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An Overview of Robust Subspace Recovery
Gilad Lerman and Tyler Maunu

Abstract—This paper will serve as an introduction to the
body of work on robust subspace recovery. Robust subspace
recovery involves finding an underlying low-dimensional subspace
in a dataset that is possibly corrupted with outliers. While
this problem is easy to state, it has been difficult to develop
optimal algorithms due to its underlying nonconvexity. This
work emphasizes advantages and disadvantages of proposed
approaches and unsolved problems in the area.

Index Terms—dimension reduction, subspace recovery, robust-
ness, big data, unsupervised learning

I. INTRODUCTION: WHAT IS ROBUST SUBSPACE

RECOVERY?

The purpose of this work is to survey and discuss the

existing literature related to the problem of robust subspace

recovery (RSR). By “robust”, we mean that the methods

we consider should not be too sensitive to corruptions in a

dataset. These ideas trace their roots back quite far in the

statistical literature [44, 71]. The basic motivation behind

the development of robust procedures is that real data often

does not subscribe to the clean assumptions required by

many classical statistical procedures. Quoting Huber [44],

“robustness signifies insensitivity to small deviations from the

assumptions”. The body of work considered in this survey

tackles the question of robustness in a certain challenging and

nonconvex statistical problem.

RSR involves finding a low-dimensional subspace structure

in a corrupted, potentially high-dimensional dataset. Since the

set of all subspaces of a fixed dimension is nonconvex, the

RSR problem itself is inherently nonconvex. This has made

the problem challenging to solve and has, in part, led to the

variety of works outlined here.

At this point, it is essential that we clearly specify the

problem, since there are many works in related but different

areas. Indeed, the literature is confusing to navigate because

this problem has also been coined robust principal component

analysis (RPCA). As a classical statistical method, principal

component analysis (PCA) attempts to model data by a sub-

space that captures the directions of maximum variance, but

it is notoriously sensitive to corrupted data. Many researchers

have proposed robust estimators, but the estimators mostly fall

into two camps: outlier-robust methods and sparse-corruption

methods. We hope to make this distinction clear, so as to avoid

confusion between the two competing bodies of literature. The

RSR problem is related to the former, while it has become

common to use RPCA to refer to the latter.

For this discussion, assume we are given a dataset

X = {x1, . . . ,xN}, with corresponding data matrix X =
[x1, . . . ,xN ]. In the literature, RPCA or sparse-corruption

methods have focused on decomposition of a matrix X into

low-rank and sparse components, X = L+S, where L is low-

rank and S is sparse (elementwise) [14, 124]. Here, the goal
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Fig. 1: Demonstration of an inlier-outlier dataset in R
2 with an

underlying one-dimensional subspace (the y-axis). The inliers

are denoted by “x” and the outliers are denoted by “o”.

is to recover the full low rank matrix L from the corrupted

observations. A comprehensive review of this topic is given

in [105].

On the other hand, the best way of thinking about RSR

datasets is through partitioning X into inlier and outlier

components, X = Xin ∪Xout, where the inliers lie on or near

a low-dimensional subspace, and the outliers are somehow

distributed in the ambient space. We call such a dataset

an inlier-outlier dataset. For clarity and so the reader may

visualize the case we are talking about, we have displayed an

artificial inlier-outlier dataset in Figure 1. The RSR problem

asks to recover the underlying low-dimensional subspace. This

problem is sometimes written as X = L + C, where the

columns of L span the underlying subspace and the non-

zero columns of C correspond to outliers. Similar to the

formulations of RPCA, some works have enforced column-

sparsity of C. However, calling C column-sparse in general

is misleading, since many works on RSR consider very high

percentages of outliers, in which case most of the columns of

C are non-zero. This notation is also somewhat problematic,

since the actual goal of RSR is to recover the underlying low-

dimensional subspace, rather than the full low-rank matrix L.

Estimation of the subspace itself gives a more flexible output,

while there is some freedom in choosing low-rank matrices L

and corruption matrices C corresponding to a given subspace.

It is also important to note that the second case (column-

sparse-corruption) is not just a special case of the first

(elementwise-sparse-corruption). First of all, as mentioned

above, many works on outlier-robust methods have considered

cases with high percentages of outliers and, in some cases,

have considered models where algorithms can tolerate arbi-
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trary percentages of outliers. In this case, the corruption matrix

can become quite dense. Second of all, the theoretical results

for most sparse-corruption based methods have assumed that

the corruptions are uniformly distributed across the elements

of the data matrix. A matrix with column-sparse corruptions

would have positions that are highly correlated and thus none

of the current theoretical results for RPCA apply to RSR.

A. Roadmap

Here we briefly give an overview of the structure of this

survey paper. We first give the basic formulations and algorith-

mic approaches for robust subspace recovery in §II. Then, in

§III, we discuss and compare the various recovery guarantees

for RSR algorithms, and we include a detailed discussion

on well-defined data models. We display the computational

complexity and memory requirements for the competing RSR

algorithms in §IV. Empirical comparisons of the various RSR

algorithms are discussed in §V, where we consider how one

should measure the performance of an RSR algorithm, give

comprehensive comparisons using various simulated datasets,

discuss experiments that have been done on real data, and

propose the creation of a substantial database for testing

the applicability of RSR algorithms. The influence of RSR

methods on other areas is discussed in §VI. Finally, in §VII,

we finish with an outline of what remains to be done for RSR

algorithms, and where we believe the field should go next.

B. Notation

In general, bold capital letters denote matrices and bold

lower case letters denote vectors. For two sets A and B,

A \ B denotes the relative complement of B in A. The

(D − 1)-dimensional unit sphere in R
D is denoted by SD−1.

The Grassmannian G(D, d) is the set of d-dimensional linear

subspaces in R
D, which we also refer to as d-subspaces. For a

subspace L ∈ G(D, d), its orthogonal complement is denoted

by L⊥ ∈ G(D,D − d). The matrix Id denotes the d × d
identity matrix, and, where it is not ambiguous, we just write

I . The set of semi-orthogonal matrices O(D, d) is defined as

O(D, d) = {U ∈ R
D×d : UTU = Id}. The norm ‖·‖ is used

to refer to the Euclidean norm, and #(·) denotes the number

of elements in a set. The matrix PL denotes the orthoprojector

onto the subspace L, while QL is the orthoprojector onto

L⊥: QL = I − PL. Throughout the paper, we assume an

inliers-oultiers dataset X = Xin ∪ Xout with N points and

define Nin = #(Xin) and Nout = #(Xout) = N − Nin.

As mentioned earlier, we denote the data points of X by

x1, . . . ,xN ∈ R
D and their corresponding data matrix by

X = [x1, . . . ,xN ] ∈ RD×N . The data matrices for Xin and

Xout are X in ∈ R
D×Nin and Xout ∈ R

D×Nout , respectively.

We use “w.h.p.” to denote “with high probability”, which refers

to probabilities that have orders 1−O(N−a), for some absolute

constant a > 0. Similarly, we use “w.o.p.” to denote “with

overwhelming probability”, which refers to probabilities that

scale at least like 1 − O(e−bNa

), for an absolute constant

a > 0, and a constant b > 0 that is independent of N , but

may depend on D, d, and the fraction of outliers. In many

of the nonconvex optimization problems considered here, the

minimizer or maximizer may not be unique in general. Thus,

we write “∈ argmax” or “∈ argmin” to denote that the

estimator is contained in the set of maximizers of minimizers,

respectively.

II. BASIC FORMULATIONS FOR ROBUST SUBSPACE

RECOVERY

In this section, we hope to motivate a few basic strategies

for subspace recovery in order to give a better understanding

of the problem. For the rest of this survey, we assume a linear

subspace setting. That is, the subspace on or around which

the inliers lie is linear. Here, we have an inlier-outlier data

matrix, X ∈ R
D×N , and we wish to recover a linear subspace

L ∈ G(D, d). We may interchangeably search for a matrix

U ∈ O(D, d) whose columns span L ∈ G(D, d). The case of

affine subspaces is discussed in §VII. After briefly reviewing

PCA in §II-A and discussing the difficulties of developing an

outlier-robust version of PCA in §II-B, we discuss the various

approaches of RSR algorithms in the following categories

• §II-C Projection Pursuit

• §II-D Least Absolute Deviations

• §II-E L1-PCA

• §II-F Robust Covariances

• §II-G Other Energy Minimizers

• §II-H Filtering Outliers

• §II-I Exhaustive Subspace Search

At last, in §II-J we discuss some related parallel works to RSR.

A. Review of Subspace Modeling by PCA

Classically, subspace modeling has been formulated using

principal component analysis (PCA), which finds the orthog-

onal directions of maximum variance. Using the notation in

§I-B, the PCA d-subspace of the dataset {xi}Ni=1 ⊂ R
D is

defined as

LPCA ∈ argmaxL∈G(D,d)

N
∑

i=1

‖PLxi‖2. (1)

This subspace has a direct and simple numerical solution.

Indeed, it is the span of the top d eigenvectors of the scaled

sample covariance, XXT , or equivalently, the top d left

singular vectors of X . This solution is unique when the dth

and (d+ 1)st eigenvalues of XXT are not equal. Otherwise,

all d-subspaces of a larger subspace of R
D are the global

minimizers, and there are no other local minimizers. The PCA

minimization is very nice compared to many other nonconvex

optimization formulations due to this direct solution.

The equivalent formulation for this problem over O(D, d)
is

UPCA ∈ argmaxU∈O(D,d)

N
∑

i=1

‖UUTxi‖2. (2)

Another equivalent formulation of (1) immediately follows

from the identity ‖xi‖2 = ‖PLxi‖2 + ‖QLxi‖2:

LPCA ∈ argminL∈G(D,d)

N
∑

i=1

‖QLxi‖2. (3)
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This formulation can be interpreted as minimizing the variance

orthogonal to a subspace. In simple geometric terms, it min-

imizes the sum of squared orthogonal distances between the

data points and the subspace L. Indeed, the function ‖QLxi‖
in (3) is just the orthogonal distance between the point, xi,

and the subspace L. Notice that the choice of the squared

Euclidean norm can be motivated by maximum likelihood

estimation of the PCA subspace under a Gaussian generative

model, analogous to the least squares estimator in ordinary

least squares regression.

B. Difficulties of Developing Outlier-Robust PCA

Beyond PCA, which has a direct solution, the problem of

robustly estimating a subspace becomes hard. Indeed, issues

range from the proper definition of a robust estimator to the

actual calculation of these estimators.

As an example, consider the following program to robustly

find an underlying subspace. In a noiseless inlier-outlier

dataset, one may replace the least squares formulation of PCA

in (3) with the following ℓ0-type formulation:

L̂ ∈ argminL∈G(D,d)#(X \ L). (4)

In the case of noisy inliers, one may try to find

L̂ ∈ argminL∈G(D,d)#{x ∈ X : ‖QLx‖ > ǫ}, (5)

where ǫ > 0 is somehow tied to the magnitude of the noise.

There is no easy way of even approximating the solution to (4)

or (5) in general. Further, when real data is noisy, there is no

obvious way to choose the parameter ǫ in (5). As we will

discuss later, relaxing (4) to an ℓ1 formulation still results in

an NP-hard problem. This stands in contrast to the ℓ0 to ℓ1
relaxation in settings like regression or compressed sensing,

where one gets a convex program that can be solved using

a variety of methods. Also, the solutions of (4) and (5) may

not be unique, whereas our initial formulation of the RSR

problem assumes a unique underlying subspace. This issue,

which is evident in non-convex programs for RSR, will be

later addressed in §III-A.

It is also unclear that the formulations in (4) and (5) are

the most natural ones. Indeed, in real situations, data is quite

messy and never lies exactly on a subspace, and so one must

consider (5) in general. However, there are various scenarios

where (5) may not give a useful estimate. For example, (5)

may not perform well when the noise is not uniform around

the subspace or when the outliers lie around a union of nearby

subspaces and ǫ is overestimated, as we demonstrate later in

Figure 2e.

C. Projection Pursuit

A body of works on robust subspace recovery includes

projection pursuit based methods [1, 18, 34, 44, 51, 57, 70, 74],

which can be motivated in the following way. One can attempt

to find a direction (component) maximizing a robust scale

function ρ : RN → [0,∞) with respect to the data as follows:

v1 ∈ argmaxv∈SD−1ρ(vTX). (6)

One typically finds all d components in a sequential manner,

which we explain after discussing the notion of a robust scale

function and attempts to solve (6).

When using the non-robust scale function ρ(y) = ‖y‖22, v1

is the top principal component, which is also expressed by (2)

when d = 1. A robust version of the top principal component

can be developed by choosing a proper scale function, such

as a trimmed variance, ρ(y) = ‖y‖1, or a Huber-type scale

function. When d = 1, using ρ(y) = ‖y‖1 results in the

maximization variants of both least absolute deviations and

L1-PCA, which will be presented later in (12) and (26) respec-

tively. One can attempt to optimize the nonconvex objective

(6) in many ways. In general, exhaustively searching for this

maximizer results in a non-polynomial time algorithm. Instead,

most algorithms resort to finding a local maximum of (6) or

some sort of approximate global maximum. Past works have

used iterative reweighting schemes [70], bit-flipping [51], and

convex relaxation [74].

One can estimate a set of components in a sequential manner

in the following way. After finding v1 by (6), each sequential

component vj , 1 < j ≤ d, is found by solving the same

problem with the added constraint of orthogonality with the

previously found vectors v1, . . . ,vj−1. That is, vj is found as

vj ∈ argmax
v∈SD−1,v⊥v1,...,vj−1

ρ(vTX). (7)

Note that this is equivalent to solving (6) after the columns

of X are projected onto the orthogonal complement of

Sp(v1, . . . ,vi−1). One can also try to find a maximizer of

the joint energy
∑

j ρ(v
T
j X) such that the set of components,

vj ∈ SD−1, j = 1, . . . , d, are pairwise orthogonal [74].

McCoy and Tropp [74] develop the Maximum Mean Abso-

lute Deviation Rounding (MDR) algorithm, which finds an

approximate global maximizer for the joint problem

argmax
v1,...,vd∈SD−1

vj⊥vk,j 6=k

d
∑

j=1

‖vT
j X‖1. (8)

We note that (8) is also known as the maximization variant or

L1-PCA, which we discuss further in §II-E.

D. Least Absolute Deviations

A popular approach to RSR is to replace the least squares

formulation in (3) with least absolute deviations:

L̂ ∈ argminL∈G(D,d)

N
∑

i=1

‖QLxi‖. (9)

This problem has been considered for many reasons, such as its

nice interpretation as a geometric median subspace. Indeed, the

minimizer of (9) can heuristically be motivated by the geomet-

ric median, which solves the least absolute deviations analog

for estimating the center of a dataset [65]. Despite being an

appealing formulation, (9) is NP-hard to even approximately

minimize to an error of order Ω(1/poly(D)) [19].

One of the attractive features of using the least abso-

lute deviations formulation is that it is rotationally invariant

with respect to choice of basis [24]. We clarify this notion
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of invariance as follows. A subspace in G(D, d) can be

represented by an orthonormal system of vectors spanning

this subspace. The latter vectors can be identified with the

columns of an element of O(D, d). Right multiplication of

this element in O(D, d) by an element of O(d, d) results

in another semi-orthogonal matrix whose columns still span

the same subspace. Therefore, G(D, d) is identified with

equivalence classes of O(D, d), and the equivalence relation

is obtained by the right action of O(d, d). The cost in (9) is

the same for any choice of coordinates within an equivalence

class. Indeed, if L = Sp(U1) = Sp(U2) for two different

matrices U1,U2 ∈ O(D, d), where U1 = U2R for some

R ∈ O(d, d), then

N
∑

i=1

‖QLxi‖ =

N
∑

i=1

‖(I −U1U
T
1 )xi‖ (10)

=

N
∑

i=1

‖(I −U2U
T
2 )xi‖.

This rotational invariance is an essential feature of estimation

over the Grassmannian, and not all problem formulations have

this (see, e.g., the later formulation for L1-PCA in (26), which

is not rotationally invariant).

Some motivation for this formulation of RSR can also come

from relaxing an ℓ0 problem to an ℓ1 problem, mirroring ideas

in compressed sensing. This involes rewriting the function

#(·) in (4) as the ℓ0-norm of the vector of distances between

the data points and a subspace. One can then relax the ℓ0-norm

to an ℓ1-norm and arrive at (9).

A recent work that was motivated by the sparse formulation

in (4) was originally discussed by [96] and further analyzed

by Tsakiris and Vidal [103]. However, their formulation is

really just least absolute deviations in disguise. Indeed, they

iteratively try to find a hyperplane that approximately contains

as many points as possible by solving for its normal vector,

b, as follows:

min
b∈SD−1

‖XT b‖1. (11)

We note that this is equivalent to (9) with d = D− 1 because

|xT
i b| = ‖QSp(b)⊥xi‖2, where Sp(b)⊥ ∈ G(D,D − 1).

We observe that a “least absolute deviation” formulation

of (1) is

L̂ ∈ argmaxL∈G(D,d)

N
∑

i=1

‖PLxi‖. (12)

Even though the solutions of (9) and (12) may not necessarily

be the same, many of the methods developed for (9) can be

adapted to (12). When d = 1, the projection pursuit procedure

in (6) with ρ(y) = ‖y‖1 coincides with (12). An approximate

polynomial-time solution of (12) for any fixed d, within a large

absolute factor, was suggested in [76].

We claim that the least absolute deviations formulation

is very amenable to the use of iteratively reweighted least

squares (IRLS). It is easiest to explain this claim with the

following straightforward argument of Lerman and Maunu

[53] for approximating (9) (this can also be adapted to (12)).

They suggest the iterative procedure

Lk+1 ∈ argminL∈G(D,d)

N
∑

i=1

wk
i ‖QLxi‖2, (13)

where wk
i = 1/‖QLkxi‖. The formulation (13) is a weighted

PCA problem, which has a direct solution via the SVD of

the matrix whose columns are {
√

wk
i xi}Ni=1. Other IRLS

approaches for the least absolute deviations problem appear

in [56, 119].

Many methods have been developed to approximate the so-

lution of (9). We distinguish below between convex relaxations

and direct nonconvex strategies.

1) Convex Relaxations: The first relaxation of the least ab-

solute deviations problem was concurrently considered by [74]

and [111]. These works propose the following optimization

problem for noiseless RSR

min
L,C∈RD×N

‖L‖∗ + λ‖C‖1,2, s.t. L+C = X. (14)

Here, ‖ · ‖∗ denotes the nuclear norm of a matrix and ‖ · ‖1,2
denotes the sum of the column norms of a matrix. The reason

why (14) relaxes (9) is discussed in the next paragraph. For

the noisy case, they consider the problem

min
L,C∈RD×N

‖L‖∗+λ‖C‖1,2, s.t. ‖X−(L+C)‖F ≤ ǫ, (15)

where ǫ is an estimated small noise level. In both algorithms,

the parameter λ is chosen to be 3/(7
√
Nout) [111]. Since Nout

is not known, one must guess an upper bound on the number

of outliers. In practice, with sufficiently small percentages of

outliers, the authors argue that one can overestimate Nout and

still have good performance, because the algorithm will first

remove all outliers and then remove some inliers. The resulting

set of inliers can then still recover the correct column space

of L. We have found that choosing λ = 3/(7
√
Nout) does

not perform well in the settings we test. We instead choose

λ = 0.8
√

D/N , which seems to work better (this choice was

also used in [119]).

To show that this is a convex relaxation of (9), one can re-

place ‖L‖∗ with rank(L). Then, a simple geometric argument

shows that C = QSp(L)X , and so ‖C‖1,2 then measures the

deviation of the columns of X from the column span of L.

In other words, ‖C‖1,2 is the sum of orthogonal distances

between points and the span of L.

Since (14) and (15) form a convex programs, it is possible

to optimize them using a range of algorithms. Xu et al. [111]

advocate using a proximal gradient algorithm. They refer to

the problems in (14) and (15) as “outlier pursuit”, for which

we use the acronym OP.

Two other algorithms, the Geometric Median Subspace

(GMS) [119] and REAPER [56], are also convex relaxations of

the robust energy in (9). GMS seeks a relaxed orthoprojection

onto the orthogonal complement of an underlying subspace
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through robustly estimating the inverse covariance matrix. The

GMS estimator is constructed through the convex relaxation

Q̂ = argminQ∈H

N
∑

i=1

‖Qxi‖, (16)

H = {Q ∈ R
D×D : Q = QT ,Tr(Q) = 1}.

The underlying subspace is then estimated from the bottom

eigenvectors of Q̂. On the other hand, REAPER solves a

tighter convex relaxation designed to robustly estimate the

orthoprojector onto the underlying subspace L∗. The convex

program is

P̂ = argminP∈G

N
∑

i=1

‖(I − P )xi‖, (17)

G = {P ∈ R
D×D : 0 � P � I,Tr(P ) = d}.

Here, the estimated subspace is calculated as the top eigen-

vectors of P̂ . Note that G is the convex hull of the set of

orthoprojectors of rank d [56]. Thus, by identifying subspaces

with their orthoprojectors, we see that (17) is the tightest

convex relaxation of (9). We remark that the minimizer of (17)

does not change if the constraint � I is removed (see proof

of Lemma 14 in [119]). Therefore, one may note that (16) is

obtained from (17) by setting P = I − Q and dropping the

constraint P � 0. Indeed, after doing this, any fixed value

of Tr(Q) yields the same subspace. Both of these algorithms

employ IRLS procedures to efficiently solve their respective

optimization problems.

2) Nonconvex Optimization: An alternative to convex relax-

ation of (9) is to attempt to directly minimize this energy func-

tion. The advantage of doing this is that one can obtain faster

algorithms for special settings. However, these algorithms are

typically hard to theoretically justify, despite their impressive

practical performance. Only recently have theoretical results

shown the strength of these methods in certain regimes.

Ding et al. [24] considered direct optimization of the

nonconvex program in (9), which they incorrectly assumed

was convex. To do this, they use a form of the power method

(see the method of orthogonal iteration in §8.2.1 of [40]).

This algorithm is referred to as Rotational Invariant L1-norm

PCA (R1PCA). This method is somewhat problematic since

the optimization technique they use is tied to convex methods

and may lead to poor solutions in the nonconvex case.

Direct optimization of (9) on G(D, d) was later consid-

ered in the sequence of works by Lerman and Maunu [53]

and Maunu et al. [73]. In [53], the authors directly use

IRLS on (9). The resulting method is called the Fast Median

Subspace algorithm (FMS). In the next work [73], they use

a geodesic gradient descent method to minimize (9) over

G(D, d) by drawing on ideas from [28]. In practice, FMS

seems to perform better than GGD, but existing theoretical

guarantees for GGD are stronger.

Another work that attempts to approximately minimize the

least absolute deviations energy is given in [19]. Their algo-

rithm, called ConstApprox, also accounts for sparse inputs,

which yields reduced computational complexity for sparse

matrices. The approximation method can return a (1 + ǫ)

approximation to the minimum value of the program in (9)

for sufficiently large ǫ. On the other hand, they show that

the approximation problem becomes NP-hard when ǫ =
Ω(1/poly(D)).

Another nonconvex optimization method closely tied to (9)

and the outlier pursuit relaxation came in Cherapanamjeri

et al. [17], where the authors coin their algorithm Thresholding

based Outlier Robust PCA (TORP). The authors use a non-

convex thresholding based algorithm, which iterates between

fitting a PCA subspace and filtering points that are either

far from the subspace or highly incoherent. The definition of

incoherence is later given in §III-C1. A disadvantage of this

method is that it requires the user to input the percentage of

outliers, which is not known in practice. As in OP, one can

overestimate the percentage of outliers and still have accurate

recovery when the percentage of outliers is sufficiently small.

Tsakiris and Vidal [103] proposed the Dual Principal Com-

ponent Pursuit (DPCP) algorithm that sequentially fits nested

hyperplanes by finding stationary points in the program (11).

For solving (11), they follow an algorithm of [96], which uses

an alternating sequence of convex relaxation followed by a

nonconvex projection. More precisely, the sequence (b̃
k
)k≥1

is defined by the following program:

bk+1 ∈ argmin
nT b̃

k
=1

‖Xn‖1, b̃
k+1

=
bk+1

‖bk+1‖
. (18)

Notice that the minimization in (18) just involves solving a

linear program at each iteration. After one hyperplane is found

(i.e., the (D − 1)-subspace perpendicular to the limit of this

sequence), the DPCP procedure searches for a hyperplane of

this hyperplane, which results in a (D − 2)-subspace. This

procedure is repeated until one is left with a d-subspace.

E. L1-PCA

There are two different variants of L1-PCA that we dis-

cuss here: the minimization and maximization based formula-

tions [10, 68]. It seems that the minimization based variant is

more closely tied to the RPCA problem reviewed in [105],

while the maximization variant seems to be tied to joint

projection pursuit and thus is more closely related to RSR.

The minimization formulation of L1-PCA forms the follow-

ing analog of (3):

UL1−min ∈ argmin U∈O(D,d)

{yi}N
i=1

⊂R
d

N
∑

i=1

‖xi −Uyi‖1. (19)

One can also write (19) as

UL1−min ∈ argminU∈O(D,d)

Y ∈R
d×N

‖X −UY ‖1,1, (20)

where the ‖ ·‖1,1-norm sums the absolute values of the matrix

elements. This formulation is equivalent to PCA when one

uses the squared L2-norm instead of the L1-norm. Indeed,

one can write the PCA minimization as

min
U∈O(D,d),Y ∈Rd×N

‖X −UY ‖2,2, (21)
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where ‖ · ‖2,2 corresponds to the Frobenius norm. Notice that

the minimization in (19) is rotationally invariant in the sense

of §II-D since we can write

UL1−min ∈ argmin U∈O(D,d)

{yi}N
i=1

⊂R
d

N
∑

i=1

‖xi −URRTyi‖1, (22)

and cast the optimization over the variables U ′ = UR and

zi = RTyi.

A perhaps simpler equivalent formulation of the minimiza-

tion in (19) is given by

L̂ ∈ argminrank(L)≤d‖X −L‖1,1. (23)

The subspace estimate can then be found from the span of L.

We remark that (23) can be viewed a non-convex relaxation

of the following problem

L̂ ∈ argminrank(L)≤d‖X −L‖0,0, (24)

where the ‖ · ‖0,0 is just the number of non-zero entries of a

matrix. The later problem is in fact the RPCA problem, where

one seeks low-rank approximation to a matrix with sparse

corruptions. Attempts to find approximate solutions for this

problem are discussed in [105].

The nonconvex and nonsmooth minimization problem

in (19) was originally considered in Baccini et al. [7], where

the authors show that this choice of norm is equivalent to

finding the maximum likelihood estimate (MLE) subspace

under a Laplacian noise assumption (rather than Gaussian for

PCA). Further convex relaxation algorithms were developed

by [48] and later by a more recent surge of work (see Yu

et al. [117] and Brooks et al. [10] for some examples). Brooks

et al. [10] give a nonconvex, polynomial time algorithm for the

special case of d = D−1. Gillis and Vavasis [35] showed that

this minimization problem is NP-hard for d < D − 1. Song

et al. [95] study approximate minimization of this quantity,

where they derive a polynomial time algorithm to approximate

the minimizer up to a given threshold.

We emphasize that while the minimization variant of L1-

PCA is a natural robust extension of PCA, it may not be ideal

for solving the RSR problem discussed in this paper. Indeed,

the formulation in (23) and its MLE interpretation seem to be

more robust to elementwise corruption than to outliers.

Unlike least absolute deviations, the minimization variant

of L1-PCA does not have a simple IRLS formulation to take

advantage of. Indeed, the elementwise weighting procedure

presents some issues. For example, similar to the idea sum-

marized in (13), one could try to apply the following IRLS

procedure to approximate (23):

Lk+1 ∈ argminrank(L)≤d

∑

i,j

wk
ij(Xij −Lij)

2, (25)

where wk
ij = 1/|Xij − Lk

ij |. However, this least squares

problem has no straightforward solution at each iteration [97].

One could use a strategy like the alternating least squares

algorithm presented by De La Torre and Black [22] for

solving (25) with different robust weights wk
ij . However, there

would be no guarantee of globally minimizing the least squares

problem at each iteration.

The maximization formulation of L1-PCA is given by

UL1−max ∈ argmaxU∈O(D,d)

N
∑

i=1

‖UTxi‖1. (26)

Note that (19) and (26) are the L1-PCA versions of (3) and (1),

respectively. However, while (3) and (1) are equivalent, (19)

and (26) are not. The L1-PCA version in (26) is actually a

special case of joint energy projection pursuit. If one considers

the joint projection pursuit energy from §II-C,
∑d

j=1 ρ(v
T
j xi),

with ρ(x) = ‖x‖1 over orthonormal sets {v1, . . . ,vd},

one arrives at precisely the formulation in (26). Therefore,

like projection pursuit, the formulation in (26) addresses the

RSR problem. It thus has different characteristics than the

formulation in (19), which is tied to the RPCA problem. We

remark that there is no straightforward maximum likelihood

interpretation of (26), unlike (19).

Notice that the formulation in (26) is not rotation invariant

with respect to choice of basis, unlike the formulation in (19).

Indeed, if R ∈ O(d, d), then unlike the Euclidean norm,

‖UTxi‖1 6= ‖RTUTxi‖1 in general. Thus, this formulation

is not truly over G(D, d). If instead we wish to formulate (26)

over G(D, d), we should try to solve

U ′
L1−max ∈ argmaxU∈O(D,d)

N
∑

i=1

‖UUTxi‖1. (27)

Indeed, since ‖UUTxi‖1 = ‖URRTUTxi‖1, we have

rotation invariance with respect to choice of basis. We are

not aware of work focusing on the maximization in (27).

For both of the maximization problems in (26) and (27), one

could come up with IRLS formulations as was done for (19)

in (25). However, the same issues arise as before since it is not

an easy task to solve the least squares portion of the algorithm.

For large N and D, the maximization problem in (26)

is NP-hard [74]. Nevertheless, Kwak [51] first developed an

algorithm that sequentially outputs local maxima of the one-

dimensional version of (26). Later, exact algorithms were

developed by Markopoulos et al. [67] for sufficiently small

N and D. An approximate polynomial-time solution of (26),

within a large absolute factor, was suggested in [76]. Their

work improves over an earlier O(log(N)) approximation

factor in [74]. A review of algorithms and methods for the

L1-maximization problem in (26) appears in [68].

F. Robust Covariances

Another line of thought has considered robustly estimating

the underlying covariance matrix of a dataset [26, 27, 63, 66,

69, 71, 78, 98, 104, 106, 118, 119], which can then be used

to locate underlying subspaces. The simplest setting assumes

that the population mean, µ, is 0. After calculating the

robust covariance estimator, one can find the robust principal

subspace from its top eigenvectors. The direct synthesis of

these ideas with the problem of subspace recovery can be seen

in [118, 119].

One example is the Maronna M-estimator [69]. It minimizes

a certain robust energy that is a maximum likelihood covari-
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ance estimator under an elliptical distribution with heavy tails.

More precisely, it is the minimizer of

1

N

N
∑

i=1

ρ(xT
i Σ

−1xi) +
1

2
log det(Σ) (28)

over all positive definite Σ, where ρ is a function that

satisfies certain conditions. Similarly, the Tyler M-estimator

(TME) [104] minimizes the energy

1

N

N
∑

i=1

log(xT
i Σ

−1xi) +
1

D
log det(Σ), (29)

among all Σ positive definite with trace 1. A more in depth

discussion of these energy functions and their robustness is

given in Appendix A.

The advantage of (28) and (29) is that their formulations are

geodesically convex [6, 110, 118, 123]. Both estimators can

be iteratively computed by an IRLS procedure. When D >
N , these estimators are undefined [69, 104], and even when

D ≤ N they may be ill-conditioned. It is thus common to

regularize them [82, 100].

Perhaps the simplest robust covariance estimator is the

spherical sample covariance [53, 63, 71], which can be es-

timated as

Σ̂ =
1

N

N
∑

i=1

xix
T
i

‖xi‖2
. (30)

Spherical PCA (SPCA) computes the principal subspace of

this estimator, which is the PCA subspace of the normalized

dataset {xi/‖xi‖}Ni=1 [63].

In a more general setting, both the mean, µ, and the

covariance, Σ, are unknown. If one only cares about estimating

the covariance, then one can calculate the estimators above

on the set of differences between data points, xi − xj for

i 6= j, i, j = 1, . . . , N . For example, the spatial Kendall’s tau

matrix [106] estimates the spherical covariance by

Σ̂ =
2

N(N − 1)

∑

i 6=j

(xi − xj)(xi − xj)
T

‖xi − xj‖2
. (31)

Similarly, Dümbgen’s M-estimator [27] computes TME on the

set of differences between points, and Nordhausen and Tyler

[78] apply this procedure, which they refer to as symmetriza-

tion, to other robust covariance estimators. These estimators

can address RSR in the affine setting. Indeed, an affine

subspace can be decomposed into a linear subspace plus an

offset. The estimated linear subspace is the principal subspace

of the “symmetrized” robust covariance estimator, which is

expected to approximate the underlying linear component. On

the other hand, the offset could be well-approximated by a

robust point estimator, such as the geometric median. A benefit

of symmetrization is that it avoids estimating the offset first

and centering the data at this offset. With the latter procedure,

small approximation error of the offset may result in large

approximation error of the linear subspace component.

G. Other Energy Minimizers

The methods reviewed so far were formulated by energy

minimization or by maximization of a utility function. Another

example is given by Xu and Yuille [113], who tried to

minimize a trimmed version of the PCA energy given by

min
L∈G(D,d)

N
∑

i=1

{

‖xi − PLxi‖2, ‖xi − PLxi‖2 < η,

η, ‖xi − PLxi‖2 ≥ η.
(32)

The motivating idea is that trimming the energy would give

robustness to outliers, while maintaining some desirable char-

acteristics of PCA. An additional example of a method that

aims to maximize a utility function appears below in (34).

H. Filtering Outliers

One way of attempting RSR is to first filter outliers and then

fit a subspace to the data by using PCA. A simple filtering

idea is to use affinities that express presence in an underlying

subspace (or multiple underlying subspaces) to screen and

remove outliers. The first recipe was suggested by Chen and

Lerman [16] (see, in particular, §3.1). They form a symmetric

weight matrix that aims to express the likelihood that pairs of

points lie on an “underlying d-dimensional subspace”, that is,

a subspace that many other data points lie on. The degrees

of the data points are then computed from this weight matrix,

where a degree of a data point is the sum of weights in the

corresponding row of the matrix. The outliers are identified

as points with low degree, or in other words, points with low

likelihood of being contained in a d-subspace. This idea can

be used in the setting of robust subspace recovery and also in

the setting of robust subspace clustering. In the latter setting,

inliers lie on a union of subspaces and the goal is to recover

these subspaces in the presence of outliers. A similar idea is

suggested in [4] for the more general setting of robust manifold

clustering, where inliers lie on a union of manifolds and the

goal is to recover these manifolds in the presence of outliers.

Soltanolkotabi and Candès [94], whose ideas build on those

in [30], also identify outliers according to low degrees of a

weight matrix. Their expression for the degree of a data point

xj ∈ R
D is the value of the following program:

min
rj∈RN

‖rj‖1, s.t. X−jrj = xj , (33)

where X−j is the D × N data matrix with the jth column

zeroed out. To relate this idea to the framework of [16], one

can form the asymmetric N ×N weight matrix R, whose jth

row is the vector rj minimizing (33). Clearly, the jth degree

of R (i.e., the sum of the weights in row j) is the minimal

value in (33). You et al. [116] use a similar matrix R, which

is formed by elastic net minimization instead of pure ℓ1-norm

minimization, to create a random walk over the nodes of the

graph. They iterate R in an interesting way to obtain a limiting

vector that aims to be supported on the inliers of the robust

subspace clustering problem. They refer to this method as Self-

Representation Outlier Detection (SRO).

The recent Coherence Pursuit (CP) method by Rahmani and

Atia [90] follows the initial framework in [16] of identifying

outliers according to low degrees in a certain N×N symmetric
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weight matrix. The weight matrix is denoted by W , where

the weight W ij is the absolute value of the dot product or

squared dot product of the normalized vectors xi/‖xi‖ and

xj/‖xj‖. Among all the above methods that fall into the same

framework (with possibly asymmetric weight matrices), this

is the fastest to compute. However, it is somewhat simplistic

when considering various outlier regimes. To speed up the

algorithm, the authors mention using sketching to reduce

computational complexity. In noisy settings, this algorithm

struggles since it only takes the span of the top d points.

Thus, Rahmani and Atia [90] propose a column sampling

procedure, which iteratively projects the dataset and takes the

most coherent point in an alternating fashion. This strategy

is repeated until one recovers a sizeable set of points, and

the underlying subspace is estimated from the recovered set

of points using PCA. However, this method requires setting

extra user-specified parameters, and in particular, requires an

estimate of the noise level, which is not known in practice.

Xu et al. [112] developed the method of high-dimensional

robust PCA (HR-PCA), which adaptively trims points to obtain

a robust estimator. This method tries to maximize a robust

variance estimator to capture subspace structures. Given a

bound on the number of inliers, t̂, the trimmed variance

maximization is defined as

Û ∈ argmaxU∈O(D,d) max
I⊂{1,2,...,N}

#(I)=t̂

∑

i∈I

‖UTxi‖2. (34)

The authors develop a randomized algorithm, where at each

iteration, a point is removed with probability proportional to

its variance in the current direction. The process is continued

until one removes a prespecified number of points. The robust

subspace can then be calculated from the remaining points. A

deterministic version of this algorithm, called DHRPCA, was

later developed in [31]. While the method can remove outliers

with high influence on the PCA subspace, it is unintuitive as to

why it should work in general settings with other more subtle

types of outliers. Also, the algorithm requires the user to input

the percentage of outliers, which is unknown in practice.

The idea of filtering outliers is also present in the work on

adaptive compressive sampling (ACOS) [58]. Here, the authors

subsample points and coordinates of the dataset, run outlier-

pursuit or some other robust method, and filter outliers from

the subsampled data. A subspace for the whole dataset can

then be fit from the unfiltered points in full dimension.

The TORP algorithm [17], as discussed earlier in §II-D, can

also be thought of as an outlier filtering method.

I. Exhaustive Subspace Search Methods

Another classical and simple way of robustly finding a

subspace is to use RANSAC. In the celebrated paper, Fischler

and Bolles [33] propose a general method where a subsample

and estimator are iteratively improved over a dataset. Since

this is such a common procedure, we review a RANSAC

variant for RSR in more detail. The basic idea is to randomly

sample O(d) points and fit a d-subspace to them by using

PCA. Then, one calculates the distances between all points

and this subspace and labels inliers as those with distances less

than an input consensus threshold. If the set of inliers labelled

in this way is sufficiently large (determined by comparison

with an input consensus parameter), the algorithm returns this

subspace. Otherwise, after a predetermined number of itera-

tions, the algorithm outputs the model with highest consensus

number.

Hardt and Moitra [41] proposed the RandomizedFind al-

gorithm (RF), which is an exhaustive search method that is

faster than RANSAC. For noiseless subspace recovery of a

dataset X ⊂ R
D with N > D and where the inliers and

outliers are in some general position as described in §III, they

take random subsets, X̃ , of size D from X until one is found

with rank(X̃ ) < D. Then this subset must contain at least

d + 1 inliers and the indices of these inliers can be found

by the non-zero elements of a vector in the kernel of X̃ .

In order to deal with some noise, they propose replacing the

condition rank(X̃ ) < D with det(X̃
T
X̃) < δ, where δ > 0 is

some small constant and X̃ is the data matrix corresponding

to X̃ . Finally, they also derive DeRandomizedFind (DRF), a

deterministic polynomial time version of the RandomizedFind

algorithm. Inspired by RF, Arias-Castro and Wang [2] studied

a variant of RANSAC that subsamples (d+1)-subsets of points

until a linearly dependent subset is found.

The scan statistic [36, 37] can also be used to exhaustively

search for the underlying subspace in a structured way. This

statistic measures the maximal number of occurrences in a

sliding window of a fixed length. Arias-Castro et al. [3] pro-

posed using the scan statistic in a multi-scale, multi-orientation

fashion for the more general problem of robust manifold

recovery. In this problem, inliers are uniformly sampled from

a sufficiently smooth surface in [0, 1]D, outliers are uniformly

distributed in [0, 1]D and one needs to recover the underlying

manifold.

J. Parallel Works

Here we discuss some different but related works to the RSR

problem. Some of them have contributed to the development of

RSR algorithms, while others have solved similar yet different

problems.

One cannot consider RSR without acknowledging work

done on robust orthogonal regression and its subsequent ex-

tension to RSR [70, 80, 83, 96, 109]. In this problem, one fits

a (D − 1)-dimensional subspace in R
D, that is, an element

of G(D,D− 1), using orthogonal distance as an error metric.

The methods in this line of work use least absolute deviations

to obtain robustness to corrupted data points.

Another body of related work, which was mentioned earlier

is the RPCA problem [14, 15, 105]. A large variety of

works have contributed to the study of this problem, such

as robust energy minimization [22, 108], works on convex

optimization [14, 15], online versions [32, 42, 87], nonconvex

optimization [77, 108, 115], RANSAC methods [85], and

many others [105]. Developments in RPCA and RSR seem

to be somewhat complementary, and similar emergent themes

can be seen in both.

Some other related problems, such as subspace clustering,

synchronization, camera location estimation, and sparse vector

estimation are discussed later in §VI.
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III. THEORETICAL RECOVERY GUARANTEES

The theory behind algorithms for RSR has come in many

forms, and it is hard to make sense of what the theory indi-

cates about these algorithms. While there are many heuristic

justifications for the methods discussed in the previous section,

it is important to compare and contrast the various guarantees

in order to gain an understanding of the most competitive

methods. In this section, we attempt to distill the current

recovery guarantees given for the RSR strategies. As a result,

we hope to shed some light on where the field can go next. We

leave the other important theoretical aspect of estimating the

computational complexity of the algorithms, and in particular,

rate of convergence of iterative schemes, to §IV.

In the following, we discuss exact recovery guarantees and

near recovery guarantees. Exact recovery refers to a method’s

ability to exactly estimate the underlying subspace of a given

noiseless inlier-outlier dataset. On the other hand, with noisy

inliers-outliers datasets, one cannot hope to exactly estimate

the underlying subspace. Instead, guarantees in the noisy case

focus on near recovery, which means that the method finds

a good approximation to the underlying subspace. Error of

approximation in near recovery is typically bounded by a

function of the noise level.

We explain the primary assumptions that seem to be shared

among all works on RSR and the common RSR models

in §III-A. We explain the theoretical work on RSR in §III-B-

§III-G following the categories given in §II. We remark that

§III-B also includes a discussion of the limitation of sequential

methods. We conclude in §III-H with a comparison of the

guarantees of these various methods for a specific statistical

model of data.

A. Assumption on and Models of Data

The primary assumption for RSR is that inliers lie on or

near a fixed underlying subspace, L∗, while outliers lie in

the ambient space. For simplicity, we assume in most of the

theoretical discussion the noiseless case, where the inliers

lie exactly on the subspace. At times, we also comment on

extensions to some noisy settings. We also assume in most

of this paper that the dimension of L∗, d, is known. That is,

we assume a noiseless (or sometimes noisy) RSR inlier-outlier

dataset with known d, where one needs to recover (or nearly

recover) the underlying d-subspace, L∗.

Here, we broadly describe the underlying statistical and

combinatorial models involved in subspace recovery. An un-

derstanding of these models is essential in understanding the

development of the field. We first describe several artificial

examples in which the RSR problem is not well-defined and

use them to motivate two basic principles for theoretical inlier-

outlier datasets. These principles have to be followed in order

to formulate well-defined theoretical data models.

In §III-A1, we lay out a principle for inlier distributions in

the RSR problem. Then, §III-A2 gives a corresponding prin-

ciple for outlier distributions. In §III-A3, we briefly mention

the combination of these two principles to ensure well-defined

models. Finally, in §III-A4, we carefully review specific theo-

retical data models that have been used for RSR in the context

of these two principles.

1) Restrictions on the Inliers and a First Principle: This

section will develop a principle for inlier distributions that

ensures the RSR problem is mathematically well-defined. We

start with a somewhat extreme case, where the noiseless RSR

problem is ill-defined. We assume no outliers and inliers lying

at the origin, which is demonstrated in Figure 2a. In this

case, any linear subspace contains the inliers, and it becomes

impossible to designate any one subspace as “underlying”.

Figure 2b illustrates another example where the inliers lie

in a lower-dimensional subspace of L∗ and the problem is ill-

defined. In this example, L∗ is a 2-subspace in R
3, the inliers

concentrate on a 1-subspace of L∗ and the outliers concentrate

on a 2-subspace that intersects L∗ at this 1-subspace. The

issue here is that the outlier subspace seems more natural for

describing the data than the “underlying” subspace L∗. Indeed,

more data points lie in this subspace than in L∗. There are

two key points that one should take away from this artificial

example. First, our setting assumes a fixed parameter d, which

we have designated as d = 2 in this example. If instead d
was unknown, one could argue that the underlying subspace

is the 1-subspace at the intersection of the two 1-subspaces.

Second, the issue in this example, and also in some following

examples, could be resolved by exchanging the labels of inliers

and outliers. However, this avoids the main issue we are trying

to illustrate here. We are interested in outlining a well-defined

mathematical setting with restrictions on the sets labeled as

inliers and outliers. In particular, this example illustrates that

some restrictions must be placed on the inlier dataset.

Restrictions on the distribution of outliers in Figure 2b

could also make it well-defined. Instead, this section focuses

on restrictions on the inliers that make the problem well-

defined. We also comment that the notion of a subspace that

describes the whole dataset better than L∗ is not completely

well-defined yet but is somewhat conveyed by this figure. We

will discuss this issue more carefully when describing how to

restrict outliers in §III-A2.

From the previous examples, we see that the inliers cannot

be too concentrated around lower dimensional subspaces of L∗
and must instead fill out L∗ in order to have a mathematically

well-defined setting. We refer to this as the principle of

permeance of the inliers, since the inliers must permeate the

underlying subspace. We will later demonstrate how different

works formulate this principle in different ways. Figure 2c

presents a cartoon of permeated inliers when d = 2 and

D = 3. We remark that non-uniformity of sampling within

L∗, and possibly some very low level of concentration on low-

dimensional subspaces of L∗, can be tolerated.

2) Restrictions on the Outliers and a Second Principle: In

a similar fashion to the previous discussion, some restrictions

must also be placed on the outliers to prevent them from

giving rise to a subspace that may describe the data better

than the underlying subspace, L∗. For example, assume that

the inliers permeate the underlying subspace to some degree

and the outliers have a similar distribution to the inliers on

another low-dimensional subspace. A special case of this

more general example is demonstrated in Figure 2d, where
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(a) The artificial data is composed of only inliers lying at
the origin. Any line through the origin could be the underlying
subspace.
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(b) L∗ is the xy plane and the inliers concentrate around a line
(the x axis). The outliers lie in the xz plane, and this subspace
seems to capture more of the data points than L∗.
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(c) A cartoon of permeating inliers.
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(d) An example where the outliers lie near a line that may describe
the whole dataset better than the inliers.
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(e) A demonstration of 10 inliers around a line and two lines
containing 6 outliers each. For near recovery, the line in between
the two outlier lines may better represent the whole dataset.
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(f) A cartoon of outliers with restricted alignment. As clarified in
this section, there is some flexibility in the notion of restricted
alignment, and the strong restriction shown here is needed only in
some regimes.

Fig. 2: Examples clarifying the two principles that ensure well-defined models.
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(a) An example of a dataset with inliers on a line and a single
outlier of very large magnitude.

-2 -1 0 1 2
-2

-1

0

1

2

Inliers

Outlier

(b) The dataset of Figure 3a mapped onto the unit circle by
normalizing each original data point by its Euclidean norm.
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(c) An example of a dataset with outliers close to the origin, but
near a different line than L∗. This line is unnoticeable since the
magnitude of outliers is negligible.
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(d) The dataset of Figure 3c mapped into the unit circle by
normalizing each original data point by its Euclidean norm.

Fig. 3: Examples before and after mapping onto the unit circle by normalizing each data point by its Euclidean norm.

both subspaces are one-dimensional. One may claim that the

outlier line describes the whole dataset better than the line

that contains the inliers. As mentioned earlier, the notion that

another subspace may fit the dataset better than the underlying

subspace is not yet well-defined. First of all, for the noiseless

case, the line L∗ may still be more significant, in the sense

that it contains more points. If on the other hand, the outliers

in Figure 2d lie exactly on a line and not just near it, one could

claim that the outlier line best represents the data. This debate

boils down to two issues: 1) whether the number of inliers

or outliers is large enough to determine which line represent

better the data and 2) whether the larger relative magnitude of

outliers contribute to their possible significance.

We start by focusing on the first issue, and we will discuss

this second issue a bit later. We assume, in this noiseless

version of the example, that the line with largest number of

points best represents the data, and we will refer to this line

as the “most significant”.

The notion of most significant subspace is equivalent to the

subspace satisfying (4). However, as discussed in Section 1.1.

of [55], this notion is problematic when the data points are

even slightly noisy, where (4) needs to be replaced with (5).

Figure 2e demonstrates such a problem in a simple case. Here,

10 inliers lie around the horizontal line, and 12 outliers lie

around two other lines, each of which contains 6 points. Thus,

while each of the outlier lines is less significant in terms of the

number of points, the vertical line, which is close to the two

outlier lines, has approximately 12 points near it and could be

labelled as more significant. To avoid this problem, Lerman

and Zhang [55], who have a model with several underlying

d-subspaces, refer to a subspace as “most significant” if it

contains more points than all other d-subspaces combined.

We remark, though, that this notion applies to a very specific

model and is not well-defined in general.

Assuming that this notion of most significant subspace

is well-defined, the RSR problem can also be well-defined

if one follows the principle of restricted alignment of the

outliers. There are different ways of formulating this principle,



12

which affect the nature of the subsequent recovery guarantees.

The examples in Figures 2b and 2e illustrate that one may

need to exclude some sort of concentration of outliers around

subspaces of dimensions at most d. This way, an outlier

subspace cannot be the most significant subspace.

So far, we have ignored the effect of the relative magnitude

of the outliers, although this can also influence the resulting

conditions. In some works, restriction on alignment of outliers

has to include some control on the ratio between the magnitude

of outliers and inliers. If outliers have much larger magnitude

than the inliers, they may have undue influence over a robust

subspace criterion. Consequently, this sort of magnitude differ-

ential can make the problem ill-defined. However, it is possible

to use “scale-invariant” methods to keep the problem well-

posed in cases where there are no restrictions on the relative

magnitude of outliers.

We demonstrate this issue with the special case of a dataset

containing a single outlier of arbitrarily large magnitude and

inliers lying on a one-dimensional underlying subspace in

Figure 3a. The line through the large outlier might be viewed

as the line that best represents the whole dataset since the

distances of all inliers to this line are negligible. On the other

hand, this outlier might be perceived as an adversarial one that

should be excluded, especially since the rest of data points lie

on another line. In this simple case, the outlier can be easily

filtered out according to its large magnitude. There are also

more general scale-invariant methods that give no weight to

the magnitude of the data points, and thus one arbitrarily large

outlier has little contribution when applying these methods.

We say that an RSR algorithm is scale-invariant if the output

of the algorithm does not change after multiplying all the data

points by different non-zero factors. A simple technique that

results in scale-invariant algorithms is to initially normalize the

data points by their Euclidean norms so that they lie on the

sphere, SD−1, and then apply any RSR method. Application of

this normalization procedure to the simple dataset of Figure 3a

is demonstrated in Figure 3b. We remark that it is unclear how

to do this normalization procedure when there is missing data

or when the setting is affine instead of linear.

This procedure, as well as other scale-invariant algorithms,

may miss some important information in the magnitude of

inliers and outliers. The special example in Figures 3c and

3d emphasizes this issue. Here, the outliers have very small

magnitudes, and so the whole dataset is well-approximated

by a line. However, the small outliers actually lie around a

line that is quite different than the inlier line. Normalization

of the dataset then emphasizes the outlier line more than the

original inlier line. Thus, Figure 3d demonstrates that, even

when applying scale-invariant algorithms, the alignment of

outliers still has to be restricted, although there is not any

consideration of their magnitude.

Employing an exhaustive subspace search method to mini-

mize (4) is also scale-invariant. Indeed, in a well-defined set-

ting, any such method would find the subspace containing most

of the points, independently of any scaling of the data points.

Scale-invariant search algorithms can also be developed for

noisy RSR by trying to minimize variants of (5). For example,

in this formulation, one can use the angles between data points

and the subspace rather than the orthogonal distance, since

angles are scale-invariant.

We have discussed at length the restriction of outliers since

there is some flexibility in enforcing it. Using the examples and

concepts explained above, we clarify this flexibility. In the case

of some scale-invariant algorithms, bounding the percentage of

outliers can be enough to restrict the alignment. Similarly, in

the case of a non-scale-invariant algorithm, it may be sufficient

to bound the magnitude and percentage of the outliers. On the

other hand, when considering regimes with high percentages of

outliers, outliers cannot concentrate on or around a significant

d-subspace for any algorithm. Notice that, following the earlier

discussion in this section, this notion must also interact with

the inlier permeance. For example, the inliers in Figure 2b

may require stronger assumptions on outlier alignment than the

inliers in Figure 2c. We further discuss this interaction in the

next section. However, in general, the restriction on alignment

is often formulated with respect to the outliers alone. A case

with very restricted alignment, which is needed with high

percentages of outliers and is especially needed with a non-

scale-invariant algorithm, is demonstrated in Figure 2f. Here,

no substantial subset of outliers lies near any low-dimensional

subspace, and no outliers have exceptionally large magnitude.

3) Stability: the Combination of Permeance and Alignment:

We refer to both the encouragement of permeance of the inliers

and restriction of alignment of the outliers as the stability

constraint of the model. An example of a stability constraint

is demonstrated later in §III-C2. In this example, positive

permeance and alignment statistics, P and A respectively,

are formed so that higher values of P correspond to more

permeated inliers, and lower values of A correspond to more

restricted alignment of the outliers. A stability statistic is

defined by a positive linear combination of P and −A, and the

stability constraint is a lower bound on the stability statistic. In

the noiseless case, this bound is zero. We note that satisfying

this constraint near the lower bound requires some tradeoff

between inlier permeance and restricted outlier alignment.

Nevertheless, each of the two quantities, P or A, is computed

with respect to only the inliers or outliers respectively, and thus

the stability constraint does not fully explore the interaction

between the configurations of inliers and outliers.

Some stability constraints imply an upper bound on the

percentage of outliers, or equivalently, a lower bound on

the percentage of inliers. Borrowing terminology from signal

processing, Zhang and Lerman [119] define the signal-to-noise

ratio (SNR) of the RSR problem as the ratio of the number

of inliers to the number of outliers under a given stability

constraint. For a given theoretical data model, algorithms can

be compared by the lowest SNR under which they can still

exactly recover the underlying subspace, or nearly recover it

up to a certain error. The next subsection reviews some of

these theoretical data models.

4) Specific Models of RSR: In this section, we explain

several models under which lowest SNRs of algorithms can be

compared. The first model uses arbitrary outliers. We remark

that this model only works with scale-invariant algorithms,

since there is no restriction on the magnitude of the outliers,

and a single outlier can make non-scale-invariant algorithms
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ill-posed. Here, the restriction of the alignment of outliers

is only enforced by bounding their percentage, and thus the

bound on SNR is relatively high. Xu et al. [111] claim that

in this model the SNR has to be larger than d, and there are

indeed degenerate examples where the problem is ill-defined

when the SNR is d. If, on the other hand, one encourages

permeance of inliers, then lower SNR can be obtained. More

careful study of this model, including guarantees for existing

and new algorithms, is needed. The authors plan to address

this issue in a forthcoming paper [72].

Another model is that of inliers and outliers in general

position (see two similar formal definitions in §III-E and

§III-G). As explained later, Hardt and Moitra [41] show that in

some sense the optimal SNR in this model is d/(D−d). This is

much lower than the case of arbitrary outliers since the outliers

exhibit no linear dependencies. If the SNR is bounded from

below by this optimal value, then Hardt and Moitra [41] reduce

the noiseless RSR problem to finding a linearly dependent D-

subset, which is not hard.

Only scale-invariant algorithms can have guarantees for the

general position model, because again there is no restriction on

the magnitudes of the inliers and outliers. However, there are

three main drawbacks regarding the applicability of this model.

First, in some real datasets, such as ones involving face images

under different illuminating conditions or hand-written digit

images (see some relevant discussion in §V), subgroups of

outliers may lie within low-dimensional subspaces. Therefore,

the general position model may not be relevant to some

real datasets. Second, this model is well-formulated for exact

recovery in the noiseless case and does not seem to easily

extend to the noisy setting of near recovery. While Hardt and

Moitra [41] propose using the threshold det(X̃
T
X̃) < δ in

the noisy case, where X̃ is the subsampled dataset, it is not at

all clear when this would work. For example, this determinant

would be small if one of the points in X̃ had very small

entries, even if X̃ did not contain more than d inliers. It is also

not clear how to set the threshold δ even for simple statistical

models of noise, such as white Gaussian noise. Third, it is hard

to determine how well many of the scale-invariant algorithms

behave on the general position model. The only algorithms

with results for this model are RF [41] and TME [118].

Many times, the analysis of RSR methods lends itself to

considering certain statistical models of generating data. We

believe studying such statistical models is important because

it gives more insight into the performance of algorithms than

just the worst case scenario in theorems with arbitrary outliers.

Indeed, this sort of average case analysis illuminates differ-

ences in the breakdown of algorithms in low SNR regimes.

For example, the haystack model [56] has been used to

compare the theoretical guarantees of the various algorithms.

The haystack model is a simple model for RSR data, where

inliers and outliers both follow Gaussian distributions. In this

model, inliers are symmetrically distributed on the underlying

subspace with distribution N(0, σ2
inPL∗

/d), while outliers

have an isotropic Gaussian distribution in the ambient space,

given by N(0, σ2
outI/D)). However, this model is limited

since it captures a very particular scenario. The generalized

haystack model [73], in which outliers have a general and

possibly degenerate covariance and inliers have a general

covariance restricted to the subspace, captures more diverse

scenarios, but the model is still quite specialized.

Theoretical results so far have emphasized exact recovery

of subspaces in the noiseless RSR setting under the models

discussed above. They often discuss extension of the results to

near recovery with small amount of noise. Only a few existing

works have focused on the truly noisy setting [17, 20, 75].

B. Sequential Methods and Projection Pursuit

A simple strategy for RSR is to fit one-dimensional direc-

tions sequentially. This strategy has been pursued in various

lines of work, such as the projection pursuit method we

discussed in (6) and (7). However, there is no guarantee that

a sequential method will recover a stationary point of an

energy for d-subspace recovery. For example, for projection

pursuit, such an energy is given by
∑d

j=1 ρ(v
T
j X) over the

set of orthonormal systems v1, . . . ,vd ∈ R
D [74]. In the

PCA problem formulation, one can show that joint estimation

and sequential estimation of principal components result in

the same subspace. However, for other energies, joint and

sequential estimation do not result in the same subspace.

Also, the nonconvexity of the problem has caused works

to guarantee convergence to local optima in each individual

subproblem (formulated in (6) and (7)) [51] or convergence

to a weak approximation of the global optimum of the joint

energy
∑d

j=1 ρ(v
T
j X) [74, 76].

One shortcoming of sequential methods is the potential for

compounding errors due to noise. Suppose we have a noisy

data matrix X , and we find a top component v1. Then, one can

try to run the same algorithm again on the data matrix Qv1
X .

However, due to noise, if we expect an optimal recovery

error of approximately ǫ when estimating V ∗, then v1 should

be Ω(ǫ) from the underlying subspace. After projection and

running again, the next component could be, at worst, Ω(2ǫ)
from the underlying subspace, and so on. To recover a d-

dimensional subspace, their errors may accumulate to Ω(dǫ).
In methods where one tries to find the orthogonal complement

of the underlying subspace, such as [103], errors may even

accumulate to Ω((D − d)ǫ) if one tries to sequentially fit

hyperplanes.

Further, even in the noiseless case, the first sequential

component may be far from the underlying subspace. For

example, this is a feature of the least absolute deviations

energy. If one has a subspace of dimension d > 1 with points

well distributed on the subspace, then one can mathematically

show that the minimizer of (9) over G(D, 1) will not be

contained in the underlying subspace in general inlier-outlier

settings.

We believe that projection pursuit methods generally suffer

from the deficiencies present in sequential estimation. Overall,

projection pursuit methods have lacked theoretical guarantees

and have instead used heuristic arguments to justify them. We

are unaware of substantial theoretical work on robust subspace

recovery in this area.
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C. Least Absolute Deviations

Most theoretical guarantees for RSR exist for methods

aiming to minimize the least absolute deviations. We review

them according to the different methods they are associated

with.

1) Guarantees for Outlier Pursuit: Xu et al. [111] provide

theoretical guarantee for recovery by OP, which is the program

outlined in (14). The permeance of inliers discussed in §III-A

is quantified by the inverse of an incoherence parameter. This

parameter appears in other works on nuclear norm minimiza-

tion, such as RPCA and matrix completion [12, 13, 14, 15].

The notion of incoherence and its parameter µ are defined for

the low-rank inlier matrix L as follows:

Definition 1. A rank d matrix L with (1 − α)N non-zero

columns, for α ∈ (0, 1), and with SVD L = USV T , is said

to be µ-incoherent if

max
i

‖V Tei‖2 ≤ µd

(1− α)N
. (35)

Here, ei are the unit coordinate vectors.

In the special case of generating the inliers from a

spherically symmetric Gaussian distribution within the un-

derlying d-subspace, the incoherence parameter is µ =
O(max(1, log(N)/d)) [12].

We note that the parameter 1− α is the fraction of inliers,

which are represented by non-zero columns in L, so α is the

fraction of outliers and the SNR is (1−α)/α. Xu et al. [111]

provided the following lower bound on the SNR for exact

recovery by outlier pursuit:

Theorem 1 (Xu et al. [111]). Suppose the data matrix X ∈
R

D×N can be represented as X = L + C, where L has

rank d and incoherence parameter µ, C is column sparse and

supported on at most αN columns that are not in the column

space of L, and λ = 3/(7
√
Nout). Then, if

SNR ≥ 121µd

9
, (36)

outlier pursuit recovers the matrices L and C.

Suppose on the other hand that X = L +C +N , where

L and C are as above, with SNR ≥ 1024µd/9, and N , the

noise matrix, satisfies ‖N‖F ≤ ǫ, then the output L̃ and C̃ of

outlier pursuit satisfy ‖L̃−L′‖F ≤ 20
√
Nǫ and ‖C̃−C ′‖F ≤

18
√
Nǫ, where L′ + C ′ = L + C, L′ has the same column

space as L and C ′ has the same column support as C.

Nevertheless, we remark that this theory is quite weak for

the following reasons. First, the SNR for arbitrary outliers and

permeated inliers is relatively weak (see [72]). Furthermore,

it is unclear how to obtain lower SNR for other scenarios

with more restriction on the alignment of outliers, where exact

recovery can be obtained with significantly lower SNR (see

for example Table I). Finally, the bounds of near recovery for

noise are relatively large.

In general, algorithms aiming to minimize (9) are sensitive

to even a single outlier with very large magnitude (without

modifications such as normalization of data points to the

sphere). However, since the nuclear norm is a very crude

approximation of the rank, the contribution of an outlier, or

more precisely, its component orthogonal to the underlying

subspace, is similar to both parts of the cost function: ‖L‖∗
and ‖C‖1,2. Since the constant λ of the cost function is often

very small, the outlier column is included in C and not L.

Outlier pursuit is thus scale-invariant for sufficiently large

SNR.

2) Guarantees for GMS and REAPER: Zhang and Ler-

man [119] consider the development of deterministic stability

conditions that ensure subspace recovery by GMS, whose

estimator was defined in (16). They also discuss the types of

outliers that can make subspace recovery hard and provide

visualizations of these (see Figure 1 in [119]). They then

show that the deterministic stability condition holds under

certain sub-Gaussian inlier-outlier mixture models as well

as the haystack model with overwhelming probability. By

introducing a perturbation argument, they extend their results

to near recovery when the inliers lie near a subspace. Their

restriction on the alignment of outliers is very strong, and,

in practice, they require at least 1.5D outliers filling out the

ambient space. If this condition is not satisfied, then GMS

does not have good accuracy. Zhang and Lerman [119] provide

three solutions to this, although it is not clear how well these

would perform in general. In our numerical experiments in §V,

we test their solution of adding 1.5D spherically symmetric

Gaussian outliers in the ambient space.

The work of [56] on the REAPER algorithm, which uses

the estimator given in (17), also gives a deterministic recovery

result when a dataset satisfies a stability criterion. They define

the permeance statistic P(L∗) of a dataset on the underlying

subspace L∗ as a measure of the notion of permeance of the

inliers projected onto the subspace L∗. Note that this definition

assumes inliers possibly near the underlying subspace and that

is why they project them onto the subspace. They also define

the alignment statistic A(L∗) that quantifies the restriction

of the alignment of outliers. The definition of P(L∗) and

A(L∗) appear in equation (2.1) and (2.3) of [56]. The stability

statistic, S , is defined as

S(L∗) =
P(L∗)

4
√
d

−A(L∗). (37)

In the noiseless case, their theory implies that positive

stability at the underlying subspace L∗ guarantees exact

recovery of this subspace by REAPER. Their theory also

provides a probabilistic lower bound on the stability statistic

under the haystack model. This implies exact recovery with

overwhelming probability under the SNR indicated in Table I.

In the general case of RSR, S(L∗) needs to be larger than

what they call the total inlier residual with respect to L∗, which

is defined by

R(L∗) :=
∑

xi∈Xin

‖PL⊥
∗
xi‖. (38)

When this condition is satisfied the REAPER solution approx-

imates well the underlying subspace L∗ in the following way.

Theorem 2 (Lerman et al. [56]). Suppose X is a general

RSR dataset in R
D with an underlying d-dimensional subspace

L∗, P̃ is a solution to the REAPER problem (17), and Π̃ =
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UdU
T
d , where Ud ∈ R

D×d is the matrix whose columns are

the top d eigenvectors of P̃ . Then,

‖Π̃− PL∗
‖∗ ≤ 4R(L∗)

max(S(L∗)−R(L∗), 0)
. (39)

Notice that the fraction in (39) is only meaningful when

S(L∗) > R(L∗).
There is also an interesting noise-robustness analysis for the

GMS and REAPER algorithms that is given in [20]. Here, the

authors prove that the sample complexity of these algorithms

is approximately the same order as that of the sample covari-

ance for sub-Gaussian distributions. This observation implies

nontrivial robustness to noise.

3) Guarantees for Nonconvex Formulations of Least Abso-

lute Deviations: We discuss existing theoretical guarantees or

the lack thereof for the following nonconvex least absolute

deviation methods according to this order: R1PCA, the pure

energy minimization in (9), FMS, GGD, TORP, and DPCP.

These methods were laid out in §II-D2.

For general datasets, convergence for all of the following

algorithms is proven to a stationary point at best. Furthermore,

we do not know in general whether or not this stationary point

recovers something useful. Because of this, some works have

resorted to further restrictions on the data. These restrictions

are used to show when the algorithms converge to an under-

lying subspace and also to show the speed of convergence.

The work of Ding et al. [24] on R1PCA was originally

claimed to be convex, but they actually optimize a nonconvex

problem formulation. Thus, they do not have guarantees of

global optimality for their minimization and no guarantees of

subspace recovery.

Lerman and Zhang [55] prove exact subspace recovery

w.o.p. by minimization of the least absolute deviations en-

ergy (9) under a certain probabilistic model of data. The

datasets considered involve a mixture model with i.i.d. in-

liers distributed uniformly on SD−1 ∩ L∗
1 and i.i.d. outliers

distributed uniformly on SD−1 and the intersection of SD−1

with K − 1 subspaces L∗
2, . . . , L

∗
K . It is further assumed

that the asymptotic fraction of points on L∗
1 is greater than

the asymptotic fraction of points on L∗
2, . . . , L

∗
K combined.

This work shows the least absolute deviations energy can

handle any fixed fraction of i.i.d. outliers distributed uniformly

on SD−1. However, this work only focuses on analysis of

the pure minimization problem and not of an algorithm for

minimizing it. Furthermore, its model is restrictive, and its

estimates require large sample sizes.

Lerman and Maunu [53] provide some guarantees for the

FMS algorithm, although they are somewhat limited. We

remind the reader that the FMS procedure tries to directly

minimize (9) using iteratively reweighted least squares. They

prove that the FMS algorithm converges to a stationary point

in general and is able to decrease the least absolute deviations

energy monotonically from its starting point. However, they do

not guarantee that this stationary point is a local minimum in

general settings. They further show that the FMS algorithm can

nearly recover an underlying subspace in two special settings:

1) when outliers are spherically symmetric and inliers are

spherically symmetric within the underlying subspace or 2)

outliers are spherically symmetric or lie on a one-dimensional

less significant subspace, and inliers lie on a significant one-

dimensional subspace. In the first setting, the analysis shows

that FMS can nearly recover the underlying subspace for

any fixed fraction of outliers (less than 1). For both settings

the convergence of FMS is locally r-linear. Nevertheless, the

estimates in [53] require large sample sizes.

Maunu et al. [73] formulate a deterministic stability con-

dition that guarantees nice behavior of the energy landscape

of (9) in a local neighborhood around L∗ (more details are

described below). They also show that under this stability

condition, a geodesic gradient descent (GGD) algorithm for (9)

initialized in this neighborhood exactly recovers the underly-

ing subspace. They further show that a similar deterministic

stability condition ensures that the PCA d-subspace lies in

this neighborhood. Therefore, GGD initialized by PCA has

an exact recovery guarantee under both stability conditions

simultaneously.

The stability condition was inspired by the previous ideas

of [56] and focuses again on a difference of two statistics:

an inlier permeance and outlier alignment. For simplicity,

we discuss here only the noiselss case. The permeance and

alignment statistics can be seen in (9) and (10) of [73]. Since

the condition is local, a parameter 0 < γ < π/2 determines

how large of a neighborhood is considered. This neighborhood

is defined in the following way:

B(L∗, γ) = {L ∈ G(D, d) : θ1(L,L∗) < γ}. (40)

Here, θ1(L1, L2) is the largest principal angle between two

subspaces L1 and L2. Using the bounds given in [73], it is

easier to interpret the following lower bound on the stability

statistic:

S(γ, L∗) ≥ cos(γ)λd

(

∑

xi∈Xin

xix
T
i

‖xi‖

)

−
√

Nout‖Xout‖2.

(41)

Here, λd(·) is the dth eigenvalue of the input matrix. The first

term measures how well the inliers “fill out” the underlying

subspace, while the second term measures how aligned the

outliers are in any direction.

The stability condition for the noiseless case is positivity

of this statistic. The theory outlined earlier can be precisely

formulated as follows.

Theorem 3 (Maunu et al. [73]). Suppose that an inliers-

outliers dataset with an underlying subspace L∗ satisfies

S(γ, L∗) > 0, for some 0 < γ < π/2. Then, all points in

B(L∗, γ)\{L∗} have a directional subdifferential strictly less

than −S(γ, L∗), that is, it is a direction of decreasing cost.

This implies that L∗ is the only local minimizer in B(L∗, γ).
Suppose further that the initial GGD iterate is L1 ∈ B(L∗, γ).
Then, for sufficiently small s, GGD with step size s/

√
k

converges to L∗ with rate θ1(Lk, L∗) < O(1/
√
k).

Under an additional “strong gradient condition” specified

in (21) of [73], for sufficiently small s and sufficiently large

K, GGD with step size tk = s/2⌊k/K⌋ linearly converges to

L∗.
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Initialization in this neighborhood is guaranteed by the

following lemma, which is a consequence of the Davis-Kahan

sinΘ Theorem [21].

Lemma 1. Suppose that, for a noiseless inliers-outliers

dataset,

sin(γ)λd(X inX
T
in) > ‖Xout‖22. (42)

Then, the PCA d-subspace is in B(L∗, γ).

The stability condition is shown to hold with overwhelming

probability under a variety of models of data, and it is also

shown to be stable with small noise. In particular, GGD is

shown to have recovery guarantees almost on par with the

strongest convex methods on the haystack model discussed

later in §III-H. The downside for GGD is that it requires

slightly larger sample estimates: N = O(D2 log(D)) versus

N = O(D) for convex methods like REAPER and GMS.

GGD also has a guarantee of recovery for any fixed percentage

of outliers under this model in the large sample limit (when

one allows N → ∞).

Cherapanamjeri et al. [17] give theoretical guarantees for

TORP with arbitrary outliers and noise, when the fraction

of outliers is known. The authors prove that the algorithm

works with arbitrary corruptions up to an SNR of order Ω(d),
although the constants are quite poor.

Theorem 4 (Cherapanamjeri et al. [17]). Suppose the data

matrix X ∈ R
D×N can be represented as X = L+C, where

L has rank d and incoherence parameter µ, C is supported

on at most γN columns that are not in the column space of

L, where γ is an input parameter for TORP. Then, if

SNR ≡ 1− γ

γ
≥ 128µ2d− 1, (43)

the TORP algorithm linearly converges to a point that exactly

recovers the column space of L.

Suppose on the other hand that X = L +C +N , where

L and C are as above and N is added noise. Then, the

TORP algorithm linearly converges to a subspace U such that

‖(I −UUT )L‖F ≤ 60
√
d‖N‖F . Under the more restrictive

assumptions that N has entries i.i.d. N(0, σ2) and SNR ≥
1024µ2d− 1, TORP linearly converges to a subspace U such

that ‖(I −UUT )L‖F ≤ 4
√

log(d)‖N‖2 w.o.p.

Since results are only proven for arbitrary corruptions, the

bounds for certain generative models of data (such as the

haystack model) are weaker than those given in [56, 73]. We

note that TORP linearly converges to the solution in all of

the restricted settings in Theorem 4. The authors also have an

analysis to noise that is similar to that in [20]. They show that

the sample complexity is similar to that of PCA on the noisy

inlier distribution.

DPCP [103], which solves the program in (11), is able to

prove recovery of subspace structures under some determin-

istic conditions by finding a sequence of nested hyperplanes.

However, the conditions are quite hard to interpret, especially

when one is finding nested structures. It is even hard to

calculate what the conditions mean for a given statistical model

of data, such as the haystack model.

D. L1-PCA

We are currently not aware of any recovery or robustness

guarantees for L1-PCA, which was outlined in (19) and (26).

Recovery guarantees for the RPCA problem in (24), which is

similar to the L1-PCA problem of (19), are reviewed in [105].

E. Robust Covariance Estimation

For quantification of the robustness of covariance estima-

tors, the study of breakdown points has been important [64].

Essentially, the robust covariances are consistent estimators of

covariance matrices for elliptical distributions with nontrivial

breakdown points. This means they can tolerate some per-

centage of arbitrary outliers and still estimate the underlying

elliptical covariance well, which, in turn, means they could

be able to estimate an underlying principal subspace well.

However, the study of this principal subspace for RSR is only

analyzed in [118].

These sorts of breakdown points hold for the estimation of

covariances since the space of these matrices is non-compact

and there is a notion of a covariance matrix with arbitrarily

large magnitude. On the other hand, a similar definition of a

breakdown point does not hold for subspace recovery since the

Grassmannian is compact. The notion of lowest SNR allowing

exact subspace recovery or sufficiently near recovery is clearly

weaker.

Zhang [118] demonstrated that TME can also be used for

subspace recovery. The stability condition in [118] requires

a lower bound on the SNR as well as general positions of

both inliers and outliers. We say that the inliers are in general

position with respect to L∗ if, any d of them are linearly

independent. Similarly, we say that the outliers are in general

position with respect to L⊥
∗ if, after projecting them onto

L∗ any D − d of them are linearly independent. Using this

definition, the theorem is formulated as follows:

Theorem 5 (Zhang [118]). Assume that X ⊂ R
D is a

noiseless inliers-outliers dataset in R
D with an underlying d-

subspace L∗. If the inliers are in general position with respect

to L∗, outliers are in general position with respect to L⊥
∗ , and

SNR > d/(D − d), then TME exactly recovers L∗.

The theorem that extends subspace recovery by TME to

noisy datasets is quite weak and hard to interpret, and so we

do not state it here (see Theorem 3.1 in [118]). We remark that

a clear advantage of TME is that it is scale-invariant. Indeed, it

is obvious from (29) that scaling any data point by an arbitrary

non-zero constant will not affect the estimator. Spherical PCA

is also scale-invariant, as can be seen from (30), but it is not

able to exactly recover subspaces like TME.

F. Other Energy Minimization and Filtering Outliers

The outlier removal energy of Xu and Yuille [113] does not

have any associated guarantees for subspace recovery.

The bounds for the performance of HR-PCA and DHR-

PCA are hard to interpret for arbitrary datasets [31, 112]. The

authors chose to focus on a quantity called expressed variance

(EV). Suppose one would like to measure the quality of an
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orthogonal basis matrix U ∈ O(D, d) against the optimal

subspace, represented by U∗ ∈ O(D, d). Then, the expressed

variance is given by

EV (U) =
‖UTX in‖2F
‖UT

∗ X in‖2F
. (44)

The expressed variance takes values between 0 and 1, and

it measures the proportion of underlying variance captured by

the basis. Xu et al. [112] prove lower bounds on the expressed

variance, although these bounds are quite weak. For example,

in the case of spherically symmetric Gaussian inliers on a

subspace and spherically symmetric Gaussian outliers, their

lower bound on EV is 0.09 [53] (while an EV of 1 amounts

to exact recovery).

Arias-Castro et al. [4] guaranteed their method for removing

outliers in the setting of robust manifold clustering. In the case

of robust recovery of a single manifold, their theorem implies

exact identification of outliers when the inliers are uniformly

sampled from a τ -neighborhood in [0, 1]D of a certain C2

submanifold of [0, 1]D, the outliers are uniformly sampled

from the complement of that τ -neighborhood in [0, 1]D and the

SNR is of order Ω(max(log(N) ·N−2(D−d)/(2D−d), τD−d)).
Here, the τ neighborhood contains all points that have distance

less than or equal to τ with the submanifold.

Soltanolkotabi and Candès [93] guaranteed their method for

removing outliers, which is similar in spirit to [4, 16], in the

setting of noiseless robust subspace clustering. In the case

of a single subspace recovery, their theorem implies exact

removal of outliers when the outliers are uniform in SD−1,

the Nin inliers are uniform on the intersection of SD−1 with

a uniformly random d-subspace and the SNR is of order

Ω( d
D ·((Nin−1

d )
cD
d

−1−1)−1), as long as N < ec
√
D/D. In this

method and the below work by Rahmani and Atia [90], the

authors need to assume that the inlier subspace is unformly

random, which is a stronger assumption than other methods

make.

You et al. [116] proved exact recovery of outliers in the

noiseless setting of robust subspace recovery under certain

conditions. They did not verify that these conditions hold

under a generative model. It is interesting to note that one

of the conditions, namely equation (7) in [116], is reminiscent

of the stability condition of [56] for exact recovery in the

noiseless case, that is S(L) > 0, where S(L) is defined in

(37).

Rahmani and Atia [90] prove recovery by CP with over-

whelming probability in the same setting as Soltanolkotabi and

Candès [93] but with a single random subspace, where they

achieve SNR on the order of Ω( dD√
D(D−d2)

1√
Nout

). The authors

also prove a recovery result for the special case of inliers

uniform on the intersection of SD−1 with a uniformly random

d-subspace and a small percentage of outliers distributed close

to a random line. They also prove that CP can recover a set of

inliers with small amounts of additive Gaussian noise in these

models. However, the theory is lacking in some important

regards. First, only very special models are considered, and it

is hard to see how things perform in general. A further issue

is that, in the noisy case, the span of a core set of recovered

inliers may not represent the underlying subspace very well.

Thus, while they may be able to find a subset of the inliers,

they do not give bounds on subspace approximation error for

their subspace identification algorithm.

G. Exhaustive Subspace Search

Hardt and Moitra [41] show that RF and DRF, which were

discussed in §II-I, can recover a subspace in the noiseless case

for very low SNRs if the dataset is in general position with

respect to the underlying subspace L∗. That is, any D data

points are linearly independent if and only if at most d of

them are inliers from L∗. This means that L∗ is the only low-

dimensional structure in the data. Note that this definition is

similar but different than the one in §III-E, where inliers are in

general position with respect to L∗ and outliers are in general

position with respect to L⊥
∗ . Their theorems for RF and DRF

are formally stated as follows (with an improvement on the

expected number of iterations by Arias-Castro and Wang [2]):

Theorem 6 (Arias-Castro and Wang [2], Hardt and Moitra

[41]). Assume that X ⊂ R
D is a noiseless inliers-outliers

dataset in R
D with an underlying d-subspace L∗. If X is in

general position with respect to L∗ and SNR > d/(D −
d), then RandomizedFind outputs L∗ with expected number of

iterations that is O(1), and DeRandomizedFind outputs L∗ in

polynomial time.

On the other hand, if SNR < d/(D − d), the problem

becomes small set expansion hard. The small set expansion

problem is conjectured to be NP-hard.

There is no existing theory for RandomizedFind and De-

RandomizedFind in noisy settings.

As long as the noiseless problem is well-defined, RANSAC

will succeed in finding the underlying subspace. However, in

low SNR regimes, the computational time becomes an issue,

as we will discuss in the next section. Further, when the

parameters are set correctly, one can show that near recovery

is possible with RANSAC under further assumptions on the

alignment of outliers [72].

Arias-Castro et al. [3] proved that their mutli-scale, multi-

orientation scan statistics may recover inliers sampled uni-

formly from a d-dimensional graph in [0, 1]D of an m-

differentiable function, when the outliers are uniform in [0, 1]D

and the SNR is Ω(N−m(D−d)/(d+m(D−d))). They also men-

tion results for other kinds of surfaces.

H. Recovery with the Haystack Model

In Table I, we compare the various theoretical guaran-

tees under a Gaussian model of data. This is one of the

simplest models to compare the theoretical SNR of algo-

rithms outside of the worst-case outliers (a table for the

latter case will be provided in [72]). Here, inliers are dis-

tributed i.i.d. N(0, σ2
inPL∗

/d) and outliers are distributed

i.i.d. N(0, σ2
outI/D). Under this model, we can compare

the various recovery guarantees given in the works outlined

throughout the whole section. The results for the haystack

model are summed up well in Table 1 of [73], which is

extended to more methods in Table I. We use the earlier

abbreviations from the text.
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GGD

Nin/Nout ≥ max

(

4
√
2σout

σin

d√
D(D−d)

, 2
σ2

out

σ2

in

d
D

)

(N = O(D2))

Nin/Nout ' 0 (N → ∞)
Deterministic condition, results for a variety of data models.

FMS

Nin/Nout“ '′′ 0 (N → ∞)
Approximate recovery for large samples from spherized haystack or from two one-dimensional

subspaces on the sphere.

REAPER
Nin/Nout ≥ 16σout

σin

d
D

(N = O(D), 1 ≤ d ≤ (D − 1)/2)

Deterministic condition, results for haystack where d < (D − 1)/2.

GMS
Nin/Nout ≥ 4σout

σin

d√
(D−d)D

(N = O(D))

Deterministic condition, results for haystack that extends to elliptical outliers.

OP

Nin/Nout ≥ 121d
9

O (max(1, log(N)/d)) (N = O(D))
Deterministic condition (formulated for arbitrary outliers) with last term in the above formula

replaced by an inlier incoherence parameter µ.

HR-PCA
Nin/Nout → ∞ (N → ∞)
Weak lower bound on the expressed variance, requires fraction of outliers as input.

TME/(D)RF
Nin/Nout > d

D−d
(N = O(D))

Result for “general-position” data, but does not extend to noise.

TORP

Nin/Nout ≥ 128dmax(1, log(N)/d)2 (N = O(D))
Deterministic condition (formulated for arbitrary outliers) with last term replaced by an inlier

incoherence parameter µ, requires fraction of outliers as input.

CP

Nin/Nout & d/(D − d2) (N = O(D), d <
√
D)

Nin/Nout ' 0 (N → ∞, d <
√
D)

Exact recovery for the spherized haystack model with a random inlier subspace and d <
√
D,

recovery guarantees for a special model of outliers around a line.

TABLE I: Comparison of lower bounds on the SNR and a summary of guarantees. The properties of each algorithm are

described in two rows. The first row provides the largest lower bounds on the SNR in the haystack model for different orders

of N . The second row briefly comments on other guarantees under possibly different models.

Here, we also display the sample size necessary for the

probability of recovery in each result to become close to 1.

Notice that for sample sizes N = O(D), the optimal SNR

for all 1 ≤ d < D is on the order of d/
√

D(D − d).
Notice that GGD achieves this optimal bound, but requires

N = O(D2), and so it has guarantees that are almost on par

with state-of-the-art convex ones. If we let N → ∞, we see

that two methods, GGD and CP, can tolerate any fixed fraction

of outliers. The FMS can also tolerate any fixed fraction of

outliers but can only nearly recover the underlying subspace

up to a regularization dependent precision. Although the result

for FMS dealt with the spherized haystack model, the result

can also be extended to the non-spherized haystack model with

minimal effort.

We remark that CP is included here even though its model

assumes a uniformly random underlying subspace, which

makes the analysis easier. Nonetheless, when N → ∞ this

assumption makes no difference. We also note that the CP

theory require that d <
√
D, which is a major restriction

compared to other methods. The guarantees for REAPER have

the weaker requirement of d < (D−1)/2. Other methods can

tolerate any d < D.

IV. COMPUTATIONAL COMPLEXITY AND MEMORY

REQUIREMENTS

An important tradeoff in robust subspace recovery explores

the accuracy of an algorithm versus its computational com-

plexity or memory requirement. Because of this, it is necessary

to clearly state the complexity and memory requirement of the

various algorithms to see how they all scale. The complexity

requirements for the various RSR algorithms are given in Ta-

ble II. For ConstApprox, nnz refers to the number of non-zero

entries in the input matrix X , and the number ǫ is the desired

approximation accuracy. For ACOS, the numbers ρ1 and ρ2
are the row and column sampling fractions, respectively. We

also examine the memory requirement for RSR algorithms in

Table III. The parameters for ACOS are the same as those in

Table II.

We first discuss at length the results presented in Table II.

Many algorithms are iterative and for simplicity we assume

that the number of iterations is a constant, which we denote

by T , but this is in general problematic. Indeed, for nonconvex

algorithms, we expect cases of very slow convergence since

the problem is NP-hard. The following algorithms are iterative:

GMS, REAPER, R1PCA, TORP, MDR, OP, FMS, GGD,

TME, Dümbgen’s M-estimator, RANSAC, and RF. Among

these, under certain conditions, only GMS [119] and GGD [73]

have guarantees for r-linear convergence and TORP [17] has a

guarantee for linear convergence. Also, FMS [53] has a weak

guarantee of local r-linear convergence in a very special case.

The conditions for GGD can be weakened at the expense of a

sublinear convergence rate, and OP and MDR have sublinear

convergence in general. For convergence rate, we present the

number of iterations required to achieve ǫ-accuracy for the

given iterative algorithms. For the online algorithms, we use

T to denote the number of passes over the dataset, which is

often very high.

The worst complexities are for the maximization L1-PCA

algorithms [67]. The exact maximization L1-PCA algorithms

run in O(N rank(X)) for N ≥ D [67] and O(2N ) for D < N .

It is important to note that an algorithm running in O(ND)
or O(2N ) is not efficient at all for big datasets.
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Method Complexity Convergence Rate

Maximization L1-PCA [67] O(N rank(X)) or O(2N ) No iteration

Dümbgen’s M-estimator [27] T ·O(N2D2) No result1

Spatial Kendall’s tau [106] O(N2D2) No iteration

SRO [116] O(N2D +N3) No iteration

CP [90] O(N2D) No iteration

GMS [119] T ·O(ND2 +D3) r-linear convergence under the 2-subspaces criterion

TME [118] . . . No result1

RF [41] T ·O(D3) O(1) w.h.p. when SNR≥ d/(D − d) in noiseless RSR [2]

REAPER [56] T ·O(ND2) No result2

OP [74, 111] T ·O(ND2) O(ǫ−1/2)

MDR [74] . . . O(ǫ−1/2)
(D)HR-PCA [31, 112] . . . O(1)
RMD [38] T ·O(D2) No result

MKF [121] T ·O(Dd) No result

R1PCA [24] T ·O(NDd) No result
FMS [53] . . . No general result, local r-linear convergence for special model

GGD [73] . . . O(ǫ−2) under stability condition, r-linear under further condition
Projection pursuit . . . No result

[1, 18, 44, 51, 57]
TORP [17] . . . Linear convergence in the settings of Theorem 4
RANSAC [33] . . . O(1) w.h.p. when SNR& d in noiseless general position RSR [2]

SPCA [63] O(NDd) No iteration

ConstApprox [19] O(nnz(X) + poly(d/ǫ)) No iteration

ACOS [58] T ·O(NinDd+ ρ1ρ2NDmax(ρ1D, ρ2N)) O(ǫ−1/2)

TABLE II: Complexity of the various RSR algorithms with constant iteration count T .

MKF [121] O(dD)
RMD [38] O(D2)
RF [41]

ConstApprox [19] O(nnz(X) +Dd)
ACOS [58] O(ρ1ρ2ND + ρ1Dd)
R1PCA [24]
FMS [53]
GGD [73]
SPCA [63]
RANSAC [33] O(ND)
Projection pursuit [1, 18, 44, 51, 57, 74]
TORP [17]
OP [111]
L1-PCA [67]

CP [90] O(N2 +ND)
SRO [116]

REAPER [56]
GMS [119]
MDR [74]

TME [118] O(ND +D2)
Spatial Kendall’s tau [106]
Dümbgen’s M-estimator [27]

TABLE III: Memory requirement of the RSR algorithms.

Other very slow algorithms are Dümbgen’s M-

estimator [27] and spatial Kendall’s tau [106] that run in

T · O(N2D2) and O(N2D2) time, respectively. Calculation

of the spatial Kendall’s tau matrix is more efficient because

there is no iteration.

1All results on TME also apply to Dümbgen’s M-estimator. For TME,
Kent and Tyler [49] proved convergence without rate guarantees in a setting
that may fit near recovery in noisy RSR, and Zhang [118] proved convergence
without rate guarantees to a singular matrix in a setting for exact recovery in
noiseless RSR. We note that r-linear convergence was proved for the similar
Maronna M-estimator in a setting that may fit near recovery in noisy RSR [5].
Lemma 1 of [39] proves global linear convergence of a regularized version
of TME, but the required lower bound on the regularization parameter seems
impractical for RSR.

2Lerman et al. [56] proved convergence with no rate guarantee for the
REAPER procedure.

For CP, we show the complexity of calculating the full

Gram matrix on all the points in X in the full dimension D.

The authors advocate using a random projection and column

subsampling to decrease complexity, but these ideas can be

extended to many of the other methods listed here, as was

done in [58]. Using these strategies also tends to decrease the

accuracy of the given algorithm.

The next slowest algorithms run in T · O(ND2) or T ·
O(D3) time. For example, GMS, REAPER, and TME must

calculate the full covariance, which takes O(ND2) time [56,

118, 119]. TME and GMS require matrix inversions, which

require O(D3) time [118, 119]. RF requires a determinant

calculation/solving a system of linear equations, which takes

O(D3) time [41]. Finally, solving OP or MDR using a method

such as proximal gradient descent takes T ·O(ND2) time.

Other algorithms operate in complexity T ·O(NDd). This

is also the complexity of using the power method to compute

the PCA subspace (through the top d singular vectors of the

data matrix). These methods include FMS [53], GGD [73],

and TORP [17]. Although the RANSAC variant of Arias-

Castro and Wang [2] runs in T · O(Dd), we believe that the

algorithm may not be as stable as classical RANSAC [33].

Therefore, we display the complexity of classical RANSAC

in Table II. Arias-Castro and Wang [2] bound the number of

iterations required for their variant of RANSAC to exactly

recover the underlying subspace when SNR≥ O(d), the data

is noiseless, and the data is in general position with respect

to the underlying subspace. They also show that the number

of iterations becomes exponential in d for lower SNR under

the same assumptions. Despite the fact that the arguments

of Arias-Castro and Wang [2] were proven for their variant

of RANSAC, one can use these arguments for the classical

RANSAC paradigm as well.

ConstApprox [19] is able to account for sparse input ma-
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trices, and thus operates in time dependent on the number of

non-zero entries in X , which is denoted by nnz(X). In the

case of a dense matrix X , this complexity is still O(ND),
which is approximately O(NDd) when d is small. Although

this method may be fast, it has no guarantee of recovering a

subspace.

Beyond the O(NDd) limit for exact algorithms, some have

tried to pursue even faster algorithms for approximating the

underlying subspace. For example, the work of [58] uses row

and column subsampling of the matrix to reduce the N and

D factors and speed up computational time. The outliers can

then be identified resulting in a speed-up of the algorithm.

However, in this case, it makes the theoretical guarantees of

any algorithm used in the subsampled case somewhat weaker.

Further, after filtering the outliers, one must still calculate

the inlier subspace, which takes at worst O(NinDd). Thus,

depending on the number of inliers, it may not improve much

over O(NDd). Indeed, since ACOS is an approximation of

OP, and OP is only guaranteed for large percentages of inliers,

this can still take quite long.

We also include two online algorithms in our comparisons.

The Median K-Flats (MKF) algorithm [121] operates in

T ·O(Dd) time, while a slower robust mirror descent (RMD)

algorithm is given in [38], which operates in T ·O(D2) time.

However, these algorithms must pass over the data at least

once, and so there is a hidden factor of N in the iteration

complexity for each of these algorithms. Further, since the

sample complexity for these methods is not known, the number

of iterations (or passes over the data) required for these

methods can be quite large, and, in practice, can require even

more time than the other T ·O(ND2) methods.

Next, we discuss the memory requirements presented in

Table III. Here, the factor of O(N2) seen for CP and SRO

is typical of all strategies that follow [16], due to the need

to store the N × N weight matrix. The O(D2) factor is

typical of methods that need to store a covariance type esti-

mator [27, 38, 56, 106, 118, 119], methods that use the lifting

convex relaxation technique [74], or methods that require

a set of D points [41]. The O(ND) factor is typical of

methods that need to store the whole data matrix in memory

or calculate the SVD of a dense matrix. Online algorithms

may have improved memory because they can stream the

data and only need to store an estimator at each iteration,

which is the case for MKF [121]. ConstApprox [19] improves

over other algorithms by accounting for sparse inputs. Finally,

ACOS [58] subsamples the input matrix and reduces the

amount of memory needed when running OP.

V. NUMERICAL EXPERIMENTS AND APPLICATIONS

Numerical experimentation is very important for proper

evaluation of RSR algorithms. In this section, we outline what

has currently been done to evaluate RSR algorithms on both

synthetic and real datasets and what remains to be done.

A fundamental issue of the RSR problem is how to measure

accuracy. The use of energy-based metrics, which may use

the energies described in §II-B-§II-H, is problematic since

they are inherently tied to the methods that optimize them.

For example, if we wanted to evaluate subspaces by their

least absolute deviations energy, we would expect the least

absolute deviations algorithms to give lower energy than

another method not designed to optimize that energy. For

synthetic experiments, where one knows the underlying sub-

space, an easy choice of metric is the subspace’s distance

from ground truth [53, 56, 119]. For real data, the metric

depends on the application. For example, when using RSR

for robust dimension reduction for enhanced clustering [53],

the actual metric by which RSR algorithms are compared is

clustering accuracy. This demonstrates that accuracy should be

determined by application, not by some general energy.

In the following subsections, we will discuss the applica-

tion of RSR algorithms on data examples. First, §V-A will

discuss what experiments have been done with real data and

how to evaluate them. Then, §V-B will discuss experiments

on datasets that reflect both synthetic settings of theoretical

interest and stylized applications as a way to compare RSR

algorithms.

A. Experiments with RSR on Real Datasets

Experimentation with RSR methods on real data is some-

what lacking due to the fact that it is a general purpose

tool rather than a solver for any specific application. We can

compare this to the more classical subspace modelling tool of

PCA. PCA is a natural and ubiquitous data processing method,

due to the fact that it can reduce the dimension of a dataset

and also provide an orthogonal set of descriptive directions

within the data. As such, PCA is not suited to completely

solve any one problem, even though it can give insight through

its descriptive factors and can act as a valuable dimension-

reduction submethod. However, as discussed earlier, PCA is

not robust to outliers within a dataset.

RSR should mimic the applicability of PCA and be a general

purpose tool for dimension reduction, while at the same time

not being as sensitive to corrupted data. In this way, the hope

would be that an RSR algorithm would perform as well or

better than PCA on most, if not all, datasets that require some

form of dimension reduction. We remark that if one wants

descriptive robust orthogonal factors with reduced dimension,

then one may use PCA on the projection of the dataset, or

its estimated inliers, onto the subspace obtained by an RSR

algorithm.

Because RSR is such a general purpose tool, it is hard to

point to any one stand out application. And, as we will discuss

in the coming subsections, most of what has been done in the

literature is quite artifical. In what has been done, we find

the dimensionality reduction and denoising aspects of RSR

algorithms to be the most intriguing. An important thrust for

future research should be testing RSR algorithms in more real

data scenarios. In particular, it would be useful to compile a

database of example datasets to further test RSR algorithms

as a dimension-reduction preprocessor.

In the following two subsections, we will outline exper-

iments that have been done with RSR algorithms on real

datasets. In §V-A1, we discuss the use of RSR algorithms

for dimension reduction and data preprocessing. Then, in
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§V-A2, we discuss the application of RSR algorithms to image

datasets.

1) Dimensionality Reduction for Data Preprocessing: One

intriguing property of PCA is its ability to reduce dimensional-

ity of data while simultaneously reducing noise [9, 47]. Anal-

ogously, it has also been found that robust subspaces can have

great descriptive power in the presence of noise and outliers.

For example, the potential application of dimension reduction

by RSR algorithms in astrophysics data was first explored

in [11], and then later considered again in [53]. Lerman and

Maunu [53] also demonstrate the descriptive power of RSR

on clustering activity time series. More examples of robust

dimension reduction for classification and regression can be

seen in [45].

McCoy and Tropp [74] test their low-leverage decompo-

sition (which is the same as OP) on Fisher’s iris data. They

show that a low-dimensional, robust subspace can describe the

observations from one of the flower varieties quite well. In this

experiment, they use a dataset with many observations from

one flower type and “corrupt” the sample with observations

of other flower types. The results visually show that RSR can

capture more variation of the inlier flower type than PCA,

although the authors do not give a quantitative measure of

this.

Other work has considered using the RSR representation

for visualization of genomics data [79, 86]. Here, outliers

are filtered and PCA is done on the resulting datasets. In

particular, Novembre et al. [79] show that this combination of

filtering and PCA yields insightful visualizations that compare

genes and geography.

In all of these experiments, RSR is a useful off-the-shelf tool

for dimension reduction, data preprocessing, and visualization.

Some quantification of the success of RSR methods appears

in [53] and [45], although this is only done for a few

datasets. More extensive experimentation with a large database

is needed to study the effectiveness of RSR as such a tool.

2) Image Data: A popular task in machine learning is

recognition of handwritten digits. Inspired by this, Xu et al.

[111] considered a stylized experiment to show the capability

of an RSR method to find a descriptive subspace to recognize

differences between 1’s and 7’s. However, this experiment is

only visual and does not have any quantitative measures of

performance.

Many researchers have also tried to apply RSR algorithms

to video surveillance data [119]. However, we argue that

this is not a proper application of RSR algorithms, and it

seems that RPCA, which addresses sparse-corruptions, models

this application better. And indeed, RPCA works have shown

impressive results on video surveillance data [42, 43].

Other works have studied the use of RSR algorithms on

datasets of face images [53, 56, 118]. Such experiments

are usually synthetic in some sense, and so we leave their

discussion to §V-B. The datasets are generated based on the

observation that images of the same face under changing

illumination approximately lie on a linear subspace [8].

B. Experiments with RSR on Synthetic and Stylized Datasets

With the lack of real experimentation pointed out in the last

section, we will resort to looking at synthetic experiments and

stylized applications in this section. We first discuss previous

experiments on synthetic data in §V-B1. We will then include

a baseline simulation with the haystack model in §V-B2. Next,

we supplement this with a stylized application of face subspace

recovery in §V-B3.
1) Review of Experiments on Synthetic Data: In most of the

works we have reviewed, experiments were run on synthetic

data to show the usefulness of the developed methods. It is

hard to find a complete comparison of the various subspace

recovery methods, and, to our knowledge, Lerman and Maunu

[53] provide the most comprehensive comparison of RSR

algorithms on Gaussian generative models.

The extensive experiments in [53] compare all of the

various algorithms on synthetic data drawn from the haystack

model of [56] in various regimes. For most cases, the au-

thors found FMS and TME to be the most robust to high

percentages of outliers in these models. However, TME had

a higher runtime, which matches the larger computational

complexity O(T · max(ND2, D3)) versus O(T · NDd) for

FMS. Algorithms that were not sufficiently accurate were

MKF [120], REAPER [56], R1-PCA [24], GMS [119],

RMD [38], RPCA [14, 61, 62], HR-PCA and DHR-PCA [31,

112], LLD and MDR [74], and OP [111].

Another interesting experiment can be seen in [119], where

the authors test robustness of various algorithms with respect

to asymmetric outliers. Here, outliers are distributed i.i.d. from

the uniform distribution on [0, 1]D, and inliers follow a

Gaussian distribution on a random subspace in R
D. In this

model, the outliers are highly asymmetric with respect to the

underlying subspace.

Other works have used stylized applications to test RSR

algorithms on datasets with some real characteristics. For ex-

ample, the inliers in a common real data example are images of

a single person’s face with constant pose and varying illumina-

tions. In this case, the face images are known to approximately

lie on a 9-dimensional linear subspace [8]. The “Faces in a

Crowd” experiment is one stylized example of identifying a

face subspace in a dataset with outliers [53, 56, 118]. Here,

the outliers are taken to be other natural images, and the goal

is to recover the underlying face subspace. Such a dataset is

obviously stylized, since it arises nowhere in practice
2) Haystack Model Simulation: While there is a great need

for new statistical models of data, we believe that comparison

of performance under the haystack model has value. The main

deficiencies of the haystack model (and to a certain extent, the

generalized haystack model), are: 1) when not normalized to

the sphere some simple statistics may distinguish inliers from

outliers, 2) recovery under the haystack model can be easy

for some algorithms. Although this may raise concerns, we

believe that some algorithms successful on the haystack model

will succeed on many other models and settings. To this end,

we also include additional tests in §V-B3.

Our summary experiment on the haystack model is given in

Figure 4. We run an analogous experiment to that in Lerman

and Maunu [53], which includes as many algorithms as



22

possible. Here, we fix the parameters N = 400, D = 200,

and d = 10, and we generate inliers i.i.d. N(0,PL∗
/d) and

outliers i.i.d. N(0, I/D). We perturb all points by additional

noise distributed i.i.d. N(0, 10−4I). We generate 20 datasets

at each fixed outlier percentages 5%, 10%, . . . , 95%, resulting

in 400 errors and times for each algorithm. These are sum-

marized in box plots, whose x-values are the log-errors and

y-values are the log-mean times for each algorithm. The edges

of the boxes represent the 25th and 75th percentiles of the

log-errors, and the red line represents the median log-error.

The extreme ends of the whiskers represent a 99.3% coverage

interval under the assumption that the log-errors are Gaussian.

The red points are errors that lie outside of this interval. The

further down and left an algorithm is, the better it performs.

Acronyms or names for the algorithms are as follows:

TME (Tyler’s M-estimator [118]), (S)FMS ((Spherized) Fast

Median Subspace [53]), (S)GGD ((Spherized) Geodesic Gra-

dient Descent [73]), REAPER [56], GMS (Geometric Median

Subspace [119]), GMSO (Geometric Median Subspace with

1.5D added spherically symmetric Gaussian outliers [119]),

OP (Outlier Pursuit [74, 111]), MDR (Maximum Mean Ab-

solute Deviation Rounding [74]), DHRPCA (Deterministic

High-Dimensional Robust PCA [31]), R1PCA (Rotational

Invariant L1-norm PCA [24]), (S)PCA ((Spherized) Principal

Component Analysis), MKF (Median K-Flats [120]), SRO

(Self-Representation Outlier Detection [116]), RPCA (Robust

PCA, for which principal component pursuit was used) [60],

RMD (Robust Online Mirror-Descent PCA [38]), ACOS

(Adaptive Compressive Sampling [58]), TORP (Thresholding

Based Outlier-Robust PCA [17]), CP (Coherence Pursuit [90]),

and RANSAC [2, 33]. All algorithms are run with default

parameters using code produced by the authors when available.

For RF, we choose the determinant threshold δ to be 10−3.

OP uses λ = 0.8
√

D/N , as was used in [119], and we found

this choice to perform much better than the recommended

3/(7
√
Nout). ACOS uses this same λ when it calls OP and

also uses a subsampling rate of 1/5. For TORP and DHRPCA,

we set the percentage of outliers to be α = 0.5 because there

is no easy procedure to estimate this parameter in general.

MKF passes over the data ten times and RMD passes over the

data twice. For RANSAC, we use the RSR variant described

in §II-I. We run 500 iterations and return the subspace with

the best consensus number out of these iterations. We set the

consensus threshold to be 10−3. For CP, we implemented

Algorithm 2 in [90] with recommended parameters. This

procedure, which is advocated by the authors of [90] for

dealing with noise, was not implemented in their code, and

direct implementation of their original code for noiseless RSR

was not satisfying. We set the threshold parameter to be the

standard deviation of the noise, which is unknown to the user,

and thus running CP in this way is somewhat unrealistic. We

also set the projection dimension to be 2 ·d, and the algorithm

is run 5 times. PCA is used to find the underlying subspace

on the set of all inliers identified in the 5 runs put together.

In these tests, we do not compare with DPCP [103], since

the code provided online is really just an iterative application

of a slower version of the FMS algorithm, and generally DPCP

is meant for the setting of large d.

As we can see from this plot, the most accurate algorithms

are FMS, SFMS, TME, SGGD, and SRO. Out of these

algorithms, FMS is the fastest. TORP also performs well on

this data when the correct percentage of outliers is used, but

we cannot assume that this is known in practice. Even so,

TORP is not as accurate and fast as FMS. DHRPCA does not

perform well even if the true percentage of outliers is used. CP,

despite having higher complexity than many other algorithms,

is faster due to the fact that it is non-iterative (although it will

not scale as well to large datasets).

3) The Blurryface Model and Simulations: We propose

the blurryface model for statistically generating data in a

stylized application of recognizing the most significant face

in a dataset with many face images. We simulate such data

and test all implemented RSR algorithms. The motivation here

is to generate data with statistics that mimic real data. As

was mentioned earlier, images of a single person’s face under

varying illumination and constant pose approximately lie on a

subspace of dimension 9 [8]. This experiment tries to recover

this 9-dimensional subspace in a dataset with outliers.

We take images from the Extended Yale B face

database [52] and center each subject’s subset. Since there are

only 64 images per person in the database, we develop the fol-

lowing procedure for generating low-dimensional inlier faces.

First, we take all centered images of the first subject’s face and

calculate the sample covariance, Σ̂, along with its eigenvalue

decomposition. We keep only the top 9 eigenvectors and

eigenvalues and store them in U∗ and S∗, respectively, so

that Σ̂ ≈ U∗S∗U
T
∗ . Synthetic inlier faces are generated

i.i.d. N(0, c1U∗U
T
∗ /d) or i.i.d. N(0, c2U∗S∗U

T
∗ ). The first

model is the spherically symmetric inlier model and the second

model is the elliptical inlier model. The constant c1 is the

average squared norm of all centered faces in the database

and c2 = c1/(Tr(S∗)). These constants are designed to give

inliers comparable magnitude to the original centered faces. In

both experiments, outliers are sampled without replacement

from the other faces in the database. In both experiments,

we also perturb all points by small Gaussian noise sampled

i.i.d. N(0, 10−4I/D) (which gives rise to “blurry” faces).

We note that the distribution of the inlier faces is quite

different than the natural face images, which lie in a cone.

This experiment is just meant to approximate this distribution

to some reasonable degree and allow for easy generation

of samples. Outliers all lie in a cone and are asymmetric,

which makes subspace recovery more challenging than in the

haystack model.

Figure 5 illustrates comparisons between the implemented

RSR algorithms using data generated from the two instances

of the blurryface model. We generate 20 datasets at each fixed

outlier percentage (5%, 10%, . . . , 95%) resulting in 400 errors

and times for each algorithm and inlier model (spherically

symmetric and elliptical). These are summarized in box plots,

whose x-values are the log-errors and y-values are the log-

mean times for each algorithm. An explanation of the boxes,

whiskers, and points were given in §V-B2. The results for the

spherically symmetric inlier model are displayed on the left

in Figure 5, and the results for the elliptical inlier model are

given on the right. Algorithm settings are as before. We modify



23

-2 -1.5 -1 -0.5 0 0.5 1

log
10

(error)

-2

-1

0 

1 

lo
g

1
0
(m

ea
n

 t
im

e)

ACOS

CP
DHRPCA

FMS

GGD

GMS

GMSO

MDR

MKF

OP

PCA

RPCA

R1PCA
RANSAC

REAPER

RF

RMD

SFMS

SGGD

SPCA

SRO

TORP

TME

Fig. 4: Accuracy-time comparison for various RSR algorithms under the haystack model. Here, we generate inliers

i.i.d. N(0,PL∗
/d) and outliers N(0, I/D), with N = 400, D = 200, and d = 10. We also generate added noise distributed

i.i.d. N(0, 10−4I/D). Twenty datasets are generated at each percentage of outliers 5%, 10%, . . . , 95%, and the RSR algorithms

are run to calculate a robust subspace. Error is calculated as distance to ground truth (square root of sum of squared principal

angles), and the runtime is recorded. The y-value of the boxplot represents the log-mean runtime and the x-value represents

the log-error.

the thresholds for RF and RANSAC to now be 10−3c, where

c is the mean norm of data points in the given dataset. This

threshold is designed to be almost on the order of the smallest

deviation of inlier faces from the underlying subspace.

For the spherically symmetric face model, TORP and

TME appear to give the best accuracy. The next most ac-

curate algorithms are FMS/SFMS, GGD/SGGD, GMSO, and

REAPER. Out of all of these accurate algorithms, the fastest

is FMS/SFMS. For the elliptical face model, the best accuracy

is given by TME, followed by FMS/SFMS, SGGD, and

REAPER. Out of these algorithms, FMS and SFMS are the

fastest, while TME is much slower. Again, CP is fast due to

its non-iterative nature and the small size of the dataset.

We note that, while GMSO has some success with the

spherically symmetric inlier models, it struggles with the

elliptical inliers. TORP performs very well on the spherically

symmetric blurryface data with the correct percentage of

outliers, but again we cannot assume this is known in practice.

Even with the correct percentage, TORP fails on the elliptical

blurryface model. Again, DHRPCA does not perform well on

either example even if the true percentage of outliers is used.

Following the discussion on minimization L1-PCA in §II-E,

one may suggest testing RSR on models with heavy tailed

elementwise noise. For example, one may try Laplacian noise

as mentioned in [7]. However, this is not the RSR problem

formulated in this survey. We briefly tested such settings

and noticed that most RSR algorithms are comparable on it,

while RPCA [60] performs somewhat better. This result is

not surprising as the RPCA problem was discussed as a loose

relaxation of the version of L1-PCA in (19).

VI. INFLUENCE OF RSR ON OTHER METHODS

The study of RSR can influence the development of theory

and algorithms for other challenging problems. In this section

we discuss the important relationship of RSR with other

mathematical problems.

One problem mentioned earlier is robust subspace clus-

tering. A mathematical formulation of this problem assumes

inliers sampled from (or around) a union of subspaces and

outliers sampled from a different, though somewhat restricted,

distribution. The goal is to identify the different underlying

subspaces. This problem was addressed in [4, 16, 54, 55,

94, 116, 121] by initially applying methods for filtering

outliers that are the same as those in RSR. Indeed, the idea

of identifying outliers by affinities that express presence in

an underlying subspace (see §II-H) works equally well for

multiple underlying subspaces.

RSR methods may improve robust subspace clustering in

addition to filtering outliers. A naive approach for solving

robust subspace clustering is to sequentially fit a robust

subspace or a single robust direction or sequentially remove a

robust direction. Some previous works have already applied

such sequential RSR strategies to solve this problem. For

example, one of the methods in [114] sequentially fits a single

subspace by using RANSAC. Furthermore, the method of

[89] can be explained as sequentially searching for a least

significant orthogonal direction b that aims to minimize (11).

Equivalently, it can be described by sequentially searching
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Fig. 5: Accuracy-time comparison for various RSR algorithms on the blurryface data. Here, we generate inliers on the 9-

dimensional face subspace estimated from the data, and outliers are random images of other faces. On the left, we generate

inliers i.i.d. N(0, c1U∗U
T
∗ /9), and on the right we generate inliers i.i.d. N(0, c2U∗S∗U

T
∗ ). We fix N = 500 and D = 400,

and we also generate added noise distributed i.i.d. N(0, 10−4I/D). Twenty datasets are generated at each percentage of outliers

5%, 10%, . . . , 95%, and the RSR algorithms are run to calculate a robust subspace. Error is calculated as distance to ground

truth (square root of sum of squared principal angles). The y-value of the boxplot represents the log-mean runtime and the

x-value represents the log-error.

for a least absolute deviation hyperplane, minimizing (9)

(see clarification right after (11)). Tsakiris and Vidal [103]

sequentially use the same RSR formulation in (11) to solve the

problem of hyperplane clustering, that is, when the dimensions

of all underlying subspaces are D − 1. However, there are

many geometric obstacles to any sequential RSR approach for

general robust subspace clustering, unless one assumes a very

restrictive setting.

Another possibility is to use RSR within a K-subspace

algorithm, which generalizes K-means to subspaces (see, e.g.,

[54, 121]). However, theoretical guarantees are not developed

yet for such an algorithmic approach (Lerman and Zhang [54]

provide guarantees for the oracle minimization of such an ap-

proach, but not for an algorithm minimizing it). Furthermore,

this method requires knowledge of the intrinsic dimensions

of the subspaces, unlike [29]. Application of the K-subspace

strategy with RPCA instead of RSR was suggested by [108] to

address some problems in image denoising (with nonstandard

noise) and blind inpainting. In these problems, the subspaces

are used as approximate models and there is some flexibility

in choosing the dimensions of the subspaces. Another possible

application of RSR to robust subspace clustering is the use of

robust energies in the framework proposed in [122]. Furthe-

more, the local best-fit flats in this strategy can be the output

of an RSR algorithm.

RSR might be extended to the more general problem of

robust manifold clustering, where the inliers are sampled from

(or around) a union of manifolds and the goal is to recover

the underlying manifolds [4]. Indeed, this might be possible

by restricting RSR methods to local neighborhoods. Similarly,

such a strategy can apply to the problem of robust recovery

of a single manifold.

Developments within RSR can be beneficial for other kinds

of modeling problems. For example, convex algorithms for

RSR that rely on IRLS procedures [56, 119] inspired the

development of methods for two problems in computer vision:

robust recovery of camera locations from corrupted pairwise

directions [84] and robust synchronization [107], that is,

robustly estimating unknown rotations (in particular, camera

orientations) from a set of corrupted pairwise rotations [107].

Furthermore, the proof of the main theorem in [107] (Theorem

4.1) borrows and adapts ideas from [56, 119]. Similarly, ideas

of filtering outliers, which are weakly reminiscent of [16],

were used in [92] to enhance solutions of the camera location

problem. However, the latter problem is more challenging. In

this setting, the outliers are associated with pairwise directions

between points and not the points themselves. Moreover, any

3 uncorrupted pairwise directions lie on a two-dimensional

subspace, but the subspaces defined in this way have no direct

relationships. Thus, the set of uncorrupted pairwise directions

does not have a simple geometric model, such as a subspace.

Other methods of filtering outlier pairwise directions have

to be developed to take advantage of the more complicated

geometry here.

It is likely that the recent theoretical work of [73] can

be generalized to other NP-hard recovery problems that can
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be formulated via optimization over continuous, nonconvex

sets. One immediate candidate is robust synchronization over

the special orthogonal group, and we have already mentioned

the influence of RSR methodology there [107]. In these

optimization problems, one may possibly extend the determin-

istic conditions in [73] by considering appropriate notions of

permeance and alignment in the new setting. One may further

guarantee recovery by a gradient descent algorithm under these

extended conditions.

Another problem that requires RSR is that of finding the

sparsest vector within a subspace. Indeed, Qu et al. [88]

formulated this problem by using (11) with Xb instead of

XT b (note the dimension of b changes as well). They pointed

out its connection with sparse dictionary learning and sparse

PCA.

Robust fundamental or essential matrix estimation in com-

puter vision can also be cast as an RSR problem. One way

to calculate such matrices is to use PCA on a set of data

points, although in these settings there are frequently many

outliers. Further, inlier and outlier points tend to exhibit very

asymmetric distributions. Specially tailored variants of RSR

methods may be able to outperform existing methods for

robust fundamental matrix estimation [91, 101, 102].

VII. FUTURE WORK

One option for future work is to better understand large-

sample and high-dimensional limits for RSR. Some online

algorithms have been proposed for robust subspace estima-

tion [38, 121], but their theoretical guarantees are not satisfy-

ing and their performance is disappointing. It is also not known

how many samples are needed for these methods to converge.

Huroyan and Lerman [45] have considered distributed models

for RSR. Here, the authors assume that a dataset is distributed

across many nodes and communication is limited by the

network structure. They show under certain conditions that it

is still possible to optimize some previously proposed problem

formulations [53, 56, 119] in this setting.

Affine subspace estimation is not well studied, but a po-

tential important extension of current work. One can consider

estimation on the affine Grassmannian [59], although the esti-

mation considered in [59] may not be tight enough. A simple

idea can be seen in the IRLS procedures of GMS, REAPER,

and FMS [53, 56, 119], which have a trivial extension to affine

subspaces. However, we have not seen a practical advantage

to including this extension for real data, and it remains an

open question to see if considering affine subspaces can

add real value over centering data by the geometric median.

Another possibility comes from considering Dümbgen’s M-

estimator [27], spatial Kendall’s tau [106], or any symmetrized

version of a robust covariance estimator [78]. For example,

both Dümbgen’s M-estimator and spatial Kendall’s tau have

been considered for independent component analysis by Oja

et al. [81]. As mentioned earlier, it is not immediately obvious

how to estimate the offset for the affine subspace with these

estimators, though.

Another potential realm that is not well understood is esti-

mation of the subspace dimension for the RSR problem. Some

work has gone into dimension estimation for PCA [25, 50],

but there are no analogous works for RSR. And, indeed, the

fastest RSR algorithms require knowledge of the subspace

dimension d a priori. One potential issue of direct application

of these methods is that, unlike PCA, RSR methods do not give

nested subspaces. This makes it harder to compare subspaces

across dimensions and makes heuristic strategies, such as

the elbow method, hard to motivate and costly to compute.

One must also determine a good metric to compare across

dimensions, for which there is no easy or obvious choice.

Thus, the development of methods for this problem would be

an interesting direction for future work.

Robustness to noise in the PCA problem is also a relatively

unstudied problem. One possible path is to pursue ideas similar

to those in [20]. The work of [17] also has a nontrivial result

to noise, where they achieve similar rates as PCA to sub-

Gaussian noise, even in the presence of outliers. However, [17]

requires knowledge of the fraction of outliers, which makes

the setting of the robustness to outliers easier. But, perhaps

the future of noise analysis lies in looking at heavy-tailed

distributions and limits in the various models of inliers and

outliers. One intriguing idea for heavy-tailed noise is given

by [75], where the author uses the idea of median of means

to construct a robust covariance estimator. This estimator can

then be used to find a PCA subspace that exhibits asymptotic

sub-Gaussian estimation bounds, even in the presence of

heavier tailed data. The determination of optimal rates and

consideration of other noise regimes remain open problems.

One question is where the recovery theory of RSR should go

next. Indeed, theoretical guarantees of recovery under special

models are not the primary goal of RSR. Instead, we wish

to have methods that are useful in practice. Recent work on

robustness has considered how well an algorithm can perform

in the presence of adversarial corruption [23, 99]. Although

adversarial outliers have been considered in the context of

some RSR algorithms, such as [111], current results are weak,

and it seems that better algorithms and guarantees can be

developed for these cases [72].

So far, analysis of the inliers and outliers in RSR has been

separated. This has led to the separate notions of permeance

and restricted alignment we discussed in §III-A, which are

each formulated with respect to the inliers or outliers alone.

These independent formulations are then combined to form

a stability constraint on the model. The work of Hardt and

Moitra [41] does not separate between two conditions of inliers

and outliers, but it has a very simplistic and well-defined

setting. It would be interesting to find out if there are more

refined stability conditions that involve both inliers and outliers

together. In contrast to the work of Hardt and Moitra [41],

these conditions would need to be more general and allow

both inliers and outliers to lie on lower dimensional subspaces

to capture a wider range of examples.

In terms of RSR, one can raise the question of whether

or not the study of high-dimensions is really needed. Using

ideas from the Johnson-Lindenstrauss lemma [46], one may

think that a few random projections will maintain most of the

important statistics of the data, including the low-dimensional

subspace structure. However, short simulations have shown
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that while this can work for low percentages of outliers,

it becomes harder in low SNR regimes. This should not

be surprising, because the low SNR regimes experience the

hardness threshold of d/(D − d) [41]. Indeed, the SNR

threshold increases as D decreases. Quantifying how well

random projections work for RSR is an interesting avenue for

future work.

Finally, as was mentioned in §V-A, there is a need for more

experimentation on RSR methods. One thing we advocate

is the development of a database of examples to test RSR

methods on. Datasets within this database must also have prop-

erly defined measures of success that are tied to the specific

application. A possible start to this database could involve

wider experimentation on robust dimensionality reduction for

a variety of tasks. Another option is to develop more stylized

applications to test RSR methods on datasets that mirror real

data in some way.

A supplemental webpage with code and data will be pro-

vided at https://twmaunu.github.io/rsr overview/.
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APPENDIX

A. Intuition for the Robust Covariance Matrices

To clarify the robust energies in (28) and (29), we express

them as scaled versions of negative log-likelihood functions

with respect to heavy-tailed elliptical distributions. We thus

understand the Maronna and Tyler M-estimators as maximum

likelihood estimators that are robust to heavy tails. We assume

a centered elliptical distribution with density function f that

is everywhere positive. That is, f has the form

f(x;Σ) =
g(xT

Σ
−1x)

√

det(Σ)
, where g : (0,∞) → (0,∞).

(45)

If x1, . . ., xN are i.i.d. sampled from f , then the likelihood

function has the form

L(Σ|X ) =

∏N
i=1 g(x

T
i Σ

−1xi)

det(Σ)
N
2

. (46)

Setting ρ(t) = −2 log(g(t)), the negative log-likelihood func-

tion can be expressed as follows

− log(L(Σ|X ))

N
=

1

2N

N
∑

i=1

ρ(xT
i Σ

−1xi) +
1

2
log det(Σ).

(47)

This is the energy in (28) and its minimization is equivalent to

maximization of the likelihood function. Using basic calculus,

we calculate the derivative of this function as

− ∂

∂Σ

log(L(Σ|X ))

N
= (48)

1

2N

N
∑

i=1

ρ′(xT
i Σ

−1xi)Σ
−1xix

T
i Σ

−1 +
1

2
Σ

−1.

Setting (48) equal to zero, the minimizer of (47), or equiva-

lently (28), can be obtained by solving the following equation

for Σ, where w(t) = ρ′(t):

1

N

N
∑

i=1

w(xT
i Σ

−1xi)xix
T
i = Σ. (49)

We first note that when f is a multivariate Gaussian distri-

bution then g(t) = exp(−t/2)/c(D) = exp(−t/2)/(2π)D/2.

This implies that w(t) = 1 and the corresponding minimizer

of (28), whose formula is expressed in (49), is the sample

covariance matrix. On the other hand, when g has heavier

tails, e.g. g(t) = exp(−tp/2p)/c(D, p) for 0 < p < 1, (49)

results in more robust estimators to heavy tails. Indeed, in

this case w(t) = tp−1 and the solution of equation (49) can

be interpreted as a more robust version of the covariance

matrix. In the left hand side of (49), each term xix
T
i is

weighted by (xT
i Σ

−1xi)
p−1. We further note that since we

want to emphasize the top d eigenvectors of Σ, we may

identify xi as an “outlier” whenever xT
i Σ

−1xi is relatively

large, or equivalently, when (xT
i Σ

−1xi)
p−1 is relatively small.

Therefore, the left hand side of (49) is a weighted covariance

matrix, which tends to de-emphasize outliers.

Another heavy-tailed density function can be obtained by

considering the D-variate Student’s t-distribution with ν de-

grees of freedom. In this case, g(t) = c/(t + ν)(D+ν)/2 for

some constant c and thus w(t) = (D + ν)/(t + ν). The

tails of this distribution are heaviest when ν approaches zero.

Formally, in this case, ρ(t) = D log(t)−2 log(c), w(t) = D/t
and the energy in (29) corresponds to the expression in

(47) divided by D with the non-constant part of ρ, that is,

ρ(t) = D log(t). This energy in (29) is different than the

one in (28) since its solution is not unique over the set of

positive definite matrices and an additional requirement, such

as tr(Σ) = 1, is needed. On the other hand, the Maronna

M-estimator assumes some conditions on ρ that guarantee

a unique minimizer of (28) over the set of positive definite

matrices.

A typical example of the Maronna M-estimator is the one

mentioned above, where w(t) = ρ′(t) = tp−1 for 0 < p < 1.

Notice that the non-constant part of ρ is ρ(t) = tp/p. For this

and other ρ’s satisfying the required conditions, the Maronna

M-estimator can be computed by the following iterative pro-

cedure arbitrarily initialized with any positive definite matrix

Σ0:

Σk+1 =
1

N

N
∑

i=1

w(xT
i Σ

−1
k xi)xix

T
i . (50)

Numerical properties of this solution and, in particular, its

convergence to the fixed point in (49) are discussed in [5]
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and [69]. TME can similarly be computed by substituting

w(t) = D/t in (50) and dividing the resulting Σk+1 by

tr(Σk+1), so that it satisfies the constraint tr(Σk+1) = 1.

Numerical properties of this solution for TME are discussed

in [49] and [118].

As explained in [69], this framework can be formally

extended to the more general setting where both µ and Σ are

unknown, and one wishes to estimate them jointly. We remark

that the estimate of µ in this procedure would be a robust point

estimator. Alternatively, one can follow the symmetrization

procedure explained in §II-F and independently estimate Σ.

The mean, µ, can then be estimated separately by some robust

point estimator. As alluded to in §II-F, the advantage of the

latter procedure over the former one is that errors in estimating

µ do not propogate errors in estimating Σ.
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