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Abstract—In this paper we address the question of how
to automatically map computational kernels to highly efficient
code for a wide range of computing platforms, and establish
the correctness of the synthesized code. More specifically, we
focus on two fundamental problems that software developers
are faced with: performance portability across the ever-changing
landscape of parallel platforms, and correctness guarantees for
sophisticated floating-point code. The problem is approached as
follows: We develop a formal framework to capture computa-
tional algorithms, computing platforms, and program transfor-
mations of interest, using a unifying mathematical formalism
we call operator language (OL). Then we cast the problem of
synthesizing highly optimized computational kernels for a given
machine as a strongly constrained optimization problem that is
solved by search and a multi-stage rewriting system. Since all
rewrite steps are semantics preserving, our approach establishes
equivalence between the kernel specification and the synthesized
program. This approach is implemented in the SPIRAL system,
and we demonstrate it with a selection of computational kernels
from the signal and image processing domain, software-defined
radio, and robotic vehicle control. Our target platforms range
from mobile devices, desktops, and server multicore processors to
large-scale high-performance and supercomputing systems, and
we demonstrate performance comparable to expertly hand-tuned
code across kernels and platforms.

Index Terms—SpiralSpiral, PROGRAM GENERATION, PRO-
GRAM SYNTHESIS, AUTOMATIC PERFORMANCE TUNING, PER-
FORMANCE ENGINEERING

I. INTRODUCTION

COMPUTER architects are experimenting with ever

more complex systems containing manycore processors,

graphics processors, field programmable gate arrays (FPGAs),

and a range of speculation techniques to keep Moores law on

track and to keep systems within their power envelope. This

enormous growth of computing power is a boon to scientists;

however, it comes at a high cost: the development of efficient

and correct computing applications has become increasingly

more difficult and complex. Already on a single CPU, the

performance of an inefficient implementation can be 10 to 100

times slower than the fastest code written by an expert. Thus,

significant effort has to be invested by highly sophisticated

programmers to attain the desired performance on modern

platforms that include multiple CPUs or accelerators.

At the heart of this effort is the inherent tension between

performance, software abstraction, and code maintainability as
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programmers have to constantly develop for the latest release

of the newest platform.

Current tools such as advanced compiler frameworks and

automatic performance tuning (autotuning) systems allow

portability across a wide range of platforms and algo-

rithms while also attaining reasonable performance. How-

ever, automatically achieving near-optimal performance for

performance-relevant mathematical operations has been shown

to be difficult. Part of the reason for this difficulty is that

programs do not exactly capture the desired input-output

behavior. They are often over-specified either due to lan-

guage requirements or programmer decisions while writing

code. As such, the expert programmer often has to hand-

code their highly optimized implementation with low-level

machine-specific instructions (assembly) in order to attain high

performance appropriate when high-performance library code

is not available.

In this paper we present a complete overview of the SPIRAL

system. SPIRAL is a program and library generation/synthe-

sis and autotuning system that translates rule-encoded high-

level specifications of mathematical algorithms into highly

optimized/library-grade implementations for a large set of

computational kernels and platforms. The system has been

developed over the last 20 years and is freely available as

open source under a BSD-style license. SPIRAL formalizes a

selection of computational kernels from the signal and image

processing domain, software-defined radio, numerical solution

of partial differential equations, graph algorithms, and robotic

vehicle control, among others. SPIRAL targets platforms span-

ning from mobile devices, to desktop and server multicore

processors, and to large high performance and supercomputing

systems, and it has demonstrated performance comparable

to expertly hand tuned code across a variety of kernels and

diversity of platforms. To maximize portability and to leverage

the work of backend compiler developers, when producing

software SPIRAL usually targets vendor compilers such as the

Intel C compiler or IBM’s XL C compiler, or widely available

compilers like the GNU C compiler or LLVM, and only rarely

generates assembly code directly.

Contributions. This paper presents an end-to-end descrip-

tion of the current status of the SPIRAL system and its

underlying program generation methodology. We detail

• the formal framework to describe computational kernels;

• the machine model used to target both known and novel,

yet-unknown machines;

• the constraint solving system that derives a search space

of candidate programs for a given platform and compu-

tational kernel;
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• the autotuning approach that yields high performance;

• correctness guarantees and applied verification methods;

and

• results across a range of platforms for a range of com-

putational kernels.

High-level algorithm representation of linear signal transforms

using the Signal Processing Language (SPL) and ruletrees,

aspects of SIMD vectorization for SSE and SMP paral-

lelization using OpenMP, search and autotuning, as well as

performance modeling is discussed in the previous SPIRAL

overview paper [1], but will be discussed as necessary to make

this paper self-contained.

Synopsis. Section II describes the high level and conceptual

aspects of SPIRAL. Section III introduces hardware, algorithm,

and program transformation abstractions in a unified frame-

work. Section IV discusses how term rewriting, constraint

solving, and domain specific language compilers interact to

synthesize optimized software implementations and hardware

designs, as well as co-optimize combined hardware/software

systems. Section V demonstrates with select results the quality

of SPIRAL generated software and hardware. Section VI

describes current work aiming at extending its capabilities

and how to obtain the newly released open-source version of

SPIRAL. Finally, Section VII offers a summary and conclusion.

II. OVERVIEW

The key observation in the SPIRAL system is that the

mathematics underlying computational kernels changes slowly,

and provides a well-developed language to describe algo-

rithms, while target computer platforms change frequently.

Consider some of the basic mathematical and physical con-

cepts that underlie commonly-used computational kernels:

geometry (Euclid, 300 BC [2]), Gaussian Elimination (un-

known Chinese scholars, 179 AD [3]), equations of motion

(Newton, 1687 [4]), and the fast Fourier Transform (FFT,

Gauss, 1805 [5]). Further, consider how FFTs have evolved

since Gauss: rediscovered in 1965 by Cooley and Tukey [6],

further FFT variants in subsequent years, formalized in matrix

form extended and popularized in 1992 by Van Loan [7].

In contrast, consider the release timeline of classes of

processors that have been targeted by SPIRAL: single core x86

CPU with cache in personal computer (mid-1990s), multicore

CPU (Pentium D, 2005), GPGPU (GeForce 8800, 2006),

manycore CPU (Xeon Phi, 2011). Even if we were to restrict

the discussion to Intel CPUs, the rate at which new versions

and microarchitectures are released is staggering [8]. More-

over, the range of platforms successfully targeted by SPIRAL

spans orders of magnitude in peak performance: mobile and

embedded devices (ARM CPUs and multicores), desktop and

server class CPUs (up to tens of cores and GBs to TBs of

shared memory), accelerators (graphics processors, Xeon PHI,

FPGAs), and large parallel machines like BlueGene/L/P/Q and

the K computer with up to almost 800,000 cores.

A. Goal and Approach

Goal. The goal of SPIRAL is to provide performance

portability for well-defined, ubiquitously needed computa-

tional kernels across a wide range of continuously changing

computational devices. Specifically, SPIRAL aims to automat-

ically generate an implementation that satisfies the functional

specification of a given problem on a given platform. The

implementation should rival the performance that the best

human expert programmer can achieve. Further, SPIRAL aims

to provide evidence of correctness for this generated im-

plementation. This problem statement addresses questions of

programmability, performance portability, and rapid prototyp-

ing. SPIRAL builds on Johnson’s methodology that connected

the mathematics of fast Fourier transforms to programs and

computer architectures [9], [10], [11].

Approach. The SPIRAL solution is as follows: 1) Develop

a formal framework to capture computational algorithms,

computing platforms, and program transformations of interest

through a unifying mathematical formalism we call operator

language (OL). 2) Cast the problem of synthesizing highly

optimized computational kernels for a given machine as a

tightly constrained optimization problem that is solved by a

multi-stage rewriting system that uses semantics-preserving

operations. This approach allows us to formally prove the

equivalence between the kernel specification and the synthe-

sized program.

The formal system has three main components:

• Algorithms like the famous Cooley-Tukey FFT algorithm

are captured in OL, which encompasses a family of

domain specific languages (DSLs) that capture various

aspects and refinements of specifications and algorithms

for computational kernels. The top level DSL (called

tagged OL, tOL) captures the input/output behavior of

kernels (i.e., their semantics). A mid-level DSL (called

operator language, OL, which extends SPL) captures the

computation as data flow graph. At an even lower-level,

a DSL called Σ-OL (pronounced Sigma-OL) captures

folded data flow graphs and can be interpreted as pro-

viding loop abstractions. Finally, a DSL called icode

(an abstract internal code representation) captures a small

subset of C in the form of abstract syntax trees (ASTs)

and can be given pure functional semantics for a relevant

subset of programs.

• Hardware like a multicore CPU, FPGA or GPU is mod-

eled through OL expressions that can be implemented

efficiently on the given hardware. The idea is that al-

gorithms that can be composed exclusively (or mainly)

from these expressions can be mapped efficiently to the

associated hardware.

• Program transformations like loop tiling, fission, and

fusion are captured as rewriting rules coupled with a

tagging mechanism. Rewriting rules transform OL/Σ-OL

expressions into more efficient expressions that can be

composed from the hardware-based OL expressions. The

tagging mechanism facilitates the introduction of higher

level program transformations such as parallelism.

These three components of the system are used to construct

a space of suitable programs for a given OL specification

that can be mapped efficiently to SPIRAL’s machine model

of a given hardware instance. Conceptually, this is done by

intersecting a space of programs that run efficiently on the
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given hardware with a space of algorithms that implement

the desired computational specification, subject to applicable

program transformations. The result is a search space in which

every point is an algorithm for the given specification that

runs efficiently on the given hardware. Finally, an autotuning

system traverses this search space and uses a DSL compiler to

translate the points in the search space into high performance

implementations.

This approach of mapping a specification to highly opti-

mized implementations across a wide range of machines solves

the forward problem: mapping computations to architectures.

The inverse problem of finding the best architecture for a given

specification, i.e., algorithm/hardware co-optimization can be

solved by iteratively solving multiple forward problems while

traversing the architecture space.

Success. The SPIRAL approach and associated systems have

been developed over the last two decades. The initial focus was

on linear transform algorithms including the FFT. The first

basic approach of mapping a mathematical DSL to efficient C

or Fortran code using a search mechanism for optimization

was presented in [12], [13], [14]. The approach was then

expanded to include a larger set of linear transforms and range

of computing platforms [1], [15], thus offering a program

generation solution for what is later identified as the spectral

dwarf in Berkeley’s 7 dwarfs/11 motifs classification [16]. The

focus of this paper is the work of the last decade in which

we expanded the SPIRAL approach to a much larger scope

of computational kernels, while earlier work before 2005 is

discussed in [1].

Using the systematic rewriting approach, SPIRAL has

demonstrated, over the last two decades, the automatic gen-

eration of expert-level performance code across a wide range

of microarchitectures. Specifically, SPIRAL has successfully

targeted modern CPUs with multi-level caches [12], [13], [1],

[17], [18], multiple cores [19], [20], SIMD vector instruc-

tions [21], [22], [23], [24], [25], [26], [27], [28], [29], and

multi-socket systems with large main memory [30], fixed-point

arithmetic [31], fused multiply-add instructions [32], modulo

arithmetic [33]), GPUs [34], [35], [36], DSPs [37], the Cell

BE [38], [39], Larrabee and Xeon PHI [40], FPGAs [41], [42],

[43], [44], [45], [46], [47], clusters [48], up to 128k cores on

BlueGene/L/P/Q [49], [50], [51], the K computer, and in pre-

silicon settings (IBM Cell BE [38], BlueGene/L, Intel AVX

and Xeon Phi [40]).

The original focus of SPIRAL was linear transforms [1],

[15] such as the discrete Fourier transform [20], [52], linear

filters [53], and the discrete wavelet transform [54], and is

described in detail in [1]. Since then, the approach and the

associated DSLs were expanded to a range of kernels [55], [56]

including the image formation algorithm in SAR [57], com-

ponents of JPEG 2000 [58], Viterbi decoders [59], software-

defined radio (SDR) [60], [61], [62], matrix multiplica-

tion [55], and quantum chemistry kernels [63]. An entire

generator devoted to small-scale linear algebra applications

was built in [28], [64], [65]. Support for some multigrid appli-

cations [66] and Poisson [63] solvers was also introduced, and

we synthesized sensor fusion and control code kernels [67].

Rewriting in SPIRAL handles the basic mapping to a given

target platform, but leaves a space of candidate alternatives for

further tuning. To navigate this space, SPIRAL uses various

search methods [1], models [68], but also machine learning

approaches [69], [70], [71], [72].

SPIRAL can be used as a low-level backend code generation

tool and kernel generator for polyhedral compiler infrastruc-

tures [73], [74] and as a programming tool for special purpose

hardware [75]. The formal framework of SPIRAL lends itself

to mathematical correctness arguments [76], [67]. SPIRAL was

used to produce parts of Intel’s MKL and IPP libraries (it gen-

erated 1 million lines of code for IPP’s IPPgen module) [77],

[78], codelets for the BlueGene/L/P/Q FFTW version [49],

[79], and Mercury’s Scientific Algorithms Library (SAL) [80].

A more principled design and implementation of SPIRAL using

modern language features including pattern matching, staging,

and embedded DSLs was studied in [81], [82] and provides

a SPIRAL prototype implemented in Scala. An experimental

Haskell version was also developed in this context [83]. Cur-

rent work includes extending SPIRAL to support graphs and

sparse matrices algorithms, as well as proving the correctness

of SPIRAL’s program generation toolchain within the Coq

system.

Limitations. Generating code that is competitive with the

best human-written code across a wide range of platforms

is inherently a difficult task. This task is made even more

complex when one requires the system to be extensible. Within

SPIRAL, we simplify this task by restricting the problem

domain to domains and algorithms that can be described

in terms of recursive specifications. In addition, possible

variations and developer choices must be extracted as free

parameters. The specification needs to be encoded as a rewrite

rule in a term rewriting system in a domain specific language

with mathematical semantics, and all relevant algorithmic and

parametric degrees of freedom need to be expressed. Devel-

oping such a specification can be a hard research problem,

even for well-understood mathematical kernels, as evidenced

by the development time line of SPIRAL’s FFT capabilities

[15]. As listed above, we have shown that it is possible

to capture other domains beyond FFTs, but the effort in

each case was considerable. Further, adding a new hardware

feature, computational paradigm (such as vector instructions

or multiple cores as they appeared), or program transformation

also requires encoding this knowledge in SPIRAL’s formal

system. Surprisingly, this tends to be an easier task than adding

a new kernel.

While the SPIRAL developers have strived for complete

coverage of the supported architecture and kernel/application

space, a number of the results detailed above were demon-

strated as one-off solutions. At one end of the spectrum, the

FFT is most completely supported across all platforms targeted

by SPIRAL. At the other end of the spectrum, some coding and

communication kernels are only prototypically supported for

a single platform [58].

SPIRAL’s internal languages are DSLs with mathematical

semantics. A mathematics-style notation lends itself to cap-

turing algorithm and program optimization rules concisely,

e.g. as done in a book. However, the mathematical notation

and its implementation in the dated computer algebra system
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it was built on still poses a considerable hurdle to adoption.

Therefore we often wrapped up a part of SPIRAL’s capabilities

in easy-to-use parameterized generators (e.g., on the web

at www.spiral.net) or as a command line tool in a

compiler tool chain [73], [74]. We have also exposed part of

SPIRAL’s SPL/OL language as a Matlab tensor library with

high-dimensional map, reduce, reshape, and rotate operations

in the style of hierarchically tiled arrays (HTA) [84], [85].

Writing OL specifications is complicated. The specification

needs to capture the exact semantics of the computational

kernel without introducing superfluous information that may

obscure the mathematical specification. Machine abstractions

need to be structurally accurate, and standard program trans-

formations need to be recoded as OL rewrite rules. SPIRAL

is implemented in a dated version of the computer algebra

system GAP (groups, algorithms, and programming, version

3) [86], which adds to the complexity of writing specifications.

At this writing, we have had success with web interfaces

that expose only part of SPIRAL’s capabilities and with an

experimental Matlab frontend that implements a subset of OL

and a C library frontend that extends the FFTW interface [87].

Building SPIRAL and its DSLs within a powerful multi-

paradigm language like Scala can increase maintainability and

extensibility [81], [82]. Further, we are pursuing efforts to

enable SPIRAL as a just-in-time compiler (JIT). We hope that

these advancements make SPIRAL more accessible to general

programmers.

B. Related Work

We now discuss the most important approaches and projects

of the various technologies that are related to the SPIRAL

project.

Performance libraries. Mathematical performance libraries

provide a uniform interface to key functionality across multiple

platforms, but have been optimized by hand for each target

platform to obtain performance. Prominent examples include

the Intel Math Kernel Library (MKL) [77] and Integrated

Performance Primitives (IPP) [78], AMD’s Core Math Library

(ACML) [88], Cray’s Scientific Library (SciLib) [89], IBM’s

Engineering and Scientific Subroutines Library (ESSL) [90],

Mercury Computing’s Scientific Algorithms Library (SAL),

the Basic Linear Algebra Subroutines (BLAS) [91], [92], [93],

[94], and LAPACK [95]. The BLAS-like Library Instantiation

Software (BLIS) [96] is a framework for instantiating a set

of functions larger than BLAS from a set of microkernels.

SPIRAL originated as a tool to help automate FFT kernels for

some of these libraries, and SPIRAL-generated kernels can be

found in the Intel MKL, IPP, and Mercury’s SAL.

Compilers. Polyhedral compiler frameworks like

PetaBricks [97], CHiLL [98], R-Stream [99], PLuTo and

PTile [100], Polly [101], [102], and the Polyhedral Parallel

Code Generator (PPCG) [103] have their strength in regular

and dense computations on standard parallel machines and

accelerators, and extensions to sparse polyhedral computations

have been investigated. Other approaches include annotation-

based compilation [104] and the concept of telescoping

languages [105].

Many HPC high-level languages follow the partitioned

global address space (PGAS) paradigm to provide portability

across distributed memory machines. The historically most

important examples are HPF and Fortran D [106], [107].

Chapel [108], X10 [109], UPC [110], and Co-Array Fortran

[111] are other example of languages in this space. Systems

like PEAK [112], PetaBricks [97], Sequoia [113], CHiLL [98],

the polyhedral infrastructures Pluto [100], Primetile [114],

CLooG [115], as well as the Gnu C interactive compilation

interface (GCC ICI) and Milepost GCC [116] use autotuning

and machine learning. SPIRAL captures many of the program

transformation techniques used by these languages and sys-

tems, and its internal representation allows for extracting and

capturing information that usually has to be derived by analysis

or provided via annotations.

LLVM, Open64, and the GNU compiler suite are open

compilers designed to be retargeted to a wide range of ISAs.

These compilers have backends that can accept new ISAs and

that can support novel instructions. SPIRAL is leveraging the

intrinsics interface and vector data type abstractions provided

by these open compilers as well as commercial compilers like

the Intel C++ compiler and IBM’s XL C compiler to provide

portable code generation across a wide range of SIMD vector

extensions of CPU instruction set architectures (ISAs) like

x86, POWER, and ARM.

Language extensions. OpenCL, CUDA, OpenMP, and

OpenACC extend C or FORTRAN with language constructs

and/or pragmas to annotate the source code with information

and instructions for the parallelizing/offload compiler. These

language extensions require powerful high level optimizing

compilers to generate highly efficient code. SPIRAL utilizes

them as backend compilers to abstract hardware details and

attain better portability, but performs all necessary high level

transformations itself.

High level synthesis. Vivado HLS and BlueSpec [117]

translate higher-level language programs into hardware blocks

(IP blocks) for FPGAs so that users are freed from some of

the tedious work required when directly specifying hardware

in Verilog or VHDL. SPIRAL directly targets Verilog and

experimentally targets Vivado HLS to enable quick porting

to novel FPGA architectures.

Code generators and autotuners. The autotuning commu-

nity is the home of a number of influential projects that in-

clude code generators and/or autotuning systems for numerical

software. Important autotuning projects include the adaptive

FFT library FFTW [118], [119], the dense numerical linear

algebra project ATLAS [120], [121], the sparse matrix-vector

multiplication library OSKI [122], [123], and the quantum

chemistry tensor contraction system TCE [124]. SPIRAL is

firmly rooted in this community. General autotuning infras-

tructures that can be used independently of the optimization

target include ActiveHarmony [125], Orio [126], and ppOpen-

AT [127].

Generative programming for performance. Generative

programming has gained considerable interest [128], [129],

[130], [131], [132]. The basic goal is to reduce the de-

velopment, maintenance, and analysis of software. Among

the key tools, domain-specific languages (DSLs) provide a
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compact representation that raises the level of abstraction

for specific problems and hence enables the manipulation of

programs [133], [134], [135], [136]. C++, Haskell, MetaO-

Caml, and Scala are often used as host languages to embed

DSLs [137]. The SEJITS [138] specializer specializes kernels

to low level implementations. The Delite [139] framework

offers a set of optimized parallel patterns to DSLs that can

be implemented on top of it. Other approaches are based

on multi-staging frameworks such as Lightweight Modular

Staging (LMS) [140], [81], [139] and Terra [141].

Other examples of DSL-based approaches are query com-

pilers [142], [143] based on a stack of DSLs with progressive

lowering of abstractions. Stencil code generators include [73],

and Lift [144], which combines a high-level functional data

parallel language with a system of rewrite rules that encodes

algorithmic and hardware-specific optimization choices.

DSLs for HPC libraries. The Build to Order BLAS

(BTO) [145], [146] is a domain-specific compiler for matrix

computations. BTO focuses on memory bound computations

(BLAS 1 and 2 operations) and relies on a compiler for vec-

torization. Cl1ck [147], [148] implements the Formal Linear

Algebra Methods Environment (FLAME) [149] methodology

for automatically deriving algorithms for higher level linear

algebra functions [150] given as mathematical equations. The

supported functions are mostly those covered by the LAPACK

library and the generated algorithms rely on the availability of

a BLAS library. DxTer [151] transforms blocked algorithms

such as those generated by Cl1ck and applies transforma-

tions and refinements to output high-performance distributed-

memory implementations. The CLAK compiler [152] finds

efficient mappings of matrix equations onto building blocks

from high-performance libraries such as BLAS and LAPACK.

DSLs for matrix and stencil optimization. Another gen-

erative approach is adopted by Eigen [153], uBLAS [154],

the Matrix Template Library (MTL) [155], STELLA [156],

Halide [157], [158], and the Tensor Algebra Compiler

(TACO) [159], among others. They use C++ expression tem-

plates to optimize the code at compile time. Optimizations

include loop fusion, unrolling, and SIMD vectorization. The

Hierarchically Tiled Arrays (HTAs) [84], [85], which offer

data types with the ability to dynamically partition matrices

and vectors, automatically handle situations of overlapping

areas. HTA’s goal is to improve programmability by reducing

the amount of code required to handle tiling and data distri-

bution in parallel programs, leaving any optimization to the

programmer (or program generator).

Frameworks and computer algebra systems. Systems

like Sketch [160] and Paraglide [161] automatically synthesize

software according to a specification. Rewriting systems are

reviewed in [162]. Logic programming is discussed in [163].

An overview of functional programming can be found in [164].

SPIRAL does not employ SAT solvers but solves a specialized

constraint programming problem through term rewriting.

Python, R, Julia, MATLAB, Java, and C++, and frameworks

like Caffe [165], Theano [166], and TensorFlow [167] are

commonly used by data scientists to express graph analytics

and machine learning algorithms. Computer algebra systems

like Maple [168], YACAS [169] and Mathematica [170],
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Fig. 1. SPIRAL’s approach: The architecture space (red circle, left), the
algorithm space (blue circle, right), and program transformations (shown as
space in between) are abstracted in a joint formal framework.

interactive numerical systems like Matlab [171], as well as

interactive theorem proving systems based on higher order

logic [172] and the R system for statistical computing [173]

provide interactive capabilities to solve complex problems in

engineering, mathematics, logic, and statistics. SPIRAL is built

on top of the computer algebra system GAP and uses many

of these concepts.

III. ALGORITHM AND HARDWARE ABSTRACTION

We now discuss the different OL abstractions within SPI-

RAL that we use to capture specifications, algorithms, algorith-

mic degrees of freedom, hardware capabilities, and program

transformations. The key idea is to capture this information

into a single formal system that combines multiple rewriting

systems with constraint solving and automatic performance

tuning. Algorithms are captured symbolically as data flow

graphs that are expanded recursively by identity rules. The

target hardware is modeled by the set of all data flow graph

fragments it can execute efficiently and a grammar that de-

scribes all programs that can be built from these fragments.

Rewriting rules are essentially program transformations that

map an algorithm to more efficient algorithms while preserv-

ing correctness.

The overall approach is shown in Figure 1. The architecture

space (red circle, left), the algorithm space (blue circle, right),

and program transformations (shown as space in between)

are abstracted in a joint formal framework. Abstracting the

three components in a compatible way allows SPIRAL to

impose architecture requirements on algorithms and utilize the

necessary program transformations.

In this section we first discuss the algorithm abstraction,

followed by the formalization of data layout and program

transformations, and finally the hardware abstraction. In the

next section (Section IV), we will discuss how these abstrac-

tions interact to implement rewriting, constraint solving, and

autotuning in SPIRAL’s code synthesis process.
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A. Algorithm Abstraction

Specification. In SPIRAL, the top-level objects are spec-

ifications of computational kernels. A kernel is a function

that performs a mathematical operation on its input data to

produce its output. Kernels are modeled as parameterizable

mathematical operators that map vectors to vectors. SPIRAL

operators are stateless (any state would have to be an explicit

parameter and matching result value). Higher-dimensional data

is linearized and sparsity is abstracted as discussed below. In

general, operators can take multiple input vectors and produce

multiple output vectors. We allow a range of mathematical

base types for the vectors, including fields (R, C, GF(k)),
rings (Z, Zn with n not prime), and semi-rings (e.g., min/sum

semiring etc. [174]). Operators act as problem specifications

in our formal system.

For instance, the scalar product/dot product is mathemati-

cally a bilinear operator and defined in SPIRAL as

< ., . >n: R
n × R

n → R; (x, y) 7→ x · y. (1)

Note that we annotate the operator symbol by its vector length

n, which will allow us to more concisely describe algo-

rithms and transformations. A specification like (1) explains

unambiguously the input/output behavior of the operator (its

semantics) but does not describe how the operator application

is to be computed. Digital signal processing examples of

operators defined in SPIRAL are the discrete Fourier transform

(DFT),

DFTn : Cn → C
n;x 7→

[
ωij
n

]

i,j
x, (2)

with ωn = n
√
−1 a primitive nth root of 1. SPIRAL defines

more than 50 linear digital signal processing transforms [1]

and a number of bilinear and non-linear transforms [55].

Beyond linear transforms, SPIRAL defines numerical linear

algebra operations like the circular convolution [55],

Convn : Cn×C
n → C

n; (x, y) 7→ x⊛y =

n−1∑

i=0

xiy(n−i)modn

(3)

and matrix-matrix multiply [55],

MMMk,m,n : Rm×k × R
k×n → R

m×n; (A,B) 7→ AB, (4)

which are bilinear as the scalar product. In SPIRAL, we

implicitly use the isomorphism R
m×n ∼= R

mn to abstract away

tensor rank and convert all higher-rank objects to vectors.

Examples of nonlinear operators defined in SPIRAL include

polynomial evaluation and infinity norm,

Pn : Rn+1 × R → R; (a, x) 7→
n∑

i=0

aix
i, (5)

‖.‖n∞ : Rn → R;x 7→ ‖x‖∞, (6)

and checking if a point x ∈ R
n is inside a polytope given by

a matrix A of polytope face normal vectors and a vector b of

polytope face displacements,

InsidenA,b : R
n → Z2;x 7→ Ax− b < (0, . . . , 0). (7)

Equation (7) can be used to implement geofencing for un-

manned aerial vehicles (UAVs) [76]. A more complicated non-

linear example is the statistical z-test, given by

zTestnµ,α : Rn → R;x 7→ x̄− µ

σ(x)/
√
n
< Φ−1(1− α/2), (8)

where µ is the population mean, x̄ the sample mean, σ(x)
the sample standard deviation, and Φ−1 is the inverse error

function.

Beyond the kernels shown in (1)–(8) we have modeled

many more kernels as OL operators: the Viterbi decoder [59],

polar formatting synthetic aperture radar (SAR) [57], Eu-

ler integration, statistical tests [67], wavelet transforms and

JPEG2000 image compression [54], [58], the multigrid V

cycle [66], quantum chemistry kernels used in ONETEP [63],

the operations needed in the physical layer of software defined

radio [62], a range of dense linear algebra kernels [65], and

others.

Unambiguously declaring the input/output behavior of a

kernel as function of all parameters is the first step required

for program generation with SPIRAL, and developing the exact

specification of a kernel is often a hard research problem

in particular for higher-level operations like SAR imaging,

Viterbi decoders, and the multigrid V cycle, which require

many algorithm and implementation choices. Top level oper-

ators often require a number of helper operators to be defined

to express algorithms cleanly through breakdown rules, as

discussed next.

Algorithms. In SPIRAL, algorithms describe how an op-

eration given by a specification is turned into a computation

directly or through other operators. For instance, a fast Fourier

transform (FFT) is an algorithm to compute the DFT (which

is a specification), usually through smaller DFTs. Similarly,

computing a circular convolution via DFT and pointwise mul-

tiplication in the frequency domain or evaluating a polynomial

via the Horner scheme are considered algorithms.

More formally, algorithms break down operators into (usu-

ally smaller) other operators in the style of divide-and-conquer

or iterative algorithms. Such algorithmic decompositions are

modeled as breakdown rules in SPIRAL’s rewriting system

and may expose algorithmic degrees of freedom. Recursive

application of breakdown rules yields a fully specified al-

gorithm that is expressed as a rule tree. The rules explain

how a rule tree is translated into a flat data flow graph. The

domain specific language OL is used to capture these data

flow graphs. OL programs may contain iterators (similar to

map and reduce/fold in functional languages).

Operator language. SPIRAL uses the operator language

(OL) to represent algorithmic breakdown rules and data flow

graphs. We often refer to OL programs as OL as formulas. OL

consists of atomic operators like (1)–(7) and others including

auxiliary ones. Higher-order functions (operations) construct

operator expressions, i.e., new operators from others.

Linear operators play an important role in SPIRAL. Orig-

inally, SPIRAL’s language was called signal processing lan-

guage (SPL) [13] and focused on linear operators, composi-

tion, and the Kronecker product to describe linear signal trans-

forms and their algorithms (like the FFT) [1]. OL generalizes
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SPL to allow for multiple inputs and operator nonlinearity.

In OL, matrices are interpreted as linear operators, and matrix

multiplication is interpreted as composition of linear operators.

Thus, OL is a generalization of SPL and any SPL expression

can be cast in OL.

Important linear operators in SPIRAL include the identity

matrix Im and the stride permutation matrix Lmn
n , which

permutes the elements of the input vector as in + j 7→
jm + i, 0 ≤ i < m, 0 ≤ j < n. If the vector x is viewed

as an n × m matrix, stored in row-major order, then Lmn
m

performs a transposition of this matrix. Also important are

diagonal matrices, e.g., to describe the twiddle matrix Tmn
n

needed in the most commonly used FFTs.

Higher-order functions create new OL operators from exist-

ing OL operators. Important higher-order functions included

within SPIRAL includes function composition ◦, the Cartesian

product ×, the direct sum ⊕ and the Kronecker product or

tensor product ⊗,

(A ◦B)(x) = A(B(x)), (9)

(A×B)(x, y) = A(x)×B(y), (10)

(A⊕B)(x⊕ y) = A(x)⊕B(y), and (11)

(A⊗B)(x⊗ y) = A(x)⊗B(y). (12)

The Kronecker product of matrices A and B is defined as

A⊗B = [ak,ℓB], for A = [ak,ℓ]. (13)

It replaces every entry ak,ℓ of A by the matrix ak,ℓB. The

Kronecker product binds weaker than matrix product but

stronger than matrix addition. For scalar operations like +,

−, ·, /, <, =, 6=, >, etc. we define the infix operations

(A ⋄B)(x) = A(x) ⋄B(x) for ⋄ ∈ {+ ,− , · , /, <, . . . }.
(14)

In (9)–(14) we assume that the operators A and B are of arity

(1,1), i.e., that they have one input and one output vector. Gen-

eralization to higher arities (multiple input or output vectors)

is technically complex but conceptually straight-forward [55].

SPIRAL applies the isomorphism between R
m+n and the direct

sum and cartesian product of Rm and R
n,

R
m × R

n ∼= R
m ⊕ R

n ∼= R
m+n

as needed in type unification to simplify handling of higher

arities.

More recently, an additional class of OL operators that

models functional programming constructs like map and

fold [67], [76] was introduced into SPIRAL in OL:

Mapnfi(.) : R
n → R

n;

n−1⊕

i=0

xi 7→
n−1⊕

i=0

fi(xi), (15)

Foldnfi(.,.),z : Rn → R;x0 ⊕ xr 7→
{

f0(x0, z), n = 1

f0(x0,Fold
n−1
fi+1(.,.),z

(xr)).

(16)

This additional class of operators are introduced so that

SPIRAL-generated code can be formally verified using stan-

dard techniques common to proving the correctness of func-

tional lanugages.

Rule (15)

Rule (15)

Rule (16) Rule (16) Rule (16)

Fig. 2. Data flow graph, OL formula, and rule tree for DFT8 as expanded
in (20).

Breakdown rules. Algorithms and their degrees of freedom

are expressed in SPIRAL as breakdown rules. A breakdown

rule is a rewriting rule that matches an OL operator (e.g., spec-

ifying a problem) and replaces the matched expression with

a more complicated expression made up of simplier/smaller

OL operators. The pattern matching performed by the rule

encodes possible constraints on the kernel (e.g., a subset of

input sizes to which it is applicable). For instance, the general

radix Cooley-Tukey FFT algorithm is expressed as breakdown

rule [7], [1]

DFTmn → (DFTm ⊗ In) T
mn
n (Im ⊗DFTn) L

mn
m . (17)

In (17), DFTmn is the non-terminal and is translated into a

right-hand side that consists of an SPL/OL expression that

contains new non-terminals DFTm and DFTn. The left-hand

side DFTmn encodes the constraint that the size of the DFT

be a composite number and therefore can be factored into m
and n. Further, the new DFT non-terminals created by (17) are

of smaller size than the original non-terminal. Thus recursive

application of (17) will terminate and we need to provide a

terminal rule that translates DFT2 into an atomic SPL/OL

operator (the butterfly),

DFT2 → F2 with F2 =

[
1 1
1 −1

]

. (18)

k-dimensional DFTs are broken down into lower-dimensional

DFTs through tensor products. For instance, a complete de-

composition into one-dimensional DFTs is

DFTm1×···×mk
→ DFTm1

⊗ · · · ⊗DFTmk
. (19)

As an example, a DFT8 operator can be fully expanded into

an SPL/OL formula by applying (17) twice and (18) thrice to

get

DFT8 → (F2 ⊗ I4) T
8
4

(
I2 ⊗(F2 ⊗ I2) T

4
2(I2 ⊗F2) L

4
2

)
L8
2 .

(20)

The first application of (17) allows for a choice of (m,n) =
(4, 2) or (m,n) = (2, 4), and for larger sizes requiring

multiple rule applications there is a considerable degree of

freedom to expand DFTN into a fully expanded SPL/OL

formula. The dataflow that is represented by the formula is

shown in Figure 2, left. Such algorithmic degrees of freedom

are one source of the optimization space that is leveraged by

SPIRAL. SPIRAL defines more than 50 linear transform non-

terminals like the DFT and more than 200 breakdown rules

like (17) [1].
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TABLE I
SPIRAL OL BREAKDOWN RULES FOR A MULTIGRID SOLVER MGSolvePDEn,ω,r,m FOR A n× n DISCRETIZED 2D POISSON EQUATION WITH

DIRICHLET BOUNDARY CONDITIONS AND PARAMETERS ω, r, AND m. THE SOLVER USES A RICHARDSON SMOOTHER WITH PARAMETER ω AND r
ITERATIONS AND INJECTION AS RESTRICTION OPERATOR. IT PERFORMS m MULTIGRID CYCLES [66].

MGSolvePDEn,ω,r,m → [In2 | 0n2 ] ·
(

m−1∏

i=0

MGCyclen,ω,r

)

·
[
0n2

In2

]

(21)

MGCyclen,ω,r → CGCn,ω,r ·Richardsonn,ω,r (22)

CGCn,ω,r →
[
CoarseErrorn,ω,r

0n2 | In2

]

(23)

CoarseErrorn,ω,r → Interpolaten · Scattern · Solven,ω,r ·Gathern ·Residualn (24)

Interpolaten → Tridiagn
(√

2/2,
√
2,

√
2/2
)
⊗ Tridiagn

(√
2/2,

√
2,

√
2/2
)

(25)

Scattern → SI(n−1)/2→In; i 7→2i+1 ⊗ SI(n−1)/2→In; i 7→2i+1 (26)

Solven,ω,r →







1
4
I1, n = 1

[

I((n−1)/2)2 | 0((n−1)/2)2

]

·MGCycle(n−1)/2,ω,r ·
[

0((n−1)/2)2

I
((n−1)/2)2

]

, n > 1
(27)

Gathern → GI(n−1)/2→In; i 7→2i+1 ⊗GI(n−1)/2→In; i 7→2i+1 (28)

Residualn →
[
(Tridiagn(1,−2, 1)⊗ In) + (In ⊗Tridiagn(1,−2, 1)) | In2

]
(29)

Richardsonn,ω,r →
r−1∏

i=0

[
ResidueLaplacen,ω ω In2

0n2 In2

]

(30)

ResidueLaplacen,ω →
(
Tridiagn(ω, 1/2− 2ω, ω)⊗ In

)
+
(
In ⊗Tridiagn(ω, 1/2− 2ω, ω)

)
(31)

TABLE II
OL BREAKDOWN RULES FOR POLAR FORMATTING SYNTHETIC APERTURE RADAR (SAR) [57], [52], [27], FORMALIZING ALGORITHMS FROM [175],

[176].

PDFTσ
N → DFTNSσ (32)

PDFTσ⊗km
kmn → (DFTm ⊗ Ikn) T

mn
n Lkmn

m (PDFTσ⊗k
kn ⊗ Im) (33)

SARs,α → DFTm2×n2 2D-Intpm1×n1→m2×n2
(k,r,m,n,αr,αa)

(34)

2D-Intpm1×n1→m2×n2
(k,r,m,n,αr,αa)

→
(

Intpn1→n2
(k,r,m,n,αa(i))

⊗i Im2

)(

In1 ⊗i Intp
m1→m2
(k,r,m,n,αr(i))

)

(35)

Intpu→v
(k,r,m,n,w) →

(

Iℓ ⊗j Intp
m→n
(k,w(j))

)

(Iℓ ⊗r Im) (36)

Intpm→n
(k,(b,s)) → Gkm→n

(b,s) iDFTkm S〈0,k−1〉⊗(m/2)DFTm (37)

iDFTkm S〈0,k−1〉⊗(m/2) → iPDFT
〈0,k−1〉⊗(m/2)
km (38)

Tables I–II show breakdown rule sets for more complex

algorithms. Table I shows the set of OL breakdown rules for a

multigrid solver MGSolvePDEn,ω,r,m for a n×n discretized

2D Poisson equation with Dirichlet boundary conditions and

parameters ω, r, and m. The solver uses a Richardson

smoother with parameter ω and r iterations and injection as

restriction operator. It performs m multigrid cycles [66]. Note

the interconnected set of auxiliary operators needed.

Table II shows the OL breakdown rule set for polar-

formatting synthetic aperture radar (SAR [57], [52], formaliz-

ing the algorithms from [175], [176].

Non-linear OL breakdowns. The step from linear opera-

tors to non-linear operators requires the use of OL constructs

in breakdown rules. For instance, matrix-matrix multiplication

(MMM) as defined in (4) is a bilinear operator. Optimized

matrix-matrix multiplication implementations utilize multi-

level cache and register blocking [93], and blocking of MMM

Rule (39)

Rule (40)

-

-

-

-

-

-

-

-

|.|

|.|

|.|

|.|

|.|

|.|

|.|

|.|

max

Fig. 3. Data flow graph, OL formula, and rule tree for d∞(., .) as expanded
in (43).

can be described as

MMMk,m,n → MMMk/b1,m/b2,n/b3 ⊗MMMb1,b2,b3 . (39)

In (39) the multi-linear tensor product captures the recursive-

ness of MMM in the same fashion that (17) captures the

recursive-ness of the DFT and (19) captures the higher-

dimensional structure of the MDFT.
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Functional programming-style operators are equally decom-

posed by rewrite rules that express them as parameterized OL

expressions. For instance, the Chebyshev distance (distance

induced by the infinity norm)

d∞(u, v) = ‖u− v‖∞, u, v ∈ R
n (40)

is captured by the rules

dn∞(., .) → ‖.‖n∞ ◦Mapn×n→n
(x,y) 7→x−y and (41)

‖.‖n∞ → Foldn(x,y) 7→max(x,y),0 ◦Mapnx 7→|x| . (42)

Note that we annotated the OL definition of d∞(u, v) with

dimensionality n, leading to the OL non-terminal dn∞(u, v)
for the Chebyshev distance. The non-terminal d8∞(., .) can be

fully expanded into a SPL/OL expression (a functional style

formula) by applying (41) followed by (42), leading to

d8∞(., .) → Fold8(x,y) 7→max(x,y),0 ◦Map8x 7→|x| ◦Map8×8→8
(x,y) 7→x−y .

(43)

Figure 3 shows the corresponding data flow graph and rule

tree.

Similarly, polynomial evaluation (5) is expressed as the

breakdown rule

Pn(., .) →< ., . >n ◦
(

In+1 ×
(

Mapn+1
x 7→xi ◦

[
1 · · · 1

]T
))

.

(44)

Pn(., .) is an arity (2,1) operator. The cross product ×
passes the first argument to the identity matrix and the

second argument to the Map construct. The linear operator
[
1 · · · 1

]T
takes the second input of Pn(a, x) (the scalar

x) and replicates it for n + 1 times to form a vector. Then

Mapn+1
x 7→xi computes all exponents of x from 0 to n, yielding

the vector (1, x, x2, . . . , xn). Note that the map function

fi(x) = xi, i = 0, . . . , n depends on the index of the mapped

element. Further, In+1 forwards the coefficient vector a =
(an, . . . , a0) (the first input of Pn(., .)) to the scalar product

< ., . >n, which performs the pointwise multiplications aix
i

for i = 0, . . . , n and then performs the final sum, yielding the

result Pn(a, x) =
∑n

i=0 aix
i.

The scalar product is a special case of MMM,

< ., . >n→ MMMn,1,1, (45)

and thus can be decomposed via (39). The check for being

inside a polytope (7) [76] is expressed as OL breakdown rule

by

InsidenA,b(.) → Foldn(x,y) 7→(x<0)∧y,true

◦Mapnx 7→x−b ◦MMMn,1,n(A, .) (46)

Inside (46) the matrix-vector product Ax required by

(7) is expressed as degenerate partially evaluated MMM

MMMn,1,n(A, .). The operator Mapnx 7→x−b subtracts the right-

hand side b from the result, and Foldn(x,y) 7→(x<0)∧y,true checks

that all entries of the resulting vector are negative. Finally. the

OL rule set for this z-test (8) for a sample size of n at α
confidence interval is shown in Table III.

Note that all breakdown rules are point-free: operators are

expressed through other operators but the input and output is

not part of the expression. This property is important for data

flow optimization (discussed next) and program generation.

TABLE III
THE STATISTICAL z-TEST REPRESENTED AS A SET OF OL BREAKDOWN

RULES [76].

Meann →Map1x 7→x/n ◦Foldn(a,b) 7→(a+b),0 (47)

Variancen →
(
Foldn(a,b) 7→(a+b),0 ◦Mapn

x 7→x2

)
(48)

−
(
Map1

x 7→x2 ◦Meann
)

zTestn,α →
(
Meann /Map1

x 7→√
x
◦Variancen /n

)
< Φ−1(1− α/2),

(49)

B. Program Transformations as Data Flows

In the previous section, we discussed how specifications are

expanded into fully expanded (terminated) OL expressions that

represent data flow graphs of the algorithm. In this section

we discuss how SPIRAL performs data flow optimizations that

change the geometry and thus locality and shape of parallelism

in the data flow graph.

Approach. A human developer typically starts from a given

algorithm/data flow graph, and then modifies it to better match

the underlying hardware. SPIRAL takes a different approach:

The data flow graph is made to fit the targeted hardware while

it is derived recursively. This is achieved by a two-pronged

approach: 1) program/data flow transformations are also cast

as breakdown rules and are treated equivalently to algorithmic

breakdown rules, and 2) hardware properties are encoded as

constraints on these breakdown rules.

In this section we discuss how program transformations

are encoded as breakdown rules. Section III-C discusses how

hardware is modeled through breakdown rules and constraints

on them, and Section IV discusses how the resulting constraint

problem is solved.

Memory abstraction. Many performance-relevant hard-

ware constraints translate into the requirement that certain

contiguous data blocks are held in a certain class of memory,

and that data is moved in contiguous blocks of certain sizes.

Recall that operators map vectors to vectors. Vectors impose

a natural neighborhood relation: for a vector x the component

xi is neighbor of components xi−1 and xi+1. A subvector

(xi, . . . , xi+k−1)
T of length k is contiguous and thus naturally

provides the concept of a block.

Therefore we impose the interpretation of vectors that OL

formulas operate on as being mapped to physical storage

contiguously, i.e., the memory for a vector is viewed as array

(in C notation) vector_t X[n], and xi is mapped to X[i].

Any different data layout needs to be made explicit through

permutation operators as part of the OL formula, not by

informally interpreting the vector data layout differently. For

example, block cyclic data distribution becomes an explicit

permutation in an OL formula.

Partitioning a vector into equally-sized blocks treats the

vector as vector of vectors. Blocking may happen recursively

(blocks of blocks). For constant block size at each recursion

level, this interpretation implies that data vectors are seen as

linearized tensors (high dimensional matrices), which explains

the importance of the tensor product and Kronecker product
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in SPIRAL’s formal framework. This implies that blocking

higher-dimensional objects (e.g., matrices) introduces explicit

permutations, since subblocks of higher-dimensional blocks

contiguous in memory are themselves not contiguous any

more. We use this approach to model structural hardware fea-

tures that require data locality for performance or correctness

reasons, as discussed in Section III-C.

The role of permutations. SPIRAL’s memory abstraction

implies that data required to compute an operator An(.) is in

the local memory (if there are multiple address spaces) or in

the smallest level of the memory hierarchy (e.g., in the L1

cache for standard CPUs). If n is too large (i.e., the memory

is too small to hold the necessary data), then the operator

needs to be recursively decomposed until this condition holds.

In this respect, SPIRAL’s memory model is related to the idea

of cache oblivious algorithms [177]. SPIRAL implies that data

access that crosses memory regions that are contiguous needs

to be explicitly marked in the OL data flow abstraction.

Permutations are used to capture both data reordering and

communication. They are expressed as permutation matrices

that are parameterized by the actual permutation (function).

The most prominent example in SPIRAL is the stride permu-

tation Lmn
n introduced in Section III-A.

Data flow representation. With the above convention of

how vectors are mapped to memory we can now describe

locality enhancing optimizations as breakdown rules for OL

expressions.

First we discuss the meaning of tensor/Kronecker products

with identity matrices in the context of data flow graphs. For a

linear operator Am ∈ R
m×m and Bn ∈ R

n×n the Kronecker

product Am⊗Bn defined in (13) is a matrix of size mn×mn.

For Am = Im the tensor product becomes a block-diagonal

matrix,

Im ⊗Bn =






Bm

. . .

Bm




 . (50)

The operator Im ⊗Bn applies the same operator Bn on con-

tiguous subvectors of length n, i.e.,

(Im ⊗Bn)(x0 ⊕ · · · ⊕ xm−1) = (Bnx0)⊕ · · · ⊕ (Bnxm−1)

and can be seen as a “parallel operation.” The “flipped” tensor

product is a block matrix where each block is a constant-

diagonal matrix,

Am ⊗ In =






a0,0 In . . . a0,m−1 In
...

. . .
...

am−1,0 In . . . am−1,m−1 In




 . (51)

(51) applies the operator Am to subvectors of length n and

can be seen as a “vector operation.” A common interpretation

is that for a linearized m × n input matrix x ∈ R
mn the

operation (Im ⊗Bn)x applies the operator Bn to the “rows” of

x while (Am⊗In)x applies the operator Am to the “columns”

of x. The tensor product is separable: it can be factorized

into a “row pass” and “column pass” in two ways, written as

breakdown rule

Am ⊗Bn →
{

(Am ⊗ In)(Im ⊗Bn)

(Im ⊗Bn)(Am ⊗ In)
. (52)

For instance, (19) together with (52) captures a large class of

multidimensional FFT algorithms including the row-column

algorithm, as well as the slab and pencil decomposition.

Further, the identity matrix is the tensor product of identity

matrices,

Imn → Im ⊗ In, (53)

which can be used to represent loop tiling. The following

breakdown rule describes the use of (53) to tile the mn
iterations of applying the operator A into m iterations of n
computations of A,

Imn ⊗A → Im ⊗ (In ⊗A).

A generalization that allows the blocks Bm to be different

in the occuring entries (but not in size) is expressed by

In ⊗iB
(i)
n =

m−1⊕

i=0

B(i)
n . (54)

The definitions in this section generalize to rectangular matri-

ces Ak×ℓ ∈ R
k×ℓ and Bm×n ∈ R

m×n.

Data layout transformations. The most important permuta-

tion operator in SPIRAL’s framework is the stride permutation

Lmn
m . As discussed in Section III-A, it can be viewed as

transposing a linearized matrix: it blocks a vector of length

mn into m vectors of length n, treats the vector-of-vectors

as a matrix of size m × n, transposes the matrix (new size

is n × m), reinterprets the matrix as n vectors of length m,

and finally linearizes the vector-of-vectors into a single vector

of length mn. Note that the reshaping steps are virtual: under

SPIRAL’s matrix/tensor linearization rules the data flow graph

of a matrix transposition and of a stride permutation are the

same.

The stride operation derives its importance from the fact

that it commutes the tensor product and thus enables formal

derivation of loop transformations like tiling, blocking, loop

interchange, and loop merging/fuison/fission. Written as break-

down rule

Am ⊗Bn → Lmn
m (Bn ⊗Am) Lmn

n . (55)

Further, matrix transposition can be blocked into a transposi-

tion of blocks followed by or preceded by a transposition of

the blocks [9],

Lk2mn
km =

(
Ik ⊗Lkmn

m

)(
Lk2

k ⊗ Imn

)(
Ik ⊗Lkn

k ⊗ Im
)
. (56)

Stride permutations have multiplicative and transposition/in-

version properties, which yield the identities
(
Lmn
m

)T → Lmn
n (57)

(
Lmn
m

)−1 → Lmn
n (58)

Lkmn
km → Lkmn

k Lkmn
m (59)

Lkmn
n → Lkmn

kn Lkmn
mn (60)

Lkmn
n →

(
Lkn
n ⊗ Im

)(
Ik ⊗Lmn

n

)
(61)

Lkmn
km →

(
Ik ⊗Lmn

m

)(
Lkn
k ⊗ Im

)
. (62)

Tensor products of stride permutations with identity matrices

can be seen as block transpositions, transposition of blocks,

or tensor rotations. For instance, Ik ⊗Lmn
m is a block diagonal
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matrix of size kmn × kmn with blocks of size mn × mn.

Similarly, the operation Lmn
m ⊗ Ik is expressing the reordering

of packets of size k. Both tensor products can be seen as

rotations of a linearized rank 3 tensor in the xy or yz plane.

As an aside, the tensor product of two stride permutations is

rotating a linearized rank-4 tensor simultaneously in the xy
and zu plane that also can be seen as an operation for a block

matrix that simultaneously performs a transposition of blocks

and transposition within blocks.

Non-linear and higher-arity data flows. So far, we have

only discussed the tensor product of linear operators. The

generalization to multi-linear is standard in the field of multi-

linear algebra and tensor calculus, and we use the standard

definitions. For instance, (39) describes recursive blocking

of matrix-matrix multiplication as tensor decomposition of

the operator MMMk,m,n. Generalizations of rules (52)–(62)

exist for the multi-linear tensor product and generalize to the

iterative sum (54).

SPIRAL also defines a generalization of (50) and (51)

for a tensor product of an identity matrix and a non-linear

operator [55]. For the simple case of Bn : R
n → R

n the

generalization is straightforward: the operator
(
Im ⊗Bn(.)

)
(.)

applies the operator Bn(.) on contiguous subvectors of length

n, i.e.,

(
Im ⊗Bn(.)

)
(x0⊕· · ·⊕xm−1) = Bn(x0)⊕· · ·⊕Bn(xm−1).

(63)

Using (63) we can break down (15) and (16) to capture

program transformations for the Map and Fold operators:

Mapmn
fi(.) → Im ⊗j Mapnfjn+i(.), and (64)

Foldmn
fi(.,.),z → Foldmfin(.,.),z ◦

(
Im ⊗j Fold

n
fjn+i(.,.),z

)
. (65)

For more general situations and arities beyond (1, 1) these

definitions and breakdown rules become unwieldy and for

brevity we will not introduce them in this paper.

The relatively small set of identities and breakdown rules

introduced in this section gives rise to a large possible space of

data layout and blocking transformations that can be exploited

in locality optimizations and work hand-in-hand with algo-

rithmic breakdown rules. Together with hardware parameters

(discussed next) they are powerful enough to enable SPIRAL to

derive efficient data flow graphs for a wide range of problems

and platforms.

C. Hardware Abstraction

We now discuss how hardware is abstracted in SPIRAL’s

formal framework.

Approach. The framework is designed to capture the ma-

jor current architectural and microarchitectural features that

require data flow optimizations for performance, including

1) SIMD vector instruction sets, SIMT, and VLIW architec-

tures [22], [25], 2) cache memories (multiple cache levels and

various topologies) [20], 3) scratch pads (explicitly managed

local storage) and multiple address spaces (CPU/device mem-

ory) [39], 4) shared memory parallelism (multicore, many-

core and hyper-threading) [19], [20], 5) distributed memory

parallelism (message passing) [48], [50], and 6) streaming

parallelism (processor arrays and field-programmable gate

arrays) [46], [47], [41]. We expect that also most future hard-

ware paradigms are composed from these features. SPIRAL’s

hardware model provides a formal way to enumerate “good

programs” for a the target platform. This is achieved by

modeling the hardware in SPIRAL’s rewrite system through

constrained terminal rules (the rule tree expansion stops), or

as constraints on OL breakdown rules. SPIRAL does not use

a detailed predictive model (as, e.g., [178] for MMM) but

captures structurally which kind of computations work or do

not work well. Further autotuning search (or learning) is then

used to select which program runs fastest.

Hardware or architecture features that do not require direct

changes to the data flow but may influence its parameters are

not modeled at the formal level but handled in the backend

compiler (see Section IV-B). These features include ISA

details like fused multiply-add instructions, special data type

support (floating-point, double-double, fixed-point, finite field

arithmetic), and microarchitectural features like the number of

physical and named registers, topology of execution pipelines,

and others.

Tags. A hardware constraint on an OL operator is captured

by a tag. Tags are symbolic annotations that are used in rewrite

rules to control pattern matching. Tags carry parameters that

provide high level structural information of the hardware

feature they describe. Operators or operator expression can

be tagged. For instance,

In ⊗An
︸ ︷︷ ︸

vec(ν)

, DFTn
︸ ︷︷ ︸

smp(2) vec(4)

, and MMMk,m,n
︸ ︷︷ ︸

mpi(16) vec(avx-double)

specify a general operator expression In ⊗An to be ν-way

SIMD vectorized, a DFTn to be 2-way parallelized for shared

memory and 4-way SIMD vectorized, and an MMMk,m,n

to be parallelized for 16 MPI processes and vectorized for

the double-precision AVX instruction set, respectively. These

examples show that an operator can be tagged with multiple

tags (order matters: e.g., smp(2) smp(4) captures a different

nested parallelization from smp(4) smp(2)), and that tags can

be generic (4-way SIMD vectorization) or specific (SIMD

vectorization for AVX double-precision). Specific tags imply

generic tags (AVX double precision implies 4-way SIMD

vectorization, and 16 MPI processes imply 16-way distributed

memory parallelism). Other hardware features are also cap-

tured by tags: for instance, a tag for ν-way streaming on

FPGAs used below is given by fpga(ν).

Tagged breakdown rules. Tagged breakdown rules propa-

gate tags and constrain algorithmic or data flow optimization

breakdown rules so that they become compatible with the

target hardware. For instance, the propagation rule

A ◦B
︸ ︷︷ ︸

tag

→ A
︸︷︷︸

tag

◦ B
︸︷︷︸

tag

for tag ∈ {par(.), vec(.), . . . } (66)

states that tagging and function composition commutes for

certain tags (to parallelize a sequence of operators, parallelize

each operator independently and have barriers at the end of

each parallel operator).



PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE, VOL. 106, NO. 11, NOVEMBER 2018 12

An example of a parallelization rule that expresses that the

outermost loop should be parallelized is given by

Ip ⊗An
︸ ︷︷ ︸

tag

→ Ip ⊗tagAn for tag ∈ {smp(p), mpi(p), fpga(n)}.

(67)

The rule states that a loop of p iterations with loop body An(.)
can be perfectly parallelized across p processors by running

one instance of An(.) on each processor. Similarly, on an

FPGA a block implementing An(.) as a combinational data

path can be invoked every cycle with a new input vector. Thus,

Ip ⊗An is executed over p cycles as a pipelined IP block of

streaming width n.

The symbol ⊗tag is a tagged OL operation that carries the

information that the loop resulting from this tensor product is

parallel to the further stages in the rewriting system. Rule (67)

“drops” the tag, i.e., there is no tagged OL object left on in the

right-hand side of the rule—only a tagged OL operation. The

removal of the tags and replacing them with a specific tagged

OL operations restricts the applicable breakdown rules to a

smaller, possibly more optimized, subset of breakdown rules

that simplifies the implementation of the generator. Note that

rule (53) may need to be applied first to make (67) applicable.

An example of a vectorization or streaming rule is given

by

An ⊗ Iν
︸ ︷︷ ︸

tag

→ An ⊗tag Iν for tag ∈ {vec(ν), fpga(ν)}. (68)

It states that for any An, the construct An ⊗ Iν can be

implemented using vector instructions by promoting any scalar

operations in An to ν-way vector operations. E.g., the scalar

operation a+b is replaced by vec_add(a,b). SSE code for

F2 ⊗vec(4) I4 is given by the following code snippet:

void F2xI4 SSE4x32f ( m128 ∗Y, m128 ∗X) {
Y[ 0 ] = mm add ps (X[ 0 ] , X [ 1 ] ) ;
Y[ 1 ] = mm sub ps (X[ 0 ] , X [ 1 ] ) ;

}

Similarly, on an FPGA for a pipelined block An of streaming

width w = 1 (i.e., which takes one input per cycle over n
cycles), An ⊗ Iν can be implemented with streaming width

w = ν (consuming ν inputs per cycle) by replicating the logic

for An for ν times.

Often, a tag is “pushed down” recursively,

Im ⊗An
︸ ︷︷ ︸

vec(ν)

→ Im ⊗ An
︸︷︷︸

vec(ν)

, (69)

which states that if the kernel An can be vectorized then just

loop over it. A shorthand notation for parallel tags is ⊗‖ and

for vector tags is ~⊗.

Architecture-aware tiling. Rules (61) and (62) are stride

permutation factorizations that capture tilings of matrix trans-

position. They break the transposition into two passes: one

pass that transposes blocks and one pass that transposes within

blocks. To model the target platform, the size constraints of

the architecture are imposed on the factorizations. For instance,

the rule

Lnν
n
︸︷︷︸

vec(ν)

→
(
In/ν ⊗ Lν2

ν
︸︷︷︸

vec(ν)

)(
Ln
n/ν

~⊗ Iν
)

(70)

describes how stride permutations are performed efficiently

on SIMD vector architectures like Intel’s SSE and AVX or

the AltiVec and VSX extensions supported by PowerPC and

POWER: it breaks the stride permutation into one stage that

is performed solely with vector operations (captured by the

tagged operation ~⊗) and one stage that performs small in-

register transpositions (explained below).

More involved vectorization data flow transformations are

captured by rules like (71)–(73) in Table IV, which all ensure

that data is accessed in SIMD vectors of size ν and the only

intra-vector operation is Lν2

ν , which will be handled below.

Parallelization for shared memory and message passing sys-

tems is captured by rules like (74)–(75). Rule (74) factorizes

a parallel transpose into local transposes and a big all-to-

all communication with maximum packet size, while (75)

performs a loop tiling transformation that ensures that packets

of size µ are transferred between p processors, which avoids

false sharing.

While the above discussion focused on SIMD vectors and

parallelism on shared memory and message passing archi-

tectures, the underlying concepts can be generalized. Any

hardware that requires coalesced access at a packet level is

modeled similar to SIMD vectors, and any explicit or implicit

messaging is modeled similar to the MPI rules. The focus

in this section was on the stride permutation since it plays

a central role in reshaping linearized high-dimensional data

structures. However, other permutation families like permu-

tations that are linear on mixed-radix digits exhibit similar

internal structures and can be handled analogously.

Architecture specific templates. Rules like (68) and (75)

explain generically (for all operators A) how to vectorize or

parallelize the respective data flow pattern. However, these

rules may introduce irreducible operators like Lν2

ν in case

of (70) and Lrs
r ⊗ Iu in case of (74). SPIRAL contains a

template library for such constructs that explains how to

implement them for each supported platform. Specifically, for

SIMD vector architectures, SPIRAL requires code fragments

that implement

Lν2

ν , L2ν
2 , L2ν

ν , L
ν2/4
ν/2 ⊗ I2, Iν/2 ⊗

[
a b
−b a

]

(76)

for vectors of primitive data types like reals and integers. These

constructs are parameterized by the vector length ν, abstract

the details of the particular architecture, and provide support

for data shuffling and complex arithmetic, e.g., required by

Tmn
n . Code for (76) is stored in SPIRAL’s internal represen-

tation (icode, discussed in Section IV-B) and inserted upon

program generation. The code templates can be written by

hand but also, in certain cases, be generated automatically

from the ISA as explained below. Figure 4 shows a code

example for L16
4 implemented in Intel SSE 4-way float.

The rule system ensures that as long as constructs (76)

can be implemented efficiently, the whole data flow graph

will be implemented efficiently. Sometimes algorithms require

additional irreducible OL operators to be supported, and then

users need to supply the necessary templates for the targeted

architectures. Examples include the cyclic shift permutation

that rotates vector components and the reduction operator that
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TABLE IV
ADVANCED VECTORIZATION AND PARALLELIZATION RULES [22], [20], [25], [19].

Lmn
m
︸ ︷︷ ︸

vec(ν)

→
(
L
mn/ν
m ⊗ Iν

)(
Imn/ν2 ⊗Lν2

ν

)(
(In/ν ⊗Lm

m/ν)⊗ Iν
)

︸ ︷︷ ︸

vec(ν)

, ν | m,n (71)

(
Im ⊗An×n

)
Lmn
m

︸ ︷︷ ︸

vec(ν)

→
(
Im/ν ⊗

(
Lnν
ν (An×n ⊗ Iν)

) )(
L
mn/ν
m/ν

⊗ Iν
)

︸ ︷︷ ︸

vec(ν)

, ν | m (72)

(

Ik ⊗
((

Im ⊗An×n
)
Lmn
m

) )

Lkmn
k

︸ ︷︷ ︸

vec(ν)

→
(
Lkm
k ⊗ In

)(

Im ⊗
((

Ik ⊗An×n
)
Lkn
k

))(
Lmn
m ⊗ Ik

)

︸ ︷︷ ︸

vec(ν)

, ν | k, n (73)

Lmn
m
︸ ︷︷ ︸

mpi(p)

→
(
Ip ⊗L

mn/p
m/p

)(
Lp2

p ⊗ Imn/p2
)(

Ip ⊗(Ln
p ⊗ Im/p)

)

︸ ︷︷ ︸

mpi(p)

, p | m,n (74)

Am ⊗ In
︸ ︷︷ ︸

smp(p,µ)

→
(
Lmp
m ⊗ In/p

)(
Ip ⊗(Am ⊗ In/p)

)(
Lmp
p ⊗ In/p

)

︸ ︷︷ ︸

smp(p,µ)

, µ | n/p (75)

void L 16 4 SSE4x32f ( m128 ∗Y, m128 ∗X) {
m128 t3 , t2 , t1 , t 0 ;

t 0 = mm unpacklo ps (X[ 0 ] , X [ 1 ] ) ;
t 2 = mm unpacklo ps (X[ 2 ] , X [ 3 ] ) ;
t 1 = mm unpackhi ps (X[ 0 ] , X [ 1 ] ) ;
t 3 = mm unpackhi ps (X[ 2 ] , X [ 3 ] ) ;
Y[ 0 ] = mm movelh ps ( t0 , t 2 ) ;
Y[ 1 ] = mm movehl ps ( t2 , t 0 ) ;
Y[ 2 ] = mm movelh ps ( t1 , t 3 ) ;
Y[ 3 ] = mm movehl ps ( t3 , t 1 ) ;

}

Fig. 4. Code example for L16
4 implemented in Intel SSE 4-way float.

sums up all vector components. Once such a new operator

template is provided, it is usable for any algorithm.

For distributed memory systems with message passing, the

construct

P ⊗ Iµ (77)

for an arbitrary permutation P needs to be implemented as an

explicit collective communication operation. The minimum is

to provide an efficient implementation for

Lp2

p ⊗ Iµ
︸ ︷︷ ︸

mpi(p)

(78)

but other specialized permutations (that for instance capture

MPI communicators) may be provided to obtain better perfor-

mance. Similarly, FPGA implementations of streaming per-

mutations or double buffering across multiple address spaces

as well as computation off-loading requires the definition of

irreducible operators and the supply of code templates for

them [44], [30].

Automatic derivation of code templates. For certain hard-

ware structures or instruction sets, it can be hard to derive

implementations for irreducible operators like (76) by hand.

For example, efficient implementations for SIMD vectorized

blocks can be hard to derive by hand as vector lengths

get longer and instruction set peculiarities prevent straight-

forward implementations. SPIRAL uses multiple approaches

to automate the derivation of code snippets that implement

(76). A matrix factorization-based search method expresses the

semantics of SIMD shuffle operations as rectangular matrices

and searches for short sequences that implement the targeted

operations [26] by stacking and multiplying them. For AVX

and Larrabee with 256- and 512-bit vectors, the search space

becomes too large, and thus we developed a super-optimization

based approach [40].

For the efficient implementation of stride permutations (and

related so-called linear permutations) on FPGAs we developed

an automatic (and optimal) approach based on solving a par-

ticular matrix factorization problem [179], [180]. For general

permutations, a method based on decomposing Latin squares

is used [45].

IV. PROGRAM GENERATION

In this section we discuss SPIRAL’s approach to program

generation and autotuning. First, we discuss the approach to 1)

setting up and solving the constraint problem which produces

structurally optimized OL formulas for a given target platform,

and 2) autotuning to select from the identified OL formulas.

Next we explain the DSL compilation process that translates

the formulas into programs. Finally we discuss correctness

guarantees and formal correctness proofs.

A. Constraint Solving and Autotuning

Figure 5 introduces the overall approach, depicted for the

problem specification of DFT8 and the hardware specification

“AVX 2-way _Complex double” (complex arithmetic ap-

plied to 4-way double). Hardware rules (left, red), algorithm

rules (right, blue) and program transformation rules (center,

grey) together define a search space (multi-colored oval). The

given problem specification and hardware target give rise to

the solution space (black line), which is a subspace of the

overall search space.

Each point in the solution space (black dot) represents a data

flow graph given as a rule tree encoding the sequence of rule

applications, translated into an OL formula. The rule tree/OL
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AVX 2-way 

_Complex double

Base cases

DFT8

Breakdown rulesTransformation rules

(16) and (17)(71), (60), and (52)(67) and (75)

Fig. 5. Program generation as a constraint problem. Hardware rules (left,
red), algorithm rules (right, blue) and program transformation rules (center,
grey) together define a search space (oval). A given problem specification
(DFT8) and hardware constraint (Intel AVX in 4-way double precision mode
implementing 2-way complex arithmetic) give rise to the solution space (black
line). Each point in the solution space is represented as sequence of rule
applications captured as ruletree that translates uniquely into a OL formula,
which is compiled to efficient code by SPIRAL’s rules-based DSL compiler.
Walking the solution space enables autotuning.

formula represents an algorithmic solution for the specified

problem, and is optimized for the given target architecture.

SPIRAL translates the OL formula via a multi-stage rewrite

system (see Section IV-B and Figure 6) into optimized code.

Automatic performance tuning is implemented by measuring

the performance of the candidate solutions so as to search

for a fast solution. Note that solving the constraint problem

dramatically reduces the search space (i.e., valid and optimized

OL formulas for a desired problem specification) to already

structurally optimized candidates. This ensures that the gen-

erated code can be computed efficiently on the target archi-

tecture. Applying autotuning then factors in more complicated

hardware/software interactions that cannot be easily modeled.

We now detail the components of our approach.

Hardware space. As discussed in Section III-C, SPIRAL

models hardware through the set of operators and OL formulas

that can be mapped efficiently on it. Different aspects of a

target platform (e.g., SIMD vector instructions, multiple cores,

deep memory hierarchy, and accelerators) are modeled via a

set of associated tags (one tag per hardware feature). Hardware

features are modeled as constraints on breakdown rules.

This setup implicitly defines a space of programs that can

be mapped efficiently on a given hardware platform, where

the tags constrain the applicable breakdown rules so that only

efficient expressions are enumerated. To enumerate this space

of efficient programs, we start with the set of all (small)

operators that we can directly implement through terminals,

e.g., An in (67). We then build the expression on the right-

hand side of the rule for all An, and apply the rule in reverse,

deriving the un-tagged left-hand side from the right-hand side.

In the case of (67) this would be the set
{
Ip ⊗An : An ∈ (Rn → R

n)
}
.

The set of expressions now is substituted into all right-hand

sides of all rules where it matches, e.g., A and B in (66),

and the process is repeated. This procedure constructs the

exponentially growing set of all efficient expressions given

by a rule set, thus forming a space of parallel programs.

Formally, a rule set gives rise to a grammar of all efficient

formulas, which can be expressed in Backus-Naur Form

(BNF). For instance, (66) and (67) restricted to tag = mpi(p)
plus (78) give rise to the BNF for efficient MPI OL formulas

〈mpiol〉,

〈mpiol〉 ::= 〈mpiol〉 ◦ 〈mpiol〉 | Lp2

p ⊗ Iµ | Ip ⊗〈uol〉 (79)

〈uol〉 ::= any untagged OL formula, (80)

parameterized by all untagged OL formulas 〈uol〉. The BNF

(79)–(80) guarantees that any formula

〈mpiol〉
︸ ︷︷ ︸

mpi(p)

will be fully expanded by the rule set (66), (67), and (78). The

parameter µ in (79) is a suitable MPI packet size.

In general, a target platform may have multiple hardware

features (e.g., MPI and a SIMD ISA). In this case the rule

sets are combined to yields a smaller, more constrained space

of OL formulas.

Algorithm space. Similarly, for a set of algorithmic break-

down rules, all OL formulas that implement the encoded

algorithms can be characterized through a BNF. For instance,

the set of all multi-dimensional two-power FFTs computable

via the Cooley Tukey FFT algorithm and the row-column

algorithm for higher-dimensional DFTs (rules (17), (18), and

(19)) is given by the BNF

〈mdft〉 ::=〈mdft〉 ⊗ 〈mdft〉 | 〈dft〉 ⊗ 〈mdft〉 | (81)

〈mdft〉 ⊗ 〈dft〉 | 〈dft〉 ⊗ 〈dft〉
〈dft〉 ::=(〈dft〉 ⊗ In) T

mn
n (Im ⊗〈dft〉) Lmn

m | F2. (82)

Note that the size of the operands within an OL formula have

to be compatible. This compatibility requirement also extends

to the SPL/OL rules, where the size of the formulas on the

right-hand sides have to match that of those on their respective

left-hand sides.

As for the hardware formula space, the algorithm formula

space is parameterized by the set of rewrite rules used to

construct it. Different sets of rules can be used to break

down a given specification and may restrict the supported

problem sizes. For instance, a rule set to break down the

DFT can consist of a number of combinations of the base rule

(18) and recursive rules like the Cooley-Tukey FFT (17), the

Good Thomas Prime Factor Algorithm, Rader’s Algorithm,

Bluestein’s Algorithm, Partial Diagonalization, etc [1], [17].

The FFT rule set can be a subset of a rule set for the SAR

algorithm (see Table II) or convolution. Complex algorithms

require the union of multiple rule sets, and care needs to be

taken to ensure the rules are compatible.

Program transformations. Rules that encode program

transformations or data layout transformations (e.g., (52),

(57)–(62), and (71)–(75) in Table IV) define alternative but

equivalent data flows for OL formulas, and thus alternative

algorithms. Thus, when enumerating all OL formulas given
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by a rule set, after expanding formulas using a rule, the set

of all equivalent data flows needs to be constructed. This is

done by applying the program transformation and data layout

transformation rules. For instance, using (55)–(58) in (82) and

the fact that DFTn = DFTT
n , the BNF construct

(〈dft〉 ⊗ In) T
mn
n (Im ⊗〈dft〉) Lmn

m

is expanded into a set of four equivalent formulas:
{
(〈dft〉 ⊗ In) T

mn
n (Im ⊗〈dft〉) Lmn

m , (83)

Lmn
m (In ⊗〈dft〉) Lmn

n Tmn
n (Im ⊗〈dft〉) Lmn

m , (84)

(〈dft〉 ⊗ In) T
mn
n Lmn

m (〈dft〉 ⊗ Im) (85)

Lmn
m (In ⊗〈dft〉) Tmn

n (〈dft〉 ⊗ Im)
}
. (86)

This expresses the four variants of the general radix

Cooley-Tukey FFT algorithm: decimation-in-time (DIT) (83),

decimation-in-frequency (DIF) (86), four step (85), and six

step (84) as equivalency relation on OL formulas.

Characterizing the solution space. Now, we have formally

defined a space of programs running efficiently on a given

target platform as the set of all OL formulas that can be

constructed from a properly chosen rule set, and we have

defined the associated BNF. Further, we have defined a space

of OL formulas that implements a given problem specification

via a properly chosen rule set, and again we have defined the

associated BNF. Thus, we can state that all programs that are

solving the given specification and run efficiently on the given

target hardware are characterized by the intersection of the two

spaces. For instance, all 1D DFTs that can be implemented

well using MPI on p processors is given by the intersection

of the set of all formulas given by the MPI BNF (79)–(80)

with all formulas implementing a multi-dimensional DFT via

BNF (81)–(82) and alternative algorithms due to data flow

transformations and the DFT transposition property (83)–(86),
{
〈mpi-mdft〉

}
=
{
〈mpiol〉

}
∩
{
〈mdft〉

}
. (87)

While the architecture formula space (
{
〈mpiol〉

}
) and the

implementation formula space (
{
〈mdft〉

}
) are very large (ex-

ponentially growing with problem size, and possibly infinite

even for small problem sizes if no restrictions are placed on

formulas), the intersected space is usually not too large and

for all practical problems tractable.

Traversing the solution space. While (87) abstractly char-

acterizes the space of all solutions, it does not allow us to

construct solutions efficiently. However, any point in the

solution space is reachable by a sequence of rule applications,

starting with the initial specification, and ending when no

rule is applicable any longer. Algorithm and data layout

transformation rules expand the space, but only hardware

rules can terminate the expansion. This construction implicitly

intersects the algorithm space with the hardware space and

implies that backtracking and constraint solving needs to be

applied to find feasible solutions since not all expansions lead

to fully expanded (terminated) OL formulas. The sequence of

recursive rule application leading to a solution is encoded as

rule tree, and every rule tree can uniquely be translated into

an corresponding OL formula (see Fig. 2); the converse is not

true. Care needs to be taken to ensure that the rule system

contains no cycles leading to infinite loops when trying to

expand a specification. Currently, developers need to design

rule systems that ensure termination. Automatic checking is

left to future work.

There are a number of methods to traverse or explore the

search space that control the order of rule expansion and

candidate generation [1], [181], [69]: 1) full enumeration is

achieved by recursively applying all rules and parameteriza-

tions at each expansion, 2) random expansion picks a random

rule and random parameterization at each expansion, 3) dy-

namic programming picks the “best” rule and parameterization

according to some metric at each expansion, and 4) genetic

search maintains a population of expansions and performs

mutation and cross-breeding to derive a new population. While

these methods originally were defined for recursive search

spaces, SPIRAL uses them as constraint solvers by enforcing

backtracking if an expansion cannot terminate.

Controlling the solution space. The search space implicitly

defines a binary metric for OL formulas to be optimized for a

target platform: Either a formula is in the search space (then it

can be implemented efficiently), or it is not in the search space

(then it cannot be implemented efficiently on the hardware

w.r.t. our definition of efficiency). The metric can be made

more gradual by assigning a fitness score between 0 and 1

and by defining a partial order of rule sets that capture various

aspects and optimization methods for a target platform. For

instance, the “high efficiency” rule set only allows for a limited

number of very efficient constructs while a “lower efficiency”

rule set allows for more and less efficient constructs. We then

find the most stringent rule set that allows us to find solutions

for a given specification and target architecture, which is

equivalent to maximizing the fitness score of a formula.

Automatic performance tuning. The framework developed

in this section allows us to traverse the solution space and

evaluate each point of the solution space with a number

of metrics (runtime performance being the most important).

This can be used to perform automatic performance tuning

(also called autotuning): Any of the previously discussed

traversal/search algorithms produces candidate solutions in

the search space, which by construction are efficient on the

target platform. Then the candidates are measured (usually

runtime) to provide a numeric score. The score is used to

guide the search algorithm. Since we have a partial order

of search spaces and a number of metrics at various code

representation levels, faster (and less accurate) methods can be

used to quickly find good candidates, and then more aggressive

search can be used locally to find the very best solutions.

In practice, we often use a combination of genetic search,

dynamic programming, line search, and exhaustive search,

partitioning the parameters into system parameters that are

optimized once and specifying parameters that are optimized

for each specification.

SPIRAL allows defining arbitrary performance metrics as

long as it can evaluate arbitrary OL formulas to a scalar.

Example metrics we have used include runtime and power,

energy and energy-delay product, static analysis outputs like

instruction count or register pressure, and profiling information

and performance monitor counters. Metrics can be used at any
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void dft8(_Complex double *Y, _Complex double *X) {

__m256d s38, s39, s40, s41,...

__m256d  *a17, *a18;

a17 = ((__m256d  *) X);

s38 = *(a17);

s39 = *((a17 + 2));

t38 = _mm256_add_pd(s38, s39);

t39 = _mm256_sub_pd(s38, s39);

...

s52 = _mm256_sub_pd(s45, s50);

*((a18 + 3)) = s52;

}

Fig. 6. SPIRAL’s DSL compiler translates the output of the constraint solver
(an OL expression) into high performance C code through a multi-level
rewriting system that intersperses multiple layers of recursive descent followed
by confluent term rewriting.

abstraction level in SPIRAL: some analyze OL formula prop-

erties while other metrics analyze intermediate representations

or profile the code (discussed in Section IV-B).

B. DSL Compiler

In Section IV-A we discussed SPIRAL’s approach to derive

OL formulas that represent efficient programs for a given

specification on a given target architecture. These OL formulas

can be viewed as flat or structured data flow graphs. Structure

is enforced by parentheses that require particular evaluation

order while associative operators allow arbitrary evaluation

order in the absence of parentheses. In this section we explain

how SPIRAL translates a data flow graph that guarantees an

efficient implementation relative to the simple hardware model

into the actual efficient implementation on the target machine.

This is done via a multi-level rewrite system and a stack

of domain specific languages. The rule sets of the rewrite

system are configurable and the DSLs are extensible to enable

encoding of human performance engineering knowledge.

Overall structure. Figure 6 shows the overall structure

of SPIRAL’s DSL compiler. It translates the output of the

constraint solver (an OL expression) into high performance C

code through a multi-level rewriting system that intersperses

multiple layers of recursive descent followed by confluent term

rewriting. The distinct abstraction layers are discussed below:

• Rule trees represent the solution of the constraint problem

given by problem specification and target architecture

as a sequence of rule applications (see previous section,

Section IV-A),

• OL formulas represent the data flow graphs derived from

applying the rules as prescribed by the rule tree,

• Σ-OL formulas make loop iterations and data gathering/s-

cattering explicit,

• icode is an internal abstract code representation that is

restricted and can be mapped to C or Verilog.

A rule tree and thus its associated OL formula is compiled

to code by applying two types of rule sets at every abstraction

level: first recursive descent is used to translate the higher level

abstraction to the next-lower level abstraction by recursively

walking the tree and locally translating the constructs via

context-free rewrite rules. Second, the translated expression

is reduced to normal form via a confluent term rewriting step.

Individual rule sets can be complex sequences of merged

basic rule sets, and developers need to exercise caution to

ensure confluence and avoid infinite loops. SPIRAL uses both

mathematical data types (R, C, intervals over reals, Galois

fields, etc.) and machine data types (double, float, int,

__m128d, etc), and rewrite rules are used to lower from

mathematical to machine data types.

Throughout the translation process the lower level repre-

sentations retain the properties ensured by the higher level

abstractions, such as locality and being implementable by cer-

tain instruction sets. It would be hard to prove these properties

directly on the lower level abstractions, but the properties hold

by construction. Σ-OL expressions are folded data flow graphs

that represent operator expressions constructed with iterative

higher-order operators that capture loops, folds, and maps.

icode programs that are derived from OL expressions can be

viewed as C programs, abstract syntax trees, pure functional

programs, lambda functions, or mathematical operators.

Finally, we present here the rewrite process as a procedure

consisting of well-separated stages. However, as implemented

by SPIRAL the stages may operate asynchronously on different

parts of the algorithm: some sub-expressions may already have

been lowered to Σ-OL or icode while other subexpressions

are still unexpanded non-terminals, rule trees, or OL formulas.

This flexibility allows SPIRAL to cache partial solutions or

store partially generated code that can be re-targeted to a

smaller set of target architectures with less code synthesis

time. In addition, rule trees have a unique translation to OL

expressions and thus are used above synonymously.

We now discuss the Σ-OL and icode abstraction levels

and the associated rewrite systems.

Σ-OL. In Section IV-A data flow optimizations are encoded

as rewrite rules and together with algorithmic breakdown rules

allow SPIRAL to expand a specification into an optimized data

flow graph represented as an OL formula. The OL formula

encodes dependencies (encoded by ◦) and execution order

(encoded by nested parenthesis). It uses iterators like Map,

Fold and ⊗ to encode repetitions in the data flow graph. We

now explain how these iterators are lowered to a representation

that makes iterations and iteration order explicit.

This is achieved in the next layer in SPIRAL’s formal

system, using a DSL called Σ-OL, which provides a repre-

sentation that is closer to the final imperative description of

the computation. Iterators are “broken” into a representation

that makes loops explicit and enables loop-level optimization

such as loop merging, software pipelining, and loop iteration

reordering. Σ-OL is a superset of OL that introduces additional

constructs. All optimizations on Σ-OL are again expressed

as rewriting rules. However, there is one major difference

between OL rewriting and Σ-OL rewriting: OL rewriting

requires only relatively simpler pattern matching but needs

to handle alternatives and support search. Σ-OL rewriting

requires powerful pattern matching but no search. SPIRAL’s Σ-

OL rewriting system, which is described next, has an elaborate
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mechanism to manage, combine, and stage rule sets.

To introduce Σ-OL, we first consider Mapnfi(.). It applies

the function fi(.) to all input vector components to produce

its output vector. We define the n-dimensional standard basis

vector with a one at entry i and zero everywhere else as

eni = (δij)j=0,...,n−1 ∈ R
n, δij =

{

0, i 6= j

1, i = j
. (88)

In (88), δij is the Kronecker delta. We view (88) as a linear

operator (and thus an OL operator) that is multiplied to an

input vector from the left to extract its ith component. Now

we can decompose (as a rewriting rule)

Mapnfi(.) →
n−1∑

i=0

eni (.) ◦ fi(.) ◦
(
eni
)T

(.). (89)

(89) captures the fact that Mapnfi(.) can be implemented as a

loop that applies a function to each entry of the input vector by

translating Mapnfi(.) into an explicit loop that extracts vector

element xi, computes fi(xi) and then stores the result at

location i of the output vector. Map can be easily expressed

as iterative sum since all operations are independent.

The reduction operation described by Foldnfi(.,.),z requires

a bit more formalism. As an example, we decompose

Foldn(x,y)→x⊔y,z →
n−1⊔

i=0

(
eni
)T

(.) (90)

for an arbitrary associative binary operator ⊔ that has a neutral

element z (returned for n = 0) and an iterative version
⊔n−1

i=0 .

Practically relevant reduction operators ⊔ are min, max, ·,
or +. As in (89),

(
eni
)T

(.) in (90) extracts the element xi

from the input vector x, and the iterative operator reduces all

elements xi by its definition,

n−1⊔

i=0

xi = x0 ⊔ xi ⊔ · · · ⊔ xn−1. (91)

Tensor products and Σ-OL. The tensor product Im ⊗An

and the direct sum
⊕n−1

i=0 A
(i)
n are generalizations of Mapnfi(.).

To lower tensor products to Σ-OL we first define a gather and

scatter operator,

Gf =

n−1∑

i=0

eni
(
eNf(i)

)T
and (92)

Sf =

n−1∑

i=0

(
eNf(i)

)T
eni , (93)

parameterized by an index mapping function

f : In → IN .

where Ik = {0, 1, . . . , k − 1} is the integer interval from 0 to

k − 1. We define basic index mapping functions

ın : In → In; i 7→ i (94)

(j)n : I1 → In; i 7→ j (95)

ℓmn
m : Imn → Imn; i 7→

⌊
i
n

⌋
+m(imodm) (96)

that have the properties

Gın = In, (97)

S(j)n = enj , (98)

Gℓmn
m

= Lmn
m . (99)

Finally, we define the tensor product of index mapping func-

tions for functions f : Im → IM and g : In → IN ,

f ⊗ g : Imn → IMN : i 7→ Nf
(⌊

i
n

⌋)
+ g(imodn). (100)

The definitions give rise to the key compatibility condition,

Gf⊗g = Gf ⊗Gg, (101)

Gf×g = Gf ×Gg, (102)

Gf◦g = GgGf , (103)

and the identity Sf = GT
f . We now can translate tensor

products to Σ-OL expressions using

Im ⊗An →
m−1∑

j=0

S(j)m⊗ınAnG(j)m⊗ın (104)

Am ⊗ In →
n−1∑

j=0

Sın⊗(j)mAnGın⊗(j)m . (105)

As in Section III-A, generalizations to multi-arity operators

exist but are unwieldy.

Tagged Σ-OL. Tags used for OL operations and objects are

also supported at the Σ-OL level to carry hardware information

down to the program generation system. For instance,

Gf ~⊗ Iν

will not be broken down further as it will be implemented

using vector operations. On Intel’s SSE for example, it will

be implemented eventually with _mm_movaps as a permu-

tation/gather of SIMD vectors of type __m128. Similarly,

tagged parallel tensor products become tagged parallel iterative

sums which are eventually implemented using OpenMP or

MPI. For FPGAs, software pipelining is an annotation that

tags both OL and Σ-OL formulas appropriately. The tagging

does not interfere with the rewriting rules we present. It may

be explicitly utilized by rules and carries hardware information

through the system.

Loop merging. So far we have described the recursive

descent approach and rule set that converts OL formulas into

Σ-OL formulas. Next we discuss how these formulas are

optimized. OL constructs like Map, Fold, and tensor products

imply a traversal through their input data set. Thus merging

rules like

Mapnf ◦Mapng → Mapnf◦g (106)

Foldnf,z ◦Mapng → Foldn(x,y) 7→f(g(x),y),z (107)

can be seen as loop merging rules. For instance, (107) is

used to optimize the expression derived from (41)–(42) for

the Chebyshev distance (40), and leads to the transformation

sequence

d∞(u, v) → Foldn(x,y) 7→max(x,y),0 ◦Mapn×n→n
(x,y) 7→|x−y| (108)

→ Foldn×n→n
((x1,x2),y) 7→max(|x1−x2|,y),0

. (109)
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Similarly, rules for Gf and Sf exist and optimize away

copy/reorder loops:

Gf ◦Mapg → Mapg◦f ◦Gf (110)

Gf ◦Gg → Gg◦f . (111)

For (106)–(111) to be able to simplify the Σ-OL formulas

fully, rules
(

n−1∑

i=0

Ai

)

◦B →
n−1∑

i=0

Ai ◦B, C ◦
(

n−1∑

i=0

Ai

)

→
n−1∑

i=0

C ◦Ai

with B ∈ {G,Map} and C ∈ {S,Map} are needed to

propagate the gather, scatter, and map operations into the inner

sum/loop. Generalizations for reductions/Fold also exist.

Indexing simplification. The final set of rewrite rules that

is needed simplifies compositions of index mapping functions

and encodes complex integer equalities. An important exam-

ple [17] are

ℓmn
m ◦

(
(j)m ⊗ ın

)
→ ın ⊗ (j)m, (112)

(
(j)m ⊗ ın

)
◦ fn → (j)m ⊗ fn, and (113)

(
ın ⊗ (j)m

)
◦ fn → fn ⊗ (j)m. (114)

These identities mirror OL identities like (55) at the Σ-OL

level. While tensor products can be broken into iterative

direct sums or sums of gather/compute/scatter kernels, stride

permutations and their identities cannot easily be handled by

decomposition into sums alone. The gather/scatter rewriting

rules together with the index simplification rules address this

problem and allow to merge stride permutations as indexing

patterns into gather/compute/scattter loops. They are used to

simplify the Σ-OL expressions like

(Im ⊗An) L
mn
m →

m−1∑

j=0

S(j)m⊗ınAnGın⊗(j)m . (115)

The gather and scatter functions in (115) capture the address-

ing pattern due to the loop implementing the tensor product,

and translate the data reorganization captured by the stride

permutation into re-indexing in the gather operation. The

index simplification rule set allows this simplification to be

performed across multiple recursion levels.

We now apply the Σ-OL optimization stage to our example,

DFT8. Applying the full Σ-OL rule system to (20) yields the

expression (116) shown in Figure 7. Note that the resulting

expression is an imperfectly nested sum and all summands

are normalized to the shape

Sf ◦A ◦Gg

where A, f and g are parameterized by loop variables. The

gather and scatter functions capture all re-indexing due to

multiple levels of stride permutations, and all twiddle factor

scaling is pulled into the inner-most loop. This is an instance

of the normal form that SPIRAL achieves for well-optimized

OL formulas: the Σ-OL rewrite succeeds because the OL level

rewrites guarantee it by manual construction. Future work

will address theoretical guarantees and automation for rule set

management.

Termination. A final intermediate step before translating

Σ-OL to icode is the termination of all remaining gather,

scatter, map, and fold using (89)–(93). The resulting expres-

sions are composed of the minimal set of Σ-OL operators

and operations needed to express OL expressions: standard

basis vectors, scalar n-ary operators, and iterative operations

(sum/union and reductions). An example is the final expression

for (40) derived by terminating (109),

max
i=0,...,n−1

(
(x, y) 7→ |x− y|

)
◦
(
(eni )

T × (eni )
T
)
. (117)

This enables the design of a small rule-based compiler for the

whole Σ-OL language, which we discuss next.

C. Backend Compiler

We now discuss the lowest abstraction level in SPIRAL,

the internal code representation called icode, the translation

form Σ-OL to icode, icode optimization, and unparsing

(pretty printing).

Code representation. SPIRAL utilizes a simple iterative

language to capture C code and language extensions. The

language represents 1) values and data types, 2) arithmetic

and logic operations, 3) constants, arrays and scalar variables,

and 4) assignments and control flow. While the language is

very general, the code generated inside the SPIRAL system

has strong properties. An icode program that was derived

by SPIRAL from an operator specification is at the same time

1) a program given as abstract syntax tree, 2) a program in a

restricted subset of C, 3) an OL operator over mathematical

numbers and machine numbers, 4) a pure functional program,

and 5) a lambda expression.

icode is arbitrarily extensible to represent instruction set

extensions like Intel’s SSE and AVX and the necessary data

types. Instructions are modeled as functions and a compiler

that implements an intrinsic function interface and the nec-

essary data types are assumed. icode represents C pragmas

needed for OpenMP, OpenACC and similar systems, as well

as library calls to math and communication libraries. Instruc-

tion set-specific strength reduction is implemented through

SPIRAL’s rewriting system. We have implemented higher-

level data types and the respective operations like complex

arithmetic, interval arithmetic, Galois fields, soft floating point

and fixed point arithmetic.

Program generation. Translation from terminated Σ-OL to

icode is done via a recursive descent pass. Applied to the

terminated normal form of Σ-OL, only a few rules are needed

for program generation. Figure 8 shows the simplified rule

set. We use an operator Code(.) to invoke the compilation

process, and provide a rule set to recursively translate Σ-OL

expressions to icode. The translation rules need to cover

the translation of 1) operator composition into a sequence

of operator implementations (118), 2) loop implementation of

iterative operations (119), 3) basis vector operations into reads

and assignments of array elements (120)–(121), and 4) scalar

operator evaluation into their icode implementation (122).

The full compilation rule system used by SPIRAL is highly

configurable and much more complex. It handles code gen-

eration for tagged operations and irreducible OL operators
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



3∑

j=0

Sı2⊗(j)4F2 Map2
x 7→ω

4i+j
8 x

Gı2⊗(j)4









1∑

j=0

(
1∑

i=0

S(j)2⊗ı2⊗(i)2F2 Map2
x 7→ω

i+2j
4 x

Gı2⊗(i)2

)(
1∑

i=0

S(i)2⊗ı2F2Gı2⊗(i)2⊗(j)2

)

 (116)

Fig. 7. Fully expanded and optimized Σ-OL expression for DFT8 as decomposed in (20). ωn is the primitive nth root of unity, used to compute the twiddle

factors. All factors in (116) are linear and thus matrices; therefore we drop the ◦ operator.

Code
(
y = (A ◦B)(x)

)
→
{
decl(t) (118)

Code
(
t = B(x)

)

Code
(
y = A(t)

)}

Code

(

y =

(
n−1⊔

i=0

Ai

)

(x)

)

→
{
y := ~z⊔ (119)

for(i = 0..n− 1)

Code
(
y⊔ = Ai(x)

)}

Code
(
y = (eni )

T (x)
)
→y[0] := x[i] (120)

Code
(
y = eni (x)

)
→
{
y = ~0, y[i] := x[0]

}
(121)

Code
(
y = f(x)

)
→y[0] := Code(f)(x[0]) (122)

Fig. 8. Rule based translation from terminated Σ-OL to icode. ~z⊔ is the
zero vector relative to the operator ⊔.

into specially tagged icode instructions. For instance, a

tagged parallel iterative sum is translated into a tagged parallel

for loop. Users can supply templates for OL constructs that

require implementation “tricks,” and multiple implementations

per construct can be provided. For optimization, we may not

terminate constructs like gather, scatter, or small matrices but

translate these Σ-OL constructs directly to icode.

Backend optimization. After translation to icode, SPI-

RAL’s backend compiler optimizes the generated code and

transforms it into the correct shape for the target (C/For-

tran/Verilog) compiler. The core is a powerful and highly

configurable basic block compiler. No loop-level optimization

is required, since all higher level optimizations like paral-

lelization, vectorization, or streaming have been lifted to the

OL and Σ-OL level. The main basic block optimizations

are [13]: 1) loop unrolling, 2) array scalarization, 3) constant

folding, 4) copy propagation, and 5) common subexpression

elimination.

In addition, strong support for architecture-specific strength

reduction is provided to enable backend optimizations for

a wide range of complex instruction sets with idiosyncratic

behaviors. The compiler also implements an extensible type

system that supports both abstract types and machine types,

type unification and type-specific optimization. The production

compiler is implemented in GAP using both a complex rule

system and procedural components. A high assurance branch

developed for correctness guarantees [67] is implemented

solely using rewriting rules.

The same icode language is used for C compilers, C-

derived dialects like OpenCL and CUDA, and for combina-

tional logic (Verilog). The SPIRAL backend compiler can be

configured to utilize various equivalent C idioms (e.g., X[i]

vs. *(X+i)) and optimizations like index recomputation

vs. induction to best match the capabilities of the target C

compiler. This is made necessary by the high variance in the

o p t s := C o p y F i e l d s (
S p i r a l D e f a u l t s ,
I n t e lC99Mix in ,
breakdownRules := r e c (

DFT := [ DFT CT , DFT Base ] ) ) ;
r t := RandomRuleTree ( r t , o p t s ) ;
c := CodeRuleTree ( r t , o p t s ) ;
P r i n t C o d e ( ” d f t 8 ” , c , o p t s ) ;

Fig. 9. SPIRAL script to generate C using C99 complex arithmetic (Intel
C++ compiler syntax) for DFT8 using breakdown rules (17) and (18).

Complex double ∗D3 , ∗D4 ;

void d f t 8 ( Complex double ∗Y,
Complex double ∗X) {

s t a t i c Complex double T1 [ 8 ] , T2 [ 4 ] ;
Complex double s5 , s6 , s7 , s8 , s3 , s4 ;

f o r ( i n t i 5 =0 ; i5 <=1; i 5 ++) {
f o r ( i n t i 9 =0 ; i9 <=1; i 9 ++) {

s5 = X[2∗ i 5 + i 9 ] ;
s6 = X[2∗ i 5 + i 9 + 4 ] ;
T2 [2∗ i 9 ] = s5+s6 ;
T2 [2∗ i 9 +1] = s5−s6 ;

}
f o r ( i n t i 8 =0 ; i8 <=1; i 8 ++) {

s7 = D4 [ i 8 ]∗T2 [ i 8 ] ;
s8 = D4 [ i 8 +2]∗T2 [ i 8 + 2 ] ;
T1 [4∗ i 5 + i 8 ] = s7+s8 ;
T1 [4∗ i 5 + i 8 +2] = s7−s8 ;

}
}
f o r ( i n t i 4 = 0 ; i 4 <= 3 ; i 4 ++) {

s3 = D3 [ i 4 ]∗T1 [ i 4 ] ;
s4 = D3 [ i 4 +4]∗T1 [ i 4 + 4 ] ;
Y[ i 4 ] = ( s3+s4 ) ;
Y[ i 4 +4] = ( s3−s4 ) ;

}
}

Fig. 10. Final C code for DFT8 as expanded in (116), unparsed using C99
complex arithmetic. D3[] and D4[] have been initialized with the proper
complex values of ωn

i .

double c h e b d i s t ( double ∗x , double ∗y , i n t n ) {
double r = 0 . 0 ;
f o r ( i n t i =0 ; i<n ; i ++)

r = max ( abs ( x [ i ]−y [ i ] ) , r ) ;
re turn r ;

}

Fig. 11. Final C code for dn∞(., .) as expanded in (117).

capabilities of C compilers we have observed, in particular

when targeting experimental hardware and early prototypes.

The SPIRAL backend compiler also is a valuable stand-alone

tool [182] as it can be used as an interactive and scriptable

backend code generation system.

Unparsing. The final icode needs to be unparsed (pretty-
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# i n c l u d e <s m m i n t r i n . h>
# i n c l u d e < f l o a t . h>
# d e f i n e EPS (DBL MIN+DBL MIN)

m128d c h e b d i s t ( double ∗x , double ∗y , i n t n ) {
m128d r , x i , y i , nxx , mx , mn , a b s i ;

/ / r o u n d i n g mode : round t o i n f i n i t y

unsigned xm = mm getcsr ( ) ;
mm setcsr ( xm & 0 x f f f f 0 0 0 0 | 0 x0000dfc0 ) ;

/ / i n i t i a l i z e r = [ 0 . 0 , 0 . 0 ]

r = mm set1 pd ( 0 . 0 ) ;
f o r ( i n t i =0 ; i<n ; i ++) {

/ / x i = roundup ([−( x [ i ]−EPS ) , x [ i ]+EPS ] )

x i = mm addsub pd ( mm set1 pd ( EPS ) ,
mm set1 pd ( x [ i ] ) ) ;

/ / y i = roundup ([−( y [ i ]−EPS ) , y [ i ]+EPS ]

y i = mm addsub pd ( mm set1 pd ( EPS ) ,
mm set1 pd ( y [ i ] ) ) ;

/ / x i s u b y i = roundup ( x i − y i )

x i s u b y i = mm add pd ( x ,
mm shuff le pd ( y , y , MM SHUFFLE2 ( 0 , 1 ) ) ) ;

/ / a b s i = roundup ( abs ( x i s u b y i ) ) ;

nxx = mm shuff le pd ( xx , xx , MM SHUFFLE2 ( 0 , 1 ) ) ;
mx = mm max pd ( xx , nxx ) ;
mn = mm min pd ( xx , nxx ) ;
a b s i = mm shuff le pd (mn , mx ,

MM SHUFFLE2 ( 1 , 0 ) ) ;
/ / r = roundup ( max ( abs i , r ) )

r = mm shuff le pd ( mm min pd ( a b s i , r ) ,
mm max pd ( a b s i , r ) , MM SHUFFLE2 ( 1 , 0 ) ) ;
}
/ / r e s t o r e r o u n d i n g mode

mm setcsr ( xm ) ;
/ / i n f i n u m supremum s i g n

r = mm xor pd ( mm set pd ( −0.0 , 0 . 0 ) , r ) ;
/ / r e t u r n i n t e r v a l c o n t a i n i n g d i n f ( x [ ] , y [ ] )

re turn r ;
}

Fig. 12. Final C SSE 4.1 code for dn∞(., .) as expanded in (117), implemented
using interval arithmetic. [67]

printed) for the target compiler. Again, the SPIRAL unparsing

system is highly configurable to be easily adaptable to target

compiler idiosyncracies. There is a large variation across

compilers regarding pragmas, hardware-specific language ex-

tensions, implementation level of various C dialects (ANSI C,

C99, etc), support for C++ idioms in C, and built-in functions.

Traditionally, these variations are handled through the C pre-

processor. However, since SPIRAL has a fully programmable

unparsing system, most of these issues are handled in the

unparser, and C preprocessor macros are used sparingly, e.g.,

for productivity and experimental reasons.

As an example, see the code generated from (116) by the

SPIRAL script shown in Figure 9, shown in Figure 10. The

script specifies the kernel DFT8, the breakdown rules (17) and

(18), and C99 complex arithmetic (Intel C++ compiler syntax).

The final C code for (117) is shown in Figure 11. SPIRAL

implements a high performance interval arithmetic backend

that uses Intel’s SSE2 two-way double precision vectors to

encode intervals. The infimum is stored with changed sign, and

the rounding mode is set to round-to-infinity to avoid frequent

reconfiguration of the FPU. Denormal floating point numbers

are treated as zeroes as usual in the Intel SSE high performance

mode [67]. We show the resulting code in Figure 12.

Targeting FPGAs. When targeting FPGAs, SPIRAL can

be configured in two ways: In a first approach, an SPL/OL

program representing the data flow is outputted together with

basic block definitions using icode unparsed in Verilog.

Then a separate Java-based tool chain implemented outside of

SPIRAL is responsible for implementing the pre-shaped data

flow graphs efficiently in Verilog [183], [184], [185], [43],

[44], [45], [46], [47].

In a second approach currently under development [186],

icode is unparsed for high-level synthesis using the OpenCL

language or C/C++ annotations, e.g., as supported by Vivado

HLS. In this case SPIRAL performs lower-level optimiza-

tions using the standard tool pipeline including the Σ-OL

and icode abstraction layers and then relies on third-party

backend tools for the final implementation on the FPGA.

While in this case the FPGA design generation is using

the same infrastructure as software generation, the rules and

hardware abstractions are FPGA-specific instances and icode

is interpreted as a state machine, not as a sequential or parallel

program.

Profiling. The autotuning component of SPIRAL requires

profiling of the generated code. The standard approach is to

time the generated code on the target architecture and use the

execution time as a metric. However, more general profiling

may be required. Across SPIRAL related projects, we have

used measured power and energy, accuracy of the computation,

code size, statistics derived from the generated assembly, and

many other metrics. This is enabled by SPIRAL’s configurable

and extensible profiling system.

Optimization performance. The offline optimization time

for SPIRAL to generate code can range from less than a second

for small code fragments to a day or more of search. The

tuning time depends on the size and type of the problem, the

performance of the backend compiler, potential job submission

systems, and the desired optimization and autotuning level.

The implementation on SPIRAL in the computer algebra

system GAP is not optimized but favors productivity over

performance.

Correctness. The SPIRAL system provides strong correct-

ness guarantees for the generated code. For linear and multi-

linear operators, any internal representation can be converted

to the equivalent matrix that specifies the operation, and the

matrices can be compared. SPIRAL supports exact arithmetic

for a range of special cases that cover signal processing algo-

rithms. For problem sizes for which the matrix representation

is too large to be constructed, the matrix can be constructed

by evaluating the program representation for all basis vectors.

Finally, probabilistic checks that evaluate multiple random

algorithms on random inputs can be used.

For non-linear operators, establishing correctness is a hard

problem. Problem-specific test procedures that check invari-

ants or can compute the output exactly can be used [59]. A

formal approach used for high-assurance code generation is to

show that the final code is derived by a chain of semantics-

preserving rewrites [67]. In this case, it needs to be established

that all rewriting rules are correct, either by formal methods

or probabilistic approaches.

In practice, correctness is achieved without full formal

methods guarantees. During the code generation process



PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE, VOL. 106, NO. 11, NOVEMBER 2018 21

100,000s to millions of rule applications happen, and it is very

rare that a rule is buggy without introducing easily observable

erroneous behavior. Finally, SPIRAL uses unit testing of rules

and automatic recursive counterexample production (SPIRAL

automatically finds the smallest expression that results in an

observed bug) to aid debugging of the rule system. This

is implemented using the full power of the GAP computer

algebra system, and allows for locally applying correctness

checks during rule application to verify that the left-hand side

and right-hand side are equivalent at every step.

D. SPIRAL-based Approach to Small-scale Linear Algebra

So far in this section, we have provided evidence of the

expressiveness of OL and how it could be used to describe

well-defined linear and non-linear mathematical expressions.

However, the point free nature of OL, meaning that input

and output quantities are not explicitly represented within

an expression, yields a more complex and less conventional

representation of linear algebra computations. Consider for

instance the symmetric rank-k update

S = ATA+ S, A ∈ R
k×n, S ∈ R

n×n (123)

where S is a symmetric matrix. In OL, the expression above

would be formulated assuming implicit, linearized input and

output matrices and the information that matrix S and the one

obtained by computing ATA are symmetric would have to be

embedded in the computation rather then being considered a

feature of input and output quantities. In the remainder of this

section, we will introduce LGen, a code generator for small-

scale linear algebra designed after SPIRAL, and we will show

how the approach proposed with this paper is not limited by

the choice of the input mathematical abstraction. Small-scale

linear algebra computations are common in various domains

including computer vision (e.g., stereo vision algorithms),

graphics (e.g., geometric transformations), and control systems

(e.g., optimization algorithms and Kalman filters).

Beyond a point free notation. The LGen code gener-

ator [28], [64] translates basic linear algebra computations

(BLACs) such as (123) into C code, optionally vectorized

with intrinsics. Differently from SPIRAL, the highest level of

abstraction adopts a MATLAB-like notation where a compu-

tation is defined using addition, multiplication, scalar multipli-

cation, and transposition over scalars, vectors, and (possibly

structured) matrices of small, fixed sizes.

LGen is designed after SPIRAL as it generates code using

two intermediate compilation phases. During the first phase,

the input expression is optimized at the mathematical level.

These optimizations include multi-level tiling, loop merging

and exchange, and matrix structure propagation. During the

second phase, the mathematical expression obtained from

the first phase is translated into a C-intermediate represen-

tation where additional code-level optimizations such as loop

unrolling and scalar replacement are applied. Finally, since

different tiling decisions lead to different code versions of the

same computation, LGen uses autotuning to select the fastest

version for the target microarchitecture.

Tiling. LGen allows for multiple levels of tiling. Tiling is

expressed by left- and right-multiplying a matrix by gather

Fig. 13. The five ν-BLACs used to vectorize matrix multiplication. Matrices
are ν × ν and vectors ν × 1 or 1× ν.

matrices as defined in (92). For instance, assuming A is 3×3,

then the top left 2×2 submatrix can be extracted using gather

matrices as

A(0 : 1, 0 : 1) = GAGT , G = ( 1 0 0
0 1 0 ) .

Note that in OL this operation would be equivalent to the

application of G⊗GT to matrix A linearized.

More formally, in LGen we define the gather operator as

g = [f, p] : R
m×n → R

k×ℓ,
A 7→ Ag = A[f, p] = GfAGT

p

= A(f.[0 : k − 1], p.[0 : ℓ− 1]).

where f : Ik → Im and p : Iℓ → In are index mapping

functions and f.a is a pointwise application of function f to

the elements of array a. Similarly, LGen’s input language also

defines the scatter operator as the dual of the gather with the

purpose of inserting submatrices into larger matrices.

Vectorization. If vectorization is enabled, the innermost

level of tiling decomposes an expression into so-called ν-

BLACs, a concept close in spirit to the one of architecture

specific templates discussed in Section III-C. ν-BLACs are

basic operations on ν × ν matrices and vectors of length ν,

where ν is the target SIMD vector length. The four basic

operations define 18 of them [28] and they only need to be

pre-implemented once for a given vector ISA together with

vectorized data access building blocks for handling leftovers

and structured matrices [64]. For example, Figure 13 shows

the five ν-BLACs for matrix multiplication.

Matrix structure representation. The cost of computing

a BLAC can be significantly reduced if the matrices have

structure. For example, multiplying a lower triangular matrix

by an upper triangular one requires only half of the total

amount of instructions necessary to multiply two general

matrices, as shown in Figure 14. Further, the storage scheme

of a structured matrix must be taken into account to ensure

correct access to the data. For example, adding a symmetric

matrix to a general one may require different access patterns

for the two matrices.

LGen uses tools from the polyhedral framework [115] to

mathematically describe every input and output matrix of

an input BLAC, including those produced by intermediate

operations. This information is later used to synthetize the it-

eration space for the entire expression. For instance, Figure 14

shows how the synthetized iteration space for a multiplication

between a lower and an upper triangular matrix (Figure 14(b))

differs from the one obtained when no structural assumptions

on the inputs are made (Figure 14(a)). The approach is flexible

and can be extended to describe a variety of structures.

Small-scale linear algebra programs. Finally, LGen and

the Cl1ck algorithm generator [147], [148] were combined

and extended into SLinGen, a program generator for linear
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Fig. 14. Iteration spaces of a matrix multiplication between a lower and un
upper triangular matrix with redundant zero computations (a) and without
(b). Variables i, j, and k are induction variables and every dot in the two
tridimensional spaces represents a single multiply-add operation required to
compute the whole expression.

algebra applications such as the Kalman filter [65]. SLinGen’s

input can contain a sequence of BLACs and higher level

operations including linear systems solvers and the Cholesky

factorization. Algorithms for computing the latter kind of

operations are automatically synthetized using formal methods

techniques while ensuring their correctness [150]. Similarly to

LGen, SLinGen generates single-source C functions optionally

vectorized for a target ISA.

E. Beyond Software Synthesis

The main focus of the paper so far has been to discuss

the end-to-end pipeline SPIRAL uses to generate and autotune

highly efficient code across a wide range of platforms for a

class of computational kernels. We now discuss applications

of SPIRAL beyond this core capability.

High assurance code generation. Our focus in work

related to the DARPA HACMS program was to leverage

SPIRAL’s correctness guarantees to enable the generation of

high assurance code for vehicles and robots [67]. We cast a

number of self-consistency algorithms based on statistics [187]

and functional redundancy as OL operators and used SPI-

RAL to generate correct-by-construction high performance

implementations for these algorithms. We enabled SPIRAL to

synthesize high performance interval arithmetic using SIMD

vector extensions to provide guarantees for floating point code,

and enabled SPIRAL as a code generation backend for the

KeYmaera hybrid theorem prover [188].

HW/SW co-optimization. We targeted hardware/software

co-optimization and co-synthesis in the DARPA DESA and

PERFECT programs. Since SPIRAL is able to quickly and

automatically produce software for a wide range of target

platforms, this enables us to pursue hardware/software co-

optimization [42]. First, we define a parameterized hardware

template that gives rise to a hardware space. Then we run

nested optimization, where the outer loop varies the hardware

template parameters while the inner loop invokes SPIRAL for

the current instance. A number of metrics can be used (area,

power, performance).

Hardware microcode. In the DARPA PERFECT program

we used SPIRAL to synthesize the microcode to program

the memory controllers of 3D stacked memory [75]. SPIRAL

was used to derive efficient data flows for in-memory data

reorganization, and then to derive the configuration data for

multiple state machines implementing permutation networks

in the base layer of a 3D memory chip.

Backend tool. SPIRAL can be used as a low-level backend

code generation tool, kernel generator, and iterative compiler.

The lower layers of the SPIRAL infrastructure serve as a

stand-alone tool that enables a wide range of code generation

and program transformation techniques in an interactive and

scriptable environment. We have demonstrated the use of the

backend as a kernel generator for polyhedral compiler infras-

tructures [73], [74] and as a code generator for kernels used

in power grid Monte Carlo simulations [189] and Boolean

satisfiability [190].

V. RESULTS

We now discuss a selection of representative results. We

organize the results along three dimensions:

• Machine size: We show SPIRAL’s capability to generate

efficient code from small, embedded machines through

desktop/server class machines up to the largest HPC/su-

percomputing systems.

• Machine type: We show SPIRAL’s capability to target

CPUs, GPUs, manycores, and FPGAs.

• Kernel and application type: We show SPIRAL’s capabil-

ity to generate code for FFTs, material science kernels,

image reconstruction, and software defined radio.

Unless noted otherwise, FFT performance results are given

in Pseudo Gflop/s, where an operation count of 5n log2 n is

assumed for DFTn. This is the standard metric used by the

community [119].

A. Machine Size

We show performance results for the small/embedded form

factor (ARM CPU), desktop/server-class form factor (single

Intel CPU), and large scale supercomputer (128k cores on

ANL’s BlueGene/Q).

Embedded CPU. In the embedded form factor we present

results on the ARM Juno Board R1 implementing ARM’s

big.LITTLE architecture. We run the code on a single big

1.1 GHz ARM A57 core. Figure 15 shows performance results

for small 2-power complex FFT kernels, and compares our

results to FFTW. SPIRAL’s FFT kernels reach up to 2 Gflop/s

and are slightly faster than FFTW.

Desktop/server CPU. Figure 16 shows performance of

large 3D FFTs on an Intel Kaby Lake 7700K single socket

systems [30]. We compare our implementation to MKL 2017.0

and FFTW 3.3.6. All libraries are compiled with OpenMP,

AVX and SSE enabled. On the Intel architectures, we use

MKL_DYNAMIC, MKL_NUM_THREADS and KMP_AFFINITY

to control the number of threads and the placement of the

threads within the MKL library. We compiled all code with
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Fig. 15. FFT kernels (codelets) on 1.1 GHz ARM A57.
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Fig. 16. Large FFT on Intel [30]. SPIRAL implements a scratchpad-style
double-buffering scheme for better memory performance.

the Intel C/C++ compiler version 2017.0 with the -O3 flag.

We show performance for 3D FFTs of size 5123 to 1, 0243,

which have a memory requirement of 32 GB to 64 GB. Our

implementation runs at 49 Gflop/s to 56 Gflop/s and achieves

80% to 90% of practical peak (the limit imposed by memory

bandwidth), whereas MKL and FFTW achieve at most 47%.

Our approach uses the bandwidth and the cache hierarchy

more efficiently and therefore outperforms MKL and FFTW

by almost 3x.

HPC/supercomputing. To show large scale results, we run

the HPCC Global FFT benchmark on ANL’s BlueGene/P

supercomputer [50]. We used BlueGene/P configurations from

one node card (32 quadcore nodes or 128 cores) up to 32

racks (32k quadcore nodes or 128k cores), with one process

per node. We used the IBM UPC and IBM’s XL C compiler

with options -O3 -qarch=440d. Figure 17 summarizes the

performance results. We run a UPC+ESSL baseline benchmark

on the IBM T.J. Watson BlueGene/P system for up to eight

racks. We run our SPIRAL-generated library from one node

card to 2 racks on the T.J. Watson machine and on ANL’s

“Intrepid” from 4 racks to 32 racks. The SPIRAL-generated

Global FFT generally outperforms the UPC+ESSL baseline

 1

 10

 100

 1000

 10000

1NC 4NC 16NC 2R 4R 8R 16R 32R

BlueGene/P node cards and racks

HPC Challenge Global FFT on BlueGene/P
[G�op/s]

UPC coalesced transpose

Spiral-generated

theoretical peak

6.4 T�op/s

Fig. 17. FFT results on the BlueGene/P supercomputer “Intrepid” at Argonne
National Laboratory [50]. 32 racks (32R) are 128k cores.

which shows that 1) SPIRAL’s automatically generated node

libraries offer performance competitive with ESSL, and 2) the

memory traffic savings obtained by merging data scrambling

with the node-libraries improves performance. Finally, the

SPIRAL-generated Global FFT reaches 6.4 Tflop/s on 32

racks of “Intrepid”. The winning 2008 ANL HPC Challenge

Class I [191] submission reported 5 Tflop/s Global FFT

performance on the same machine. Thus, the combination of

algorithmic optimization and library generation improved the

Global FFT on “Intrepid” by 1.4 Tflop/s or 28%.

B. Machine Type

Next we show results across machine types. We show

representative examples for CPUs, accelerators, and FPGAs.

Multicore CPU. In the previous section we showed CPU

results from the embedded form factor to server class and

HPC multicore CPUs. The results span multiple architectures

(ARM, POWER, and x86) and multicore parallelism (single

core to 16 cores).

Manycore/GPU. We show performance results for the

NVIDIA 480GTX Fermi architecture with 480 cores grouped

into 15 multiprocessors, 1.5 GB of GPU DRAM main memory

and memory peak bandwidth of 177 GB/s. Each core’s clock

is 1.4 GHz, and each core can perform 1 fused multiply-

add operation per cycle, leading to 1.3 TFlop/s peak per-

formance [36]. Figure 18 shows performance of batched 1D

power of two single precision floating point FFTs of the

corresponding size. SPIRAL’s performance is comparable to

the well-optimized batch FFT library function of CUFFT that

is part of CUDA 4.0 for most of the points in the plot.

FPGA. We show a summary of FPGA results obtained

on Xilinx Virtex-6 XC6VLX760 from [47], [45], [179]. We

utilize SPIRAL’s framework together with a Verilog backend

written in Java that takes as input a hardware formula and

outputs synthesizable register-transfer level Verilog. All FPGA

synthesis is performed using Xilinx ISE version 12.0, and the
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Fig. 18. Batch 1D FFT on NVIDIA 480GTX Fermi GPU: SPIRAL vs. CUDA
4.0 CUFFT [36].
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Fig. 19. Streaming 1D DFT256 on Xilinx Virtex-6 XC6VLX760 FPGA:
SPIRAL vs. Xilinx LogiCore IP library 12.0 [47].

area and timing data shown in the results are extracted after

the final place and route are complete.

We evaluate trade-offs and compare our FPGA FFT results

with implementations from the Xilinx LogiCore IP library.

Figure 19 shows generated designs for DFT256, fixed point,

FPGA, throughput versus slices. The Pareto optimal designs

are connected with a line. Various implementation choices

(radix, reuse type) are coded using shading and bullet shape.

Data labels in the plot indicate the number of block RAMs

and DSP48E1 slices required. SPIRAL generated designs are

competitive with Xilinx LogiCore for design points supported

by LogiCore, but span a much larger design space.

C. Kernel and Application Type

Next we show results for a number of applications and

kernel types. We start with FFTs, extend to FFT-based signal

processing and computational science kernels, and conclude

with a software defined radio (SDR) kernel.
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Fig. 20. ONETEP 2×2×2 upsampling kernel with small odd-sized 3D
batch FFTs on 3.5 GHz Intel Haswell 4770K: SPIRAL vs. FFTW and Intel
MKL [63].

FFTs. FFT results have already been presented extensively

in the previous section. We show results at a range of sizes

from kernel to large 1D and multi-dimensional sizes. SPIRAL

supports a wide range of FFT corner cases, some of which

will be discussed as building blocks below.

Upsampling/convolutions. Upsampling of a multi-

dimensional data-set is an operation with wide application

in image processing and quantum mechanical calculations

using density functional theory. For small upsampling factors

as seen in the quantum chemistry code ONETEP [192], a

time-shift based implementation that shifts samples by a

fraction of the original grid spacing to fill in the intermediate

values using a frequency domain Fourier property can be a

good choice [193]. This kernel requires multiple stages of

3D FFT-based convolution and interleaving. Figure 20 shows

the performance of the central 2×2×2 upsampling kernel on

a 3.5 GHz Intel Haswell 4770K. Note that the original data

cube is small (edge length between 7 to 119), odd, and may

be rectangular. These unusual requirements render standard

FFT libraries (Intel MKL and FFTW) suboptimal and allow

SPIRAL-generated end-to-end kernels to be 3 times faster.

Image reconstruction. Polar Formatting Synthetic Aperture

Radar (SAR) [176] is an FFT-based image reconstruction algo-

rithm. We generated SAR kernels for a 4k×4k (16 Megapixel)

and 10k×10k (100 Megapixel) following [194] with SPIRAL.

Both scenarios have longer slant ranges (24 km and 200 km re-

spectively), fine resolution (.1 m and .3 m) and small coherent

integration angles (approx. 4 ◦ and 7 ◦). In Figure 21, we show

performance results on the Intel Quad Core CPUs: the 3.0 GHz

5160, the 3.0 GHz X9560, and the 2.66 GHz Core i7 920,

using Intel’s C compiler 11.0.074 with -O3. The code uses the

SSE2 instruction set and the POSIX threading interface. The

SPIRAL-generated SAR kernels achieve between 23 Gflop/s

and 44 Gflop/s. The fastest measurements are comparable to

the performance obtained by [194] on a Cell BE server blade.
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Fig. 21. Performance of SPIRAL-generated polar formatting SAR image
formation on 3.0 GHz Intel 5160, the 3.0 GHz Intel X9560, and the 2.66 GHz
Intel Core i7 920 for 16 and 100 megapixel [57].
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Fig. 22. Software Viterbi decoder on a 3 GHz Intel Core 2 Extreme X9650
for a range of codes: SPIRAL vs. Karn’s library [59].

Software defined radio (SDR). SPIRAL demonstrated the

end-to-end generation of physical layer software required by

SDR [62], and the Viterbi decoder is a key component that

needs to be well-optimized and is the focus of our evaluation

here. The Viterbi algorithm is a maximum likelihood sequence

decoder introduced by Andrew Viterbi in 1973 [195], and finds

wide usage in communications, speech recognition, and statis-

tical parsing. As a decoder for convolutional codes, it is used in

a broad range of everyday applications and telecommunication

standards including wireless communication (e.g., cell phones

and satellites) and high-definition television [196].

Figure 22 shows SPIRAL-generated Viterbi decoders com-

pared to state-of-the-art hand-tuned decoders by Karn [197].

We use SPIRAL to generate the forward pass of Viterbi

decoders and use a generic infrastructure to implement the

rest of the algorithm [59]. We show performance results

on a 3 GHz Intel Core 2 Extreme X9650. All code is

compiled using the Intel C/C++ Compiler Version 10.1

with performance flags -fast -fomit-frame-pointer

-fno-alias. We see that SPIRAL-generated Viterbi de-

coders are competitive with Karn’s implementation, and we
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Fig. 23. End-to-end stencil performance on a 3.4 GHz Intel Core i7-2600K
for a range of stencil kernels: PLuTo/PTile [100] together with the SPIRAL

backend vs. PTile plus Intel C/C++ compiler. [73].
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Fig. 24. Performance of: (a) a rank-4 update generated with LGen [64] vs.
MKL, Intel C compiler (icc) compiled code, and LGen disabling structure
support; (b) a single iteration of the Kalman filter generated with SLinGen [65]
vs. MKL, Eigen, and Intel C compiler (icc) compiled code. Code tested on
an Intel Core i7-2600K (Sandy Bridge microarchitecture).

provide some kernels that are missing in Karn’s library.

Performance results of SPIRAL-based approaches. In

Section IV-D we have discussed the SPIRAL-related LGen

compiler for small-scale linear algebra computations and its

extension into the SLinGen program generator for small-scale

linear algebra applications. In Figure 24 we show performance

results for code generated using both systems. All results are

obtained running on an Intel Sandy Bridge (AVX, 32 kB L1-

D cache, 256 kB L2 cache) with Ubuntu 14.04 (Linux 3.13).

All code is in double precision and the working set fits in the

first two levels of cache. Figure 24(a) shows performance for

a rank-4 update (S = AAT + S, A ∈ R
n×4, S ∈ R

n×n and

symmetric). We compare LGen-generated code with: 1) Intel

MKL 11.2, 2) straightforward code compiled with Intel C/C++

compiler 15, and 3) code generated by LGen without struc-

ture support. The straightforward code is scalar, handwritten,

loop-based code with hardcoded sizes of the matrices. For

this we use flags -O3 -xHost -fargument-noalias

-fno-alias -no-ipo -no-ip. LGen is between 1.6x

and 2.5x faster than MKL, while in general 1.6x faster than

Intel C/C++ compiler compiled code.
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Figure 24(b) shows performance for a single iteration of

the Kalman filter with state size varying between 4 and 52

(linear algebra program provided in [65]). In this case we

compare SLinGen generated code against 1) straightforward

code compiled the Intel C/C++ compiler 16 and library-

based implementations using 2) MKL 11.3 and 3) Eigen

v3.3.4 [153]. In Eigen we used fixed-size Map interfaces to

existing arrays, no-alias assignments, in-place computations of

solvers, and enabled AVX code generation. SLinGen generates

code which is on average 1.4x, 3x, and 4x faster than MKL,

Eigen, and the Intel C/C++ compiler.

SPIRAL as backend tool. Lastly, we demonstrate that

SPIRAL’s backend compiler is a valuable stand-alone code

generation tool. We use SPIRAL’s infrastructure from icode

downwards as a code generator for stencil kernels in the

context of the polyhedral PTile system [73]. Figure 23 shows

the performance of the end-to-end stencil code on a 3.4 GHz

Intel Core i7-2600K by PLuTo/PTile [100] together with

the SPIRAL backend vs. the kernels generated by PTile and

directly sent to the C compiler. We see that the utilization of

SPIRAL as kernel generator leads to substantial performance

improvement (typically 2 to 3 times) across a range of stencil

kernels.

VI. CURRENT WORK

The SPIRAL system is available as open source software

under a permissive license from www.spiral.net. We now

discuss current and experimental work aimed at extending

SPIRAL’s capabilities.

Targeting of new architectures. SPIRAL is designed to

be quickly retargeted to new and novel architectures. We are

continually looking for new instruction sets and new processor

generations to add to the library of supported platforms. This

is done at various stages of the development cycle, depending

on the level of access the SPIRAL team has: pre-silicon with

functional or cycle-accurate simulators, early prototypes with

limited compiler and OS support, or just-released production

models.

FPGAs. Targeting FPGAs for the full suite of kernels/

applications supported by SPIRAL is an open problem and

a target of current research. This builds on previous work

targeting FFTs [44] and aims at current generation FPGAs

with OpenCL and HLS (high level synthesis) support [186].

Cross library-call optimization. We are extending SPI-

RAL’s capabilities beyond the current set of applications

where SPIRAL can optimize across the traditional boundaries

of library calls. We have demonstrated this for convolution

operations [63] and image processing kernels that combine

spectral and numerical linear algebra functionality [198] and

are developing this capability further in the ExaScale FFT

system FFTX [87]

SPIRAL as JIT. This paper focuses on code generation for

fixed-size kernels (the size is known at code synthesis time). A

branch of SPIRAL called Autolib [18] is able to automatically

generate full autotuning libraries for signal processing kernels

and matrix multiplication [199]. We are currently developing

a just-in-time (JIT) code synthesis approach for SPIRAL that

aims at bringing this beyond linear signal processing kernels

and matrix multiplication.

Matlab frontend. To ease the adoption of SPIRAL and

its mathematical notation to describe algorithms (OL and Σ-

OL as used in this paper), we have developed a prototype

Matlab front-end that exposes a subset of OL as Matlab tensors

and operations on tensors (map, rotate, fold, reshape). This is

ongoing research that builds on the idea of hierarchically tiled

arrays (HTA) [84].

Graph algorithms. We are currently extending SPIRAL

to support graph algorithms. The approach to view graph

algorithms as linear algebra operations [174] and the resulting

GraphBLAS standard [200] enables us to apply SPIRAL’s

formal framework. The key insight is that the function param-

eter in OL’s gather operators can be used to abstract sparse

matrix data formats. This combined with SPIRAL’s general

size support opens the way to abstract graph algorithms [201].

Formal correctness proofs. With OL and Σ-OL SPIRAL

defines a mathematical framework that provides mathematical

correctness guarantees and a variety of testing approaches.

SPIRAL is implemented in the computer algebra system GAP,

which enables symbolic arithmetic, and SPIRAL supports fast

interval arithmetic. Together, this allows us to provide strong

end-to-end correctness guarantees for SPIRAL-synthesized

code [67], [76]. We are currently working on developing a

formal methods framework in the proof assistant Coq [202]

that proves that the synthesized code is a refinement of the

original specification [203], [204].

VII. CONCLUSION

In this paper, we presented an overview of the SPIRAL

system, a sampling of results, and an indication of current and

future directions. This paper summarizes research conducted

over the last 13 years and builds on the previous overview

paper [1]. Due to space limitations, we leave out details

that can be found in the references. The paper focuses on

a coherent end-to-end discussion of SPIRAL’s formal system

and the concepts used. For details on how specific algorithms

and hardware are handled in SPIRAL, we refer the reader to

the literature covering the specifics.

The key message of this paper (and the SPIRAL system

and approach in general) is that it is possible to design and

build a system that provides performance portability across a

wide range of (past, current, and future) architectures for a

set of algorithms. The system is necessarily complex but very

powerful. This paper should give interested readers who want

to try the SPIRAL system for themselves a starting point.
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[14] M. Püschel, B. Singer, M. Veloso, and J. M. F. Moura, “Fast automatic

generation of DSP algorithms,” in Proc. Int’l Conf. Computational

Science (ICCS), ser. LNCS, vol. 2073. Springer, 2001, pp. 97–106.
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J. M. F. Moura, M. Püschel, and J. Johnson, “Generating FPGA Ac-
celerated DFT Libraries,” in IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM), 2007.
[43] P. A. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Formal datapath
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