

Commercial surgical planning products are still limited in

the automation they support, with many of the most advanced

ones essentially relying on classical image analysis meth-

ods such as atlas-based segmentation [9] to delineate soft-

tissue structures of interests for patient showing no gross

pathological brain changes. Clinicians are often left with

manual or generic interactive methods to delineate other

structures of interest and define their surgical plan. When

interventional planning only relies on the clinician getting a

volumetric representation of the patient anatomy from pre-

operative data, advanced visualisation techniques such as

cinematic rendering [10] can be considered as alternatives

to explicit segmentation of structures. These may produce
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results that are less sensitive to noise and data variability

but do not enable more quantitative planning. Developments

of deep machine learning segmentation algorithms dedicated

to medical imaging [11], [12] is rapidly changing to level

of accuracy at which automated segmentation of structures

of interest can be done in population of patients even in

the presence of gross pathological changes [13]. Yet many

challenges remain for these tools to become of practical use

for intervention planning purposes. Poor generalisation when

faced with slight domain changes is a recognised problem

in the entire medical imaging community including on the

diagnostic side. Expanding the size of the datasets on which

deep learning algorithms are trained would certainly mitigate

generalisation issues by providing a much larger variety of

training cases.

Collaborative efforts within the community are notably

focusing on providing open-access large annotated datasets for

machine learning training purposes in some specific use cases

[1].

Yet, collecting task-specific large annotated databases for

medical imaging purposes faces its own challenges given

the time and expertise required to provide detailed anno-

tations as well as the legal, privacy and storage questions

pertaining to sharing large patient datasets across multiple

sites. Federated learning for multi-institutional collaboration

in medical imaging [14], [15] provides a potential technical

solution to this problem. Implementing such solutions at

scale will require concerted efforts reaching far beyond the

methodological research community. Furthermore, changes

such as device upgrades or challenges posed by new clinical

indications will not be captured by increasing the pool of

retrospective training data. Active research to address such

inevitable but unpredictable domain gaps is rooted in domain

adaptation techniques [16]. These advances are necessary for

automated machine learning tools to make an impact in the

clinical setting. Prospective randomised clinical trials (RCT)

are widely seen as the only source of trustworthy clinical

evidence, yet studies implementing RCTs with systems relying

on deep learning tools for medical imaging currently remain

noteworthy exceptions [17].

C. Importance of Flexible Contextual Machine Learning

What distinguishes segmentation in surgical planning from

segmentation in diagnostic imaging is nonetheless that the

objective is not necessarily always that of reaching the best

performance in getting the structures delineated with sub-

voxel accuracy. Surgical planning needs to respect patient-

specific needs and preferences of the surgeon. This requires

putting the clinical team at the centre and promoting flexible

tools that integrate into the surgical workflow. Interactive

deep learning methodologies are emerging to combine rich

prior knowledge embedded in retrospective data from previous

patients with as-sparse-as-possible annotations provided by

clinicians [8], [18]. As illustrated in Fig. 1, deep interactive

segmentation allows the clinical expert to refine the results

from an initial automated step and most importantly to adapt

the inferred results on the fly based on contextual information.

Furthermore, given the heterogeneity and evolving nature of

surgical practice, additional flexibility is required to handle

potentially missing input modalities. Recent work in deep

machine learning are focusing on dealing with such dynamic

hetero-modal context while exploiting heterogeneous sources

of data for the training process [19], [20]. Bringing flexible

machine learning tools to maturity will certainly play an

important role in supporting the clinical adaption of AI in

surgery.

As highlighted above, segmentation of structures from pre-

operative images is often the foundation of computer assisted

surgical planning and this currently remains the state-of-the-art

in many commercial solutions. Such static segmentation when

combined with intra-operative registration already provides

useful surgical navigation information for relatively static

surgical scenes as is the case in neurosurgery. Nevertheless,

computer assistance for intervention planning has the potential

to provide impact much beyond the ability to automate the

creation of 3D anatomical models and overlay of functional

data. Patient-specific simulation of given surgical plans has

for example been introduced in orthopedic surgery with a

long history in acetabular fracture surgery [21]. State-of-

the-art orthopedic surgery planning systems allow to design

patient-specific implants and patient-specific surgical guides

by enabling the simulation of the effect of different implants

and implantation strategy on key outcome-related parameters

such as the range of motion of an articulation or the limb

length [22]. Yet, these tools often ignore the effect of soft-

tissue in the simulation process and still require very labour

intensive work for the surgical team to design patient-specific

plans. Experts systems capable of automatically optimising

the surgical plan for a given orthopedic surgery are now

being developed [23] and promise to make surgical planning

more efficient [24]. In the context of deep brain insertion

of instruments, machine learning approaches capable of au-

tomatically planning trajectories of multiple instruments, to

maximise the efficacy of the surgery while minimising intra-

operative risks and avoiding collisions between instruments

have demonstrated a significant reduction in planning time

for the implantation of stereo-electroencephalography elec-

trodes for epilepsy treatment [25] and for laser interstitial

thermal therapy [26]. Contextual and flexible machine learning

for surgical planning promises to push the boundaries of

interventional planning by exploiting data-driven approaches

and real-time user feedback to efficiently plan for complex

situations. An instrument bending model was for example

trained in [27] to predict the deviation between an original

surgical plan assuming rigid electrodes and the actual electrode

paths as measured on a post-operative CT. Provided reliable

uncertainty estimates on the prediction can be achieved, em-

bedding such deflection models in the trajectory planning

is expected to improve the safety and accuracy of stereo-

electroencephalography electrode implantation planning.

Effectively, planning is moving away from extraction of

information captured in existing data and representative of

a given (pre-operative) time point. Context-aware learning

methods are now being developed to also predict therapy-

related changes and better inform interventional planning.
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By exploiting computationally complex noninvasive cardiac

electrophysiology modelling coupled with transfer learning

approaches, [28] notably achieved online personalized predic-

tions of electrophysiology cardiac resynchronization therapy

responses, thereby paving the way for better patient selection

and patient-specific therapy optimisation. In non-quasi-static

environments, surgical planning is currently further limited by

our capabilities to predict intra-operative anatomical changes.

In abdominal surgery for example, segmentation of structures

from preoperative images may inform the clinician about the

relative spatial organisation of lesions and vascular structures.

However, at the onset of a minimally invasive procedure,

gas insufflation is typically performed to create the surgical

workspace. This has a serious impact on the geometry of the

anatomy and challenges any attempt of intra-operative use of

a 3D model of the anatomy generated from pre-insufflation

images. Current approaches typically rely on focusing on

smaller regions where rigidity assumptions between pre- and

intra-operative data may still hold [29] thereby limiting the

scope of the surgical planning. Data-driven prediction of

anatomical changes relating to gas insufflation in laparoscopic

surgery was proposed in [30].

Still in the context of liver surgery, a system able to take

into account non-imaging patient data and factual knowledge

gathered from quotable sources such as clinical guidelines was

proposed to support individualised treatment planning [31].

While relying on handcrafted features and exploiting models

with limited expressiveness, this study paved the way for more

holistic interventional planning.

It is expected that context-aware interventional planning

will be informed by refined prediction models to suggest

therapeutic plans cognizant of clinical experience as well as

potential intra-operative changes and associated risks but also

flexible enough to take into account any further input from

the interventional team interacting with a responsive planning

system.

III. INTRA-OPERATIVE DATA FUSION

A. Navigation and Image Registration Challenges

No matter how refined and capable interventional planning

becomes, its full value for procedural guidance and intra-

operative decision making support remains contingent on ap-

propriate geometric alignment with intra-operatively acquired

data. This alignment is achieved using registration methods

that either rely on dedicated external hardware, such as optical

or electromagnetic tracking systems [32], or operate directly

on intra-operative images [33].

Image-based registration in the interventional context has

received substantial academic attention [34], [35]. This is be-

cause external navigation, while improving surgical accuracy,

is associated with increased procedural time, and complex

and manual intra-operative calibration procedures that may

lead to a high level of surgeon frustration [36]. It is widely

believed that image-based registration will better integrate

with procedural workflow, mitigating many negative aspects of

external tracking approaches while providing similar accuracy.

Further, since no additional hardware is required, there is great

potential for widespread adoption and deployment of these

purely software-driven methods. This suggests that navigated

surgery may also become available in remote and rural hospi-

tals that could not afford dedicated equipment otherwise.

Despite clear opportunity, image-based registration is not

yet widely used in interventional clinical practice. This is

because, depending on the clinical context, several challenges

of image-based registration have not yet been solved reliably.

During surgery, the anatomy undergoes highly complex defor-

mations including the loss of mass or topological changes dur-

ing resections. Accurately recovering bio-mechanically plau-

sible transformations that represent anatomical change from

pre- to intra-operative state that are measured with different

imaging modalities is the subject of ongoing research. Here,

we will focus on two of the associated challenges: 1) Modeling

image similarity between images of the same anatomy but

acquired with different modalities, and 2) estimating initial

transformation parameters that are good enough for registra-

tion algorithms to succeed.

On a high level, image registration seeks to find a trans-

formation that, when applied to the moving image, aligns it

with the target image such that locations in both images are

in correspondence. Quantifying correspondence is achieved

using image similarity metrics that, usually, operate on the

image intensity values. Straightforward comparison of inten-

sity values, e. g., using a simple sum of squared differences, is

generally unrewarding since the underlying assumption on im-

age formation are prohibitively strong, even when moving and

target image are acquired with the same imaging modality. For

interventional image fusion, the problem is more challenging

since images of different modalities must be aligned. In this

case, the additive Gaussian noise assumption underpinning the

sum of squared differences is certainly violated. Even worse,

due to the different physical processes that govern image

formation, there is no guarantee that the same anatomical

structures are visible in both images, thereby challenging the

adequacy of co-occurrence-based similarity metrics, including

correlation and mutual information. Nonetheless, despite these

limitations, model-based image similarity criteria currently re-

main state-of-the-art performers in many interventional image-

registration tasks including ultrasound to MRI registration for

neurosurgical guidance [37], [38].

B. Contextual Learning for Image Registration

Using deep learning to go past some of the limitation of

classical image registration is an active area of research. How-

ever, due to the fundamental challenge of gathering ground-

truth data for image registration, many of the most success-

ful learning-based registration methods for diagnostic images

exploit unsupervised learning and optimise a classical image

similarity metric based loss [39], [40]. This approach remain

unsuitable for most interventional purposes where more flexi-

ble solutions are required. A prominent example highlighting

the need to take the interventional context into account is

transrectal ultrasound (TRUS)-guided prostate biopsy. Conven-

tionally, the biopsy target is segmented on pre-operative 3D

MR images and this must then be registered to intra-operative
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3D TRUS volumes. Since MR and TRUS images exhibit

substantially different image appearance, contrast, and artifact

level, this suggests that no good mathematical model exists

to describe image similarity between these two modalities.

Data-driven approaches that do not explicitly model intensity

correlations to test for image correspondence but optimize a

surrogate measure thereof now achieve state-of-the-art per-

formance. One candidate surrogate measure can be defined

by enforcing segmentations of the same structures to exhibit

maximal overlap after registration [41]. Remarkably, learning

to optimise for such losses does not require access to ground-

truth for the spatial transformation and leverages application-

specific annotations that are considered as weak annotations.

Further contextual information can be captured by learning

data-driven spatial transformation models or regularisation

terms [42].

Related physics-based deformation models have been

trained to predict shape changes in segmented organs from

sparse annotations which could be used for augmented reality

purposes [43], [44].

Taking account of the interventional context one step fur-

ther, [45] noticed that in many cases including MR-TRUS

guided biopsy, the main purpose of interventional data fusion

is to propagate a patient-specific target defined on a pre-

operative image to its interventional counterpart and proposed

to replace the registration step by a conditional segmentation

one.

Even in scenarios where data-driven similarity metrics may

be learned, finding the transformation that optimally aligns

a pair of images can remain non-trivial. This is because

image similarity is well defined, i. e. informative, only in a

narrowly circumscribed vicinity around the true transforma-

tion, emphasizing the need for appropriate initialization, such

that the initial mismatch falls within the capture range of

the image similarity metric and optimization algorithm [46].

While adequate initialization is challenging in all registration

scenarios, it is considered to be most detrimental in slice-to-

volume applications. Such applications are common in image-

guided interventions, with the most prominent examples being

the bijective alignment of 2D B-mode ultrasound to 3D MR

or CT volumes or the projective registration of pre-operative

3D MR or CT volumes, or CAD models to intra-operative 2D

X-ray or endoscopy images.

In cases where the 3D imaging protocol context is well

defined, i. e. one is guaranteed to observe the same extent

of anatomy, direct approaches to initialization are possible.

These methods only accept the 2D image as input and directly

estimate its initial pose relative to a 3D canonical atlas

coordinate system that is implicitly defined by the choice

of 3D image database [47], [48] or tool model [49]. These

approaches are attractive, mainly due to two reasons: First,

run times are short since only 2D images must be processed;

and second, they lend themselves well for scenarios where

2D slices are acquired successively to reconstruct a full 3D

volume. However, due to the complexity of the problem and

canonical atlas assumption, their performance is often limited

in practice.

When a canonical space cannot be defined, alternative

approaches typically mimic the external tracking workflow

where relative poses are inferred analytically. While external

tracking devices require attachment or implantation of artificial

fiducial markers to get position information readouts, AI-based

approaches seek to establish correspondence directly from the

images or from sparse but corresponding image locations.

In [50], by learning from a dataset of tracked ultrasound,

the authors demonstrated that, without inference-time reliance

on the tracker, deep learning approaches can estimate the

3D motion occurring in between consecutive 2D ultrasound

images with an accuracy far exceeding that of conventional

speckle decorrelation techniques and matching that of the

external tracker. This is allowing for sensorless 3D freehand

ultrasound and creates new opportunities in computer assisted

interventions. Another complementary powerful concept for

tracker-less image alignment is the detection and identification

of anatomical landmarks. These are particularly appealing

since they carry semantic meaning, and consequently, define

point correspondence across modalities and domains. Reliably

detecting anatomical landmarks is complicated because of

changing appearance based on viewpoints, but has recently be-

come possible due to powerful convolutional neural network-

based image analysis for anatomical landmarks as shown in

the pelvis [46], [51] and knees [52]. The same concept of

point correspondence naturally extends to tools and implants

where, rather than relying on anatomical landmarks, keypoints

on the CAD model are used [53]–[55]. The aforementioned

approaches aim at discovering well defined points, however,

finding the same arbitrary point in multiple images is equally

appropriate to establish correspondence. In this formulation

of the problem, an AI-based algorithm is trained to produce

a pose invariant latent representation of point appearance.

Then, query points can be randomly sampled in one image

that are then re-discovered in the target image [56], thereby

establishing correspondence. This approach is appealing since

it does not impose any prior on the imaged object, however,

learning a pose invariant latent representation so far has only

been demonstrated for comparably small pose differences.

IV. INTELLIGENT INTRA-OPERATIVE IMAGING

A. From Data Fusion to Intelligent Imaging

Intelligent intra-operative imaging refers to augmenting the

value of intra-operative images for clinical decision making by

providing additional information that is tailored to the context

of the intervention. In increasingly granular order, context

here describes the interventional requirements specific to a

certain procedure, step in the surgical workflow, decision, or

even surgeon’s preferences. So far, efforts in this direction are

dominated by data fusion methods that seek to enrich intra-

operative images with procedural planning information that

exists from pre-operative data. While this approach, even when

relying on classical CAI tools, has been deployed successfully

for several types of procedures [33], it is fundamentally limited

in its capabilities of fully leveraging all acquired data. This

is because the value of intra-operative images is reduced

to a proxy to support, e. g., image-based registration or as

a means for overlay, while all intelligent information that



MANUSCRIPT SUBMITTED TO THE PROCEEDINGS OF THE IEEE 6

Fig. 2. Realistic simulation of X-ray image formation from pre-operative CT is one possibility to create large quantities of well annotated images. Pipeline
represents the simulation approach described in [57].

really augments the decision making is propagated solely

from pre-operative images. In addition to under-exploiting

intra-operative images, this strategy only allows for displaying

information derived from pre-operative data that becomes

outdated as surgery progresses. This calls for the development

of intelligent intra-operative imaging that fully leverages the

information contained in interventionally acquired data in real-

time. Augmenting decision making in this way offers clear

opportunities by: 1) automating quantitative measurements

required for precision medicine; and 2) extracting information

that is otherwise not easily accessible which may allow

development of new surgical techniques. Still, contextual and

intelligent interventional image analysis is not yet mainstream

technology because, compared to diagnostic image analysis,

the environment for developing AI solutions is even more hos-

tile. From our experience working with clinical collaborators

across different sites and specialties, we believe that this is

primarily due to three reasons. First, while hundreds of images

are acquired for procedural guidance, only very few, if any,

are archived [58]–[60], thereby suggesting a severe lack of

meaningful data for researchers to work with. Second, learning

targets beyond segmentation are not well established or de-

fined. Third, images of the anatomy are acquired from multiple

viewpoints, the exact poses of which are not reproduced nor

known. Finally, the overall variability in the data is further

amplified by surgical modification of anatomy and presence

of tools. Overall, the accessible data is heavily unstructured

and exhibits enormous variation, which challenges meaningful

data augmentation strategies. As a consequence, in order to

train AI algorithms on interventional images, solutions to the

dataset curation and annotation problem must be found first.

Overcoming these hurdles seems challenging and is reflected

in the observation that only very little work has considered

learning in this context. It is worth mentioning that the lack

of annotated and/or paired data equally affects other methods

presented in this manuscript.

B. Simulation-based Training

First steps in addressing the data problem have been taken,

serving as a stepping stone for the transformative technology

that is intelligent imaging. While large scale acquisition of

highly structured data is tractable for some interventional

applications, particularly ultrasound [61], [62], most other

approaches rely on synthetic data generation from physical

models of the scene. This paradigm is attractive because all

quantities of interest are precisely known by design, however,

if simulation is performed naı̈vely, AI models trained on

synthetic data will not generalize to clinically acquired images

because of the large domain mismatch paired with poor

generalizability of today’s models [57]. Three complementary

ways have recently been shown to mitigate this problem.

First, if clinically acquired data is available in addition to

the well annotated synthetic data, style transfer algorithms

can be trained that alter the appearance of real data to close

the domain gap, as shown for ophthalmic surgical microscopy

[63], [64]. Using such enhanced simulated data for training

of more complex tasks has been applied successfully to

endoscopy [65] and X-ray imaging [66]. Second, if too little

clinical data is available, learning a style transfer algorithm is

impossible. In these cases, a powerful alternative is increasing

the realism of synthetically generated images in a model-

based approach. Doing so requires accurate models of all

physical principles that govern image formation, however,

approximations are usually required to reduce simulation time

to acceptable levels. Realistic simulation works well for X-

ray-based modalities as illustrated in Fig. 2) and demonstrated

in [57], [67]. It has also been proposed in endoscopic imag-

ing [68]. However, the level of required realism likely depends
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on the application and learning target, since it has been shown

that even less realistic simulations could be adequate, e. g.,

in some ultrasound applications [69]. The aforementioned

approaches aim at reproducing real data appearance which is

very complicated in practice. If closely matching real data

appearance is found to be impossible, domain randomization

can be used to improve the robustness of the trained model

to partially unseen data. Rather than perfectly matching real

data characteristics, the goal of domain randomization is

to generate multiple versions of the same sample with all

but the important characteristics randomized. When training

AI algorithms on such datasets, the models are assumed to

become robust to these types of domain changes. Domain

randomization can be seen as image formation-based data

augmentation and has recently been applied to X-ray imaging

[70] as well as colonoscopy [68], where achieving realistic

image appearance is very complicated due to fine texture and

specular reflectance of the tissue. It is worth mentioning that

all the above techniques for synthetic data usage are similar in

that AI algorithms never process real data during training. This

characteristic is associated with a notable drop in performance

when applied to real data due to residual domain mismatch.

Consequently, assessing algorithmic performance only on a

synthetic test set will severely overestimate the AI models

accuracy during deployment and quantitative experiments on

clinical data are required. Ultimately, training the AI directly

on real data is preferable, highlighting the need for further

research on un- and self-supervised learning to leverage large

quantities of unlabeled data.

C. Intelligent Imaging in Interventional Biophotonics

Although conventional interventional imaging, such as X-

ray fluoroscopy, surgical microscopy, endoscopy and ultra-

sound will benefit from being augmented by contextual AI,

another interesting area in which the intelligent imaging

paradigm is expected to make an important impact is that

of interventional biophotonics imaging. The initial focus in

biophotonics has been on developing optimal, task-specific,

contrast agents that would be merely be directly visualised,

e.g. in tumour-specific fluorescence imaging. The biophotonics

community has however faced stringent challenges in identi-

fying versatile contrast agents suitable for use in patients and

realised that tissue differentiation would remains challenging

with such an approach. Advanced high-dimensional optical

imaging techniques are currently seen as promising solutions

for intraoperative tissue characterisation, with the advantages

of being non-contact, non-ionising and non- or minimally-

invasive. However, because of the high-dimensional nature

of the generated data, direct visualisation by the clinical

team becomes impractical. This calls for automated learning-

based information extraction before display. As in the previous

examples of intelligent imaging, many of the most advanced

AI-supported interventional biophotonics imaging devices cur-

rently exploit model-based learning or unsupervised learning.

Point-based measurement devices able to measure Raman

scattering have recently been translated into commercial prod-

ucts [71] with support from supervised classification [72]

or usupervised dimensionality reduction [73]. Addressing the

lack of wide-field information in point-based systems, the

community has looked into modalities such as hyperspectral

imaging [74] with an increasing use of machine learning to

solve some of the intrinsic challenges of high-dimensional

data. Indeed, while bearing rich information, the raw 2D-

space+wavelength+time data that hyperspectral imaging pro-

duces is difficult to interpret for clinicians as it generates a

temporal flow of three-dimensional information which cannot

be simply displayed in an intuitive fashion. Innovative use

of Invertible Neural Networks in combination with model-

driven simulation has been used to train neural network

based regressors which are capable of real-time operation

and can provide uncertainty estimates for oxygen saturation

measurement from hyperspectral data [75]. Unsupervised deep

manifold embedding for hyperspectral imaging was proposed

in [76] and deep learning was used for reconstruction from

sparse hyperspectral data [77]. Intelligent imaging concept

with simulation- or model-based training are also being pro-

gressed with other emerging biophotonics imaging modalities

such as for super-resolution in endomicroscopy [78], [79], and

artefact suppression in photoacoustic imaging [80].

D. Towards Prospectively Planned Intelligent Imaging

With the availability of training data, either via dedicated

data collection or synthetic generation, AI algorithms can

be developed to analyze intra-operative images in near real-

time and supply contextual information to improve decision

making. Omitting applications to endoscopic video sources

which are discussed in depth in Section V, and focusing

first on interventional X-ray imaging, benefits of real-time

machine learning range from segmentation of tools [53],

[81], [82], anatomical landmark detection [51], [52], anatomy

localization [83], and denoising [84], [85], to surgical phase

recognition [81]. Corresponding developments can be found

for ultrasound imaging [86]–[88].

While the above lists of applications merely hints at the

potential that AI-based analysis of internventional images has

to offer, there is an interesting observation: The majority of

intelligent imaging algorithms, including all aforementioned

methods, try to provide richer information by automated

analysis of traditionally acquired images, with little or no

knowledge of the image acquisition workflow. This raises an

interesting question: If it is known what information is desired

or desirable at any given point during surgery, is it possible

to prospectively acquire an image that is most informative

in that particular context? First steps in this direction have

recently been reported, exploiting ultrasound image formation

to suppress scatter [89] or beamforming a B-mode image [90],

[91] together with producing its segmentation [69]. Zaech et

al. [92] use an AI-based algorithm to recommend task-optimal

and patient specific C-arm X-ray trajectories during cone-

beam CT of spinal fusion surgery, and similar ideas arise for

ultrasound transducer positioning [93].

The domain of real-time interventional image analysis is

fairly untapped as of yet but offers great opportunities for

workflow analysis, surgical progress monitoring including
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anticipation and adverse event detection, and supplying rich

information for human-in-the-loop decision making. Addition-

ally, task-aware and autonomous imaging modalities may ben-

efit interventional imaging already one step before the image

is analyzed and may thus give rise to disruptive technology

and novel surgical approaches.

V. SURGICAL AND ENDOSCOPIC VISION

A. Recognizing Endoscopic Activity

Standard endoscopic imaging is certainly the modality most

closely relating to natural images. It should therefore not

be surprising that machine learning tools for interventional

images have developed most rapidly in this field. As a proxy

for the eyes of the surgeon inside the patient, the endoscopic

camera is the privileged source of digital information to

understand the activities performed during endoscopic proce-

dures. Endoscopic videos usually capture most of the activities

performed within the patient. Recognizing and understanding

these activities is essential to develop novel assistance systems

that are reactive to the context, e. g., that can provide timely

instructions to OR staff, enforce safety checkpoints or log

automatically relevant information within the surgical report.

Surgical activity recognition from endoscopic videos is how-

ever a highly challenging task due to the variability existing

across patients, surgical treatments and surgical teams.

In the recent years, a large body of work has focused

on recognizing the surgical steps of a procedure directly

from the videos [94]–[99]. This has notably been the case in

cholecystectomy, a common procedure consisting in removing

the gallbladder, which is frequently used in research due

to its high frequency of occurrence and well-standardized

protocol [100]. There, the steps include for instance “calot

triangle dissection, cystic duct and artery clipping and cutting,

gallbladder dissection and gallbladder packaging”. Recogni-

tion of these steps allows for the automated understanding of

the progress of the surgery. To perform recognition, models

of the underlying workflow of the procedure are learnt from

datasets of exemplary videos, annotated manually with the

different steps. In [97], the model consists for example of

a visual feature extractor relying on a deep neural network

that feeds a temporal recognition model, like a hierarchical

hidden Markov model or an LSTM model. Several types of

procedures have been successfully studied for step recognition

besides cholecystectomy. Examples are cataract surgery [95],

[96] and laparoscopic sleeve gastrectomy [98]. As the current

recognition methods show very promising results and real-

time capabilities, they can potentially be directly embedded

in the endoscopic tower to deliver contextual support. Other

interesting prediction tasks have been tackled with success

using deep learning methods. In [101], [102], the remaining

duration of the procedure is predicted in real-time using deep

recurrent models trained directly from video data. In [97],

[103], [104], the presence of the instruments in the surgi-

cal scene is automatically detected. Additional applications

include bleeding and smoke detection [105], [106], as well as

surgery type identification at the beginning of the procedure

[107].

Beyond the recognition of the surgical steps indicating

the progress of the surgery and the recognition of events

such as bleeding, many potential applications, like safety

monitoring and human-robot cooperation, require a finer level

of understanding of the surgical activities. Future research

therefore needs to demonstrate accurate recognition of the

detailed interactions between the tools and the anatomy. To

have impact beyond a single operating room, recognition

methods will also need to scale up to different types of

surgeries, operating rooms and hospitals without requiring

the manual annotations of large datasets for each situation.

Recent methods exploiting non-annotated videos through self-

supervision or weak-supervision [104], [108]–[111] or exploit-

ing synthetically generated surgeries [64] may prove very

useful to train the next generation of surgical recognition

systems.

B. Understanding Image Semantics

Understanding the surgical scene from the endoscopic im-

ages is fundamental for context-aware intelligent computer-

aided assistance. During augmented reality visualization, pre-

cise pixel-based segmentation of the tools is necessary for

handling occlusions and providing the user with the correct

perception. Implementing safety warnings, such as no-go

zones, requires the detection of the critical anatomy. When

another imaging modality is used, its registration to the endo-

scopic video may require the localization of anatomical land-

marks [113]. Similarly, implementing degrees of autonomy

during robotic surgery requires the localisation and recognition

of the neighboring tools and anatomy.

Recently, a large body of work has targeted the detec-

tion and segmentation of surgical instruments [114]. Deep

learning methods have been proposed for both bounding box

or articulated tool detection [115]–[117] and for pixel-based

tool segmentation [118], [119]. Their superiority has been

confirmed on laparoscopic and surgical microscopy datasets

in two international challenges organized in 2015 and 2017

at the MICCAI conferences [120], [121]. Still, the datasets

used for evaluation are limited in size and variability. They

are far from representing the diversity of surgical scenes,

which can indeed be very challenging due to the presence

of occlusions, smoke, bleeding, specularity, motion blur, and

deformation. Furthermore the aforementioned approaches are

fully-supervised and therefore impose important burden on the

collection of representative training datasets. New approaches

are needed that can generalize easily to various types of pro-

cedures and be trained using weaker information for training,

such as image-level tool presence [104], point annotation [122]

or scribbles [123].

Far less work has addressed the much needed anatomy

detection and segmentation, certainly due to the lack of

available public datasets. The community is however putting

large efforts in this direction, as illustrated by the recent

generation of the CaDIS dataset [124], which contains pixel-

level annotations for 36 semantic classes in cataract surgery

videos. Progress has also been achieved in specific areas, such

as liver segmentation [125], lesion detection and character-

isation during gastroscopy [126] or polyp detection during
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Fig. 3. Endoscopic video (top), monocular depth estimate (middle), and rendering of a photorealistic reconstruction (bottom). Results were achieved using
the self-supervised method described in [112].

colonoscopy [17], [127]. Here again, deep learning is the state-

of-the art, as demonstrated for polyp detection in a challenge

organized at MICCAI 2015 [128]. Thanks to the real-time

capabilities of deep learning approaches, the intra-operative

benefits of such systems already start to be evaluated in

randomised clinical trials [17].

C. Reconstructing Anatomic Geometry

Endoscopy mimics the surgeon’s eyes within the body, but

due to the monocular construction of endoscopes it lacks

one important visual cue: Depth. This shortcoming has im-

plications: It has recently been shown that the availability of

3D anatomic geometry benefits several clinical tasks, includ-

ing the detection of critical anatomy such as polyps [129]

and the registration of pre-operative 3D data to endoscopy

video to enable navigation [130]. In addition, analyzing 3D

representations of anatomy would allow for the introduction

of quantitative measurements, enabling the standardization

of clinical reporting across sites. Recovering anatomic 3D

geometry, e. g. to augment endoscopic video with depth cues

or to provide dense 3D reconstruction, has gained considerable

traction and is now an emerging discipline with developments

often orthogonal to those for complementary tasks e. g. seg-

mentation. This is because deep learning-based algorithms

are able to exploit image-level features to provide dense

depth estimates even from monocular video, complementing

traditional optical endoscopy with depth sensing as ”pseudo

modality”. However, training depth estimation algorithms on

endoscopic sequences is complicated in practice because no

paired depth measurements exist naturally. While paired data

can be generated in silico via simulation from CT [65], [68],

[131], the resulting trained models will need to overcome the

domain mismatch to real clinical data with methods similar to

that presented in Section IV. Recently, self-supervised training

paradigms that rely on traditional multi-view stereo approaches

have received increasing attention as they can be trained

directly and solely from endoscopic video. Multi-view stereo

algorithms including structure from motion [112], [130] and

simultaneous localization and mapping [132] can be adapted

to work with endoscopic video, but they cannot provide

dense 3D reconstructions due to the lack of photometric

constancy in endoscopic video and texture scarceness that

complicate feature matching across frames. These algorithms

do, however, provide a few reconstructed 3D points, and

more importantly, relative camera poses that can be used

to supervise monocular depth estimation [112], [132]. A

representative photorealistic reconstruction achieved using a

structure from motion supervised depth estimation method

is shown in Fig. 3. These methods achieve state-of-the-art

performance with good generalization ability, however, the re-

sulting reconstructions are only up to scale. Among the biggest

premises of video-based reconstruction is the possibility of

monitoring anatomical change during surgery. This would

require methods to robustly handle various sorts of uncontrol-

lable variation, including bleeding, smoke, or tool presence.

Solutions to these problems are currently unknown. Even in

more controlled scenarios, widespread adoption of learning-

based reconstruction from endoscopic video is hindered by the

lack of publicly available datasets, making it unclear how well

today’s algorithms perform on clinical data. This challenge

is further aggravated by the lack of direct evaluation targets:

When applied to real clinical data, current reconstruction

or dense estimation algorithms can only be evaluated via

surrogate tasks, such as video-CT registration [112], [133] or

polyp classification [129].

VI. CLINICAL WORKFLOW MONITORING AND SUPPORT

A. The Notion of Surgical Control Tower

While imaging alone provides valuable information, modern

procedures rely increasingly on a variety of complex devices

and intricate workflows. This limits the knowledge extraction

that AI systems can do based on imaging alone, and makes

it difficult for humans to properly analyse in real-time the
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Fig. 4. Capturing the 3D context of the operating room is necessary for providing AI-based decision support and monitoring risk. In this example, the staff
radiation exposure during a X-ray based procedure is computed in-situ via simulation and displayed with augmented reality in a training scenario [134].

wealth of available data. Furthermore, even though the quality

of care has generally improved with the introduction of new

surgical techniques and devices, adverse events still occur, a

large part of which are preventable [135], [136]. Humans are

prone to fatigue, teams to miscommunications, devices can

fail, and for all roles, surgical tasks require an ever increasing

level of specialization. The increased use of digital equipment

in the OR however opens up new opportunities for support

and monitoring, at the level of the whole room, by providing

artificial intelligence systems with real-time data that capture

a faithful representation of the processes taking place during

the surgery. Indeed, most of the activities happening in the

room can be captured digitally either through interactions

with equipment, such as information systems, room control

interfaces, imaging devices and instruments, or though the use

of sensors, such as ceiling-mounted cameras, which are now

becoming widespread and increasingly used for documenta-

tion, teaching and augmented reality assistance. Consequently,

it is highly likely that in the near future assistance systems will

be fully integrated in a digital OR that will monitor surgical

processes though AI, akin to a surgical control tower [137],

[138], that can analyze the whole digital information in real-

time to provide context-aware support and information within

and outside the OR. Applications for such a control tower

are for instance the transmission of live information about the

OR status, the adaptation of user-interfaces to the surrounding

context, the display of instructions within the OR, the cre-

ation of an automated report, the recording of the activities

for archiving and legal purposes, the enforcement of safety

checklists, the detection of anomalies with respect to past

workflows, and improved scheduling for staff and patients.

To perform these tasks, the control tower will have access to

and crunch masses of multi-modal digital data coming from

hundreds of past surgeries.

B. An Endeavour Rooted in Surgical Data Science

An essential component of the control tower is the data-

driven modeling and understanding of the clinical activities, an

undertaking that taps into the emerging research field of Sur-

gical Data Science [3], [4]. Machine learning has been key to

generate models of procedural interventions from data [139],

[140] and ontologies have also been developed to standardize

the resulting models [141]. Implementations of such AI-based

applications start to emerge in various institutions, besides

the ones focusing on analysing endoscopic videos already

mentioned in Section V. As video data remains one of the

main source of information, they highly rely on deep learning.

Videos captured by cameras mounted in the room provide

indeed a rich source of information about the activities without

disrupting the workflow. For instance, a patient and staff

radiation exposure monitoring system for hybrid procedures

illustrated in Fig. 4 was proposed in [134]. It relies on several

RGB-D cameras to estimate the 3D pose of the persons

and room layout, which can then be used to simulate and

visualize in situ X-ray propagation around the patient table.

[142] develops a system to monitor hand-hygiene in hospital

corridors in order to analyse and reduce hospital acquired

infection. The approach uses a large set of depth cameras

installed to observe the hand-soap dispensers. For the intensive

care unit, [143], [144] present methods based on color or depth

video data for the detection of patient mobilization activities.

Key building blocks to the success of these applications are

the estimation of clinician and staff poses [145]–[147], as

well as the recognition of their activities [148]–[151]. As for

traditional visual data, deep learning based approaches are

currently the best performing methods for these tasks, though

it should be noted that they do not necessarily perform as

well on clinical data yet. This is due to the specificity of

clinical videos, where staff wear gowns and masks, colors are

often similar, and cameras observe the room from restricted

positions, but also from the fact that there is no clinical

COCO or Imagenet dataset yet. [152] evaluates state-of-the-art

human pose estimation approaches and [153] state-of-the-art

face detection approaches on clinical data. Both studies show

a large margin for improvement. Since the development of

large annotated datasets of clinical videos may be difficult

due to the expertise required and the restrictions on data,

other approaches need to be developed, for instance using non
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annotated data for transfer learning [153].

This will also help deploy the surgical control tower in new

clinical environments, as the variability in room layout, camera

configuration and workflow can be high. Retraining the assis-

tance systems using only non-annotated data from the novel

environment or a tiny subset of annotated data will be crucial

for the adoption of these technologies. As even the collection

of non-annotated video data can be challenging due to data and

privacy regulations, it may also be required to implemented

federated learning approaches or develop methods able to

cope with privacy-preserving data, such as depth-only videos

[142] or even low-resolution depth videos [154]. In [154], it

is shown that 2D human pose estimation can be achieved with

reasonably high accuracy on depth images downsampled by

ten to the resolution 64x48. By using other information, such

as system events [155] or speech analysis [156], the analysis

of clinical activities will be further improved.

VII. DISCUSSION AND CONCLUSION

While AI is starting to impact CAI, as described in this

paper, there are a number of challenges that are specific

to surgery and intervention to overcome to deliver clinical

impact. Leveraging context within learning paradigms will

be crucial to address those in a clinically meaningful way.

The emerging field of CAI4CAI offers researchers a large

set of open problems to tackle. These notably stem from

the heterogeneity of surgical procedures and their particular

requirements for intra-operative imaging [157]; the difficulties

in data acquisition; the complexity in modeling and inferring

decision making processes; and the intricacy of the execution

of surgical tasks. Over the years, the CAI community has

defined increasingly powerful Surgical Process Models [158]

to gain actionable understanding of surgical procedures while

describing interventions as a sequence of tasks and activities at

different granularity levels. At the finest level, mapping what

should be the Language of Surgery [159], researchers currently

break down surgical gestures into semantically relevant motion

units called surgemes that are further composed of sequences

of motion primitives named dexemes [160]–[162]. Yet, this

taxonomy mostly focused on the surgical action and in par-

ticular on surgical tool manipulation and could thus rather be

considered as mapping the Language of Surgical Dexterity.

This is already a laudable achievement and led to scientists and

engineers being able to, e. g., quantify the success of a training

program for executing different surgical actions [163], [164].

As suggested by the study conducted by Birkmeyer et al. for

bariatric surgery [165], surgical skills can be highly correlated

to surgical outcome for certain procedures. AI systems have

been shown capable of evaluating technical skills using data

from either training scenarios [166] or real procedures [167].

Yet, by severely under-utilising the rich information contained

in other data sources, the Language of Surgical Dexterity

is still not capturing the most complex aspects of surgical

decision making.

To address the need to capture, understand and support all

the cognitive interactions and processes taking place in the

operating room, the Surgical Data Science community will

need to drive the deployment of real-time multi-modal data ac-

quisition systems that will be used routinely. At the same time,

it will foster the development of new standards and regulations

aiming at increasing the interoperability of data, devices and

models. This will directly benefit CAI4CAI by simplifying the

implementation and training of learning algorithms involving

databases from multiple institutions while maintaining privacy,

e.g. through federated learning.

CAI4CAI in combination with Surgical Data Science and

Surgical Process Modelling could thus aim at defining and

understanding the ultimate Language of Surgery based on a

large number of heterogeneous data sources used continuously

by surgeons and interventional teams to guarantee the best out-

comes for a given procedure. As the field blossoms, CAI4CAI

researchers will address some of the most rewarding questions

in computer assisted intervention. Could CAI4CAI allow us to

learn how decisions are made, or missed, throughout surgical

procedures? Could CAI4CAI support such decision makings?

Instead of going through the traditional path of segmentation,

registration, navigation and visualization, could contextual

machine learning allow us to optimize these steps for each

given objective and allow for real-time computation and feed-

back based on large amount of heterogeneous data including

pre- and intra-operative imaging, patient characteristics and

surgeon preferences?

With more capable and flexible learning paradigms, syn-

ergistic collaboration is expected to happen between humans

and AI-powered actors. The field is already seeing exciting

attempts to bring the user and the user experience at the centre

of our research questions. For example, novel spatially-aware

visualisation beyond traditional user interfaces is explored

in [134], [168]. The challenge of improving human situa-

tional awareness in operating rooms with solutions beyond

visualisation is addressed in [169] with the use of context-

specific soundtracks. Introduction of novel multimodal inter-

action paradigms and technologies within operating rooms

will require extensive use of machine learning to optimize the

user interfaces and to provide maximally relevant information

and support, while preventing inattentional blindness [170].

By developing systems able to learn from previous surgeries

performed by experts how to provide context-aware support

and instructions directly in the OR, in the manner of a virtual

coach as in [171], AI could have a strong impact in improving

patient care. This is another aspect of CAI4CAI which needs

particular focus from the scientific community and requires

multidisciplinary teams including clinicians, user experience

experts and machine learning scientists to work together and

come up with intelligent end-to-end CAI solutions.

Finally, in this paper we did not have a particular fo-

cus on robotics. However both surgical robotics and robotic

imaging will play increasingly crucial roles in the years to

come. Machine learning is demonstrating convincing results

in real-time tool tracking [118], [172]–[174]. This for ex-

ample enables automatic positioning of intra-operative OCT

imaging planes within surgical microscopy for ophthalmic

surgery [119], [175]. Integration of robotics within surgical

suites would require them to act intelligently, synergistically

with the human team and to be fully context-aware at all
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moments. The wish to have real-time multi-modal imaging

requires full intelligence and automation. It also requires direct

communication and collaboration between surgical robots,

imaging robots, surgeons and surgical teams. CAI4CAI will

have the challenge of enabling such ultimate intelligence,

which requires many years of research and development in

many disciplines while remembering past experience with the

first generation of context-aware computing [176]. Not only

does CAI4CAI offer numerous exciting research directions

but it also promises to revolutionize surgery and therefore the

future of healthcare at a global scale.
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T. Haidegger, C. Julliard, D. Katic, H. Kenngott et al., “Toward a
standard ontology of surgical process models,” Int. J. Comput. Assisted

Radiol. Surg., vol. 13, no. 9, pp. 1397–1408, 2018.

[142] A. Haque, M. Guo, A. Alahi, S. Yeung, Z. Luo, A. Rege, J. Jopling,
N. L. Downing, W. Beninati et al., “Towards vision-based smart hospi-
tals: A system for tracking and monitoring hand hygiene compliance,”
in Machine Learning in Healthcare Conference (MLHC), Proceedings

of Machine Learning Research, 2017.

[143] A. J. Ma, N. Rawat, A. Reiter, C. Shrock, A. Zhan, A. Stone, A. Rabiee,
S. Griffin, D. M. Needham, and S. Saria, “Measuring patient mobility
in the ICU using a novel noninvasive sensor,” Critical care medicine,
vol. 45, no. 4, pp. 630–636, 04 2017.

[144] S. Yeung, F. Rinaldo, J. Jopling, B. Liu, R. Mehra, N. L. Downing,
M. Guo, G. M. Bianconi, A. Alahi et al., “A computer vision system
for deep learning-based detection of patient mobilization activities in
the icu,” npj Digital Medicine, vol. 2, no. 1, p. 11, 2019.

[145] A. Haque, B. Peng, Z. Luo, A. Alahi, S. Yeung, and F. Li, “Viewpoint
invariant 3D human pose estimation with recurrent error feedback,” in
Proc. ECCV, 2016, pp. 160–177.

[146] V. Belagiannis, X. Wang, H. B. Shitrit, K. Hashimoto, R. Stauder,
Y. Aoki, M. Kranzfelder, A. Schneider, P. Fua et al., “Parsing human
skeletons in an operating room,” Mach. Vis. Appl., vol. 27, no. 7, pp.
1035–1046, 2016.

[147] A. Kadkhodamohammadi, A. Gangi, M. de Mathelin, and N. Padoy, “A
multi-view RGB-D approach for human pose estimation in operating
rooms,” in Proceedings of IEEE Winter Conference on Applications of

Computer Vision (WACV), 2017.



MANUSCRIPT SUBMITTED TO THE PROCEEDINGS OF THE IEEE 16

[148] I. Chakraborty, A. Elgammal, and R. S. Burd, “Video based activity
recognition in trauma resuscitation,” in 10th IEEE International Con-

ference and Workshops on Automatic Face and Gesture Recognition

(FG), 2013, pp. 1–8.
[149] C. Lea, J. C. Facker, G. D. Hager, R. H. Taylor, and S. Saria, “3D

sensing algorithms towards building an intelligent intensive care unit,”
in AMIA Summits on Translational Science, 2013.

[150] A. P. Twinanda, E. O. Alkan, A. Gangi, M. de Mathelin, and N. Padoy,
“Data-driven spatio-temporal RGBD feature encoding for action recog-
nition in operating rooms,” Int. J. Comput. Assisted Radiol. Surg.,
vol. 10, no. 6, pp. 737–747, 2015.

[151] A. P. Twinanda, P. Winata, A. Gangi, M. D. Mathelin, and N. Padoy,
“Multi-stream deep architecture for surgical phase recognition on multi-
view rgbd videos,” in M2CAI Workshop at MICCAI, 2016.

[152] V. Srivastav, T. Issenhuth, K. Abdolrahim, M. de Mathelin, A. Gangi,
and N. Padoy, “MVOR: A multi-view RGB-D operating room dataset
for 2D and 3D human pose estimation,” in MICCAI-LABELS, 2018.

[153] T. Issenhuth, V. Srivastav, A. Gangi, and N. Padoy, “Face detection
in the operating room: Comparison of state-of-the-art methods and a
self-supervised approach,” Int. J. Comput. Assisted Radiol. Surg., 2019.

[154] V. Srivastav, A. Gangi, and N. Padoy, “Privacy-preserving human pose
estimation on low-resolution depth images,” in MICCAI, 2019.

[155] A. Malpani, C. Lea, C. C. G. Chen, and G. D. Hager, “System
events: Readily accessible features for surgical phase detection,” Int. J.

Comput. Assisted Radiol. Surg., vol. 11, no. 6, pp. 1201–1209, 2016.
[156] Y. Gu, X. Li, S. Chen, H. Li, R. A. Farneth, I. Marsic, and R. S. Burd,

“Language-based process phase detection in the trauma resuscitation,”
in IEEE ICHI, 2017.

[157] N. Navab, C. Hennersperger, B. Frisch, and B. Fuerst, “Personalized,
relevance-based multimodal robotic imaging and augmented reality for
computer assisted interventions,” in Med. Image Anal., 06 2016.

[158] F. Lalys and P. Jannin, “Surgical process modelling: a review,” Int. J.

Comput. Assisted Radiol. Surg., vol. 9, no. 3, pp. 495–511, 2014.
[159] C. E. Reiley and G. D. Hager, “Using robots to train the surgeons of

tomorrow,” IEEE Spectrum, 2011.
[160] H. C. Lin, I. Shafran, T. E. Murphy, A. M. Okamura, D. D. Yuh, and

G. D. Hager, “Automatic detection and segmentation of robot-assisted
surgical motions,” in Proc. MICCAI’05, 2005, pp. 802–810.

[161] H. C. Lin, I. Shafran, D. Yuh, and G. D. Hager, “Towards automatic
skill evaluation: Detection and segmentation of robot-assisted surgical
motions,” Computer Aided Surgery, vol. 11, no. 5, pp. 220–230, 2006.

[162] F. Despinoy, D. Bouget, G. Forestier, C. Penet, N. Zemiti, P. Poignet,
and P. Jannin, “Unsupervised trajectory segmentation for surgical
gesture recognition in robotic training,” IEEE Trans. Biomed. Eng.,
vol. 63, no. 6, pp. 1280–1291, 2015.

[163] B. Varadarajan, C. E. Reiley, H. Lin, S. Khudanpur, and G. D. Hager,
“Data-derived models for segmentation with application to surgical
assessment and training,” in Proc. MICCAI’09, 2009, pp. 426–434.

[164] N. Padoy and G. D. Hager, “Human-machine collaborative surgery
using learned models,” in IEEE International Conference on Robotics

and Automation, ICRA 2011, Shanghai, China, 9-13 May 2011, 2011,
pp. 5285–5292.

[165] J. D. Birkmeyer, J. F. Finks, A. O’Reilly, M. Oerline, A. M. Carlin,
A. R. Nunn, J. Dimick, M. Banerjee, and N. J. Birkmeyer, “Surgical
skill and complication rates after bariatric surgery,” N. Engl. J. Med.,
vol. 369, no. 15, pp. 1434–1442, 2013.

[166] A. Zia, Y. Sharma, V. Bettadapura, E. L. Sarin, and I. A. Essa, “Video
and accelerometer-based motion analysis for automated surgical skills
assessment,” Int. J. Comput. Assisted Radiol. Surg., vol. 13, no. 3, pp.
443–455, 2018.

[167] T. S. Kim, M. O’Brien, S. Zafar, G. D. Hager, S. Sikder, and
S. S. Vedula, “Objective assessment of intraoperative technical skill in
capsulorhexis using videos of cataract surgery,” Int. J. Comput. Assisted

Radiol. Surg., vol. 14, no. 6, pp. 1097–1105, 2019.
[168] J. Fotouhi, M. Unberath, T. Song, W. Gu, A. Johnson, G. Osgood,

M. Armand, and N. Navab, “Interactive flying frustums (IFFs): spatially
aware surgical data visualization,” Int. J. Comput. Assisted Radiol.

Surg., vol. 14, no. 6, pp. 913–922, 2019.
[169] S. Matinfar, M. A. Nasseri, U. Eck, M. Kowalsky, H. Roodaki,

N. Navab, C. P. Lohmann, M. Maier, and N. Navab, “Surgical sound-
tracks: automatic acoustic augmentation of surgical procedures,” Int.

J. Comput. Assisted Radiol. Surg., vol. 13, no. 9, pp. 1345–1355, Sep.
2018.

[170] O. Pauly, B. Diotte, P. Fallavollita, S. Weidert, E. Euler, and N. Navab,
“Machine learning-based augmented reality for improved surgical
scene understanding,” Comput. Med. Imaging Graph., vol. 41, pp. 55–
60, 2015.

[171] A. Malpani, S. S. Vedula, H. C. Lin, G. D. Hager, and R. H.
Taylor, “Real-time teaching cues for automated surgical coaching,”
arXiv:1704.07436, 2017.

[172] A. Reiter, P. K. Allen, and T. Zhao, “Feature classification for tracking
articulated surgical tools,” in Proc. MICCAI’12. Springer, 2012, pp.
592–600.

[173] X. Du, T. Kurmann, P. Chang, M. Allan, S. Ourselin, R. Sznitman,
J. D. Kelly, and D. Stoyanov, “Articulated multi-instrument 2-d pose
estimation using fully convolutional networks,” IEEE Trans. Med.

Imag., vol. 37, no. 5, pp. 1276–1287, 2018.
[174] D. Pakhomov, V. Premachandran, M. Allan, M. Azizian, and N. Navab,

“Deep residual learning for instrument segmentation in robotic
surgery,” arXiv:1703.08580, 2017.

[175] N. Rieke, D. J. Tan, C. A. di San Filippo, F. Tombari, M. Alsheakhali,
V. Belagiannis, A. Eslami, and N. Navab, “Real-time localization of
articulated surgical instruments in retinal microsurgery,” Med. Image

Anal., vol. 34, pp. 82–100, 2016.
[176] T. Erickson, “Some problems with the notion of context-aware com-

puting,” Commun. ACM, vol. 45, no. 2, pp. 102–104, Feb. 2002.

Tom Vercauteren Tom Vercauteren is Professor of
Interventional Image Computing at King’s College
London since 2018 where he holds the Medtronic
/ Royal Academy of Engineering Research Chair
in Machine Learning for Computer-assisted Neuro-
surgery. From 2014 to 2018, he was Associate Pro-
fessor at UCL where he acted as Deputy Director for
the Wellcome / EPSRC Centre for Interventional and
Surgical Sciences (2017-18). From 2004 to 2014, he
worked for Mauna Kea Technologies, Paris where
he led the research and development team designing

image computing solutions for the company’s CE-marked and FDA-cleared
optical biopsy device. He is a Columbia University and Ecole Polytechnique
graduate and obtained his PhD from Inria in 2008. Tom Vercauteren’s research
focuses on translational medical image computing, machine learning and
interventional imaging devices with a specific interest in their development
for surgery and interventional sciences.

Mathias Unberath is an Assistant Research Pro-
fessor in the Department of Computer Science at
Johns Hopkins University, and is affiliated with the
Laboratory for Computational Sensing and Robotics
and the Malone Center for Engineering in Health-
care. Mathias first joined Hopkins as a postdoctoral
fellow after graduating summa cum laude from the
Friedrich-Alexander-Universität Erlangen-Nürnberg
with a BSc in Physics, a MSc in Optical Tech-
nologies, and a PhD in Computer Science. He was
an ERASMUS scholar at the University of Eastern

Finland and DAAD fellow at Stanford University. Mathias’ research at
the intersection of computer vision including augmented reality, machine
learning, and medical physics has been recognized with multiple national
and international awards, and aims at pushing the boundaries of computer
assistance in medical imaging and image-guided interventions.



MANUSCRIPT SUBMITTED TO THE PROCEEDINGS OF THE IEEE 17

Nicolas Padoy is a full Professor of Computer Sci-
ence at the University of Strasbourg, where he began
as an Assistant Professor on a Chair of Excellence
in 2012. He created and is currently leading the
research group CAMMA on Computational Analysis
and Modeling of Medical Activities, which focuses
on computer vision, activity recognition, artificial
intelligence and the applications thereof to surgical
workflow analysis and human-machine cooperation
during surgery. From 2009 to 2011, he was a post-
doctoral researcher and later an Assistant Research

Professor in the Laboratory for Computational Interactions and Robotics at
the Johns Hopkins University. He completed his PhD jointly between the
Chair for Computer Aided Medical Procedures at Technische Universität
München (TUM) and the INRIA group MAGRIT in Nancy. He graduated
with a Maı̂trise in Computer Science from the Ecole Normale Supérieure de
Lyon in 2003 and with a Diploma in Computer Science from TUM in 2005.

Nassir Navab is a full Professor and Director of the
Laboratory for Computer Aided Medical Procedures,
Technical University of Munich and Johns Hopkins
University. He completed his PhD at INRIA and
University of Paris XI, France, and enjoyed two
years of a post-doctoral fellowship at MIT Media
Laboratory before joining Siemens Corporate Re-
search (1994-2003). He received the Siemens Inven-
tor of the Year Award in 2001, the SMIT Society
Technology award in 2010 and the ‘10 years lasting
impact award’ of IEEE ISMAR in 2015. In 2012, he

was elected as a Fellow of the MICCAI Society. He has acted as a member
of the board of directors of the MICCAI Society, 2007-2012 and 2014-2017,
and serves on the Steering committee of the IEEE Symposium on Mixed
and Augmented Reality (ISMAR) and Information Processing in Computer
Assisted Interventions (IPCAI). He is the inventor of 47 granted US patents
and more than 50 International ones. His current research interests include
multimodal imaging, medical augmented reality, computer assisted surgery,
medical robotics, and machine learning.


