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Applications of community detection techniques to

brain graphs: Algorithmic considerations and

implications for neural function
Javier O. Garcia, Arian Ashourvan, Sarah F. Muldoon, Jean M. Vettel, Danielle S. Bassett,

Abstract—The human brain can be represented as a graph in
which neural units such as cells or small volumes of tissue are
heterogeneously connected to one another through structural or
functional links. Brain graphs are parsimonious representations
of neural systems that have begun to offer fundamental insights
into healthy human cognition, as well as its alteration in disease.
A critical open question in network neuroscience lies in how
neural units cluster into densely interconnected groups that
can provide the coordinated activity that is characteristic of
perception, action, and adaptive behaviors. Tools that have
proven particularly useful for addressing this question are
community detection approaches, which can identify commu-
nities or modules: groups of neural units that are densely
interconnected with other units in their own group but sparsely
interconnected with units in other groups. In this paper, we
describe a common community detection algorithm known as
modularity maximization, and we detail its applications to brain
graphs constructed from neuroimaging data. We pay particular
attention to important algorithmic considerations, especially in
recent extensions of these techniques to graphs that evolve in time.
After recounting a few fundamental insights that these techniques
have provided into brain function, we highlight potential avenues
of methodological advancements for future studies seeking to
better characterize the patterns of coordinated activity in the
brain that accompany human behavior. This tutorial provides a
naive reader with an introduction to theoretical considerations
pertinent to the generation of brain graphs, an understanding of
modularity maximization for community detection, a resource of
statistical measures that can be used to characterize community
structure, and an appreciation of the usefulness of these ap-
proaches in uncovering behaviorally-relevant network dynamics
in neuroimaging data.
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Modularity has been hailed as fundamental property of

the human brain dating back to Greek philosophy, and it

has continued to inform theories from phrenology [86] and

cognitive science [79, 36, 172], to brain mapping and func-

tional localization [168]. The relevance of modularity for brain

structure and function stems from its fundamental advantages

for evolution and development. Research across the biological

sciences suggests that modular organization allows for rapid

adaptation [115, 100] and provides robustness to either sudden

or gradual perturbations in genes or environment [123, 115,

116]. Unlike homogeneously connected networks, modular

networks can effectively buffer the impact of perturbations

by keeping their effects relatively local [152] while simul-

taneously enabling efficient information processing [75, 11],

supporting functional specialization [88] and efficient learning

[74]. These benefits of modularity are particularly relevant for

the human brain, which evolved under evolutionary pressures

for adaptability [132], energy efficiency, and cost minimization

[60, 49, 173, 55, 34], and which also develops under biological

pressures to balance segregation and integration of function

[49].

Exactly how modularity is instantiated in the brain is a

question that has fascinated neuroscientists for more than a

century. The answer to this question is complicated by the fact

that the brain is a complex system composed of neural units

that communicate with one another in dynamic spatiotemporal

patterns [5]. How these patterns of communication are or-

ganized, reflecting thought, cognition, and behavior remains

a mystery [44]. A particularly appropriate mathematical lan-

guage to describe these patterns – and to determine the role

that modularity might play within them – is network science

[155]. In its simplest form, network science summarizes a sys-

tem by isolating its component parts (nodes) and their pairwise

interactions (edges) in a graph [40]. Over the last decade, the

application of network science to neuroscience (also known

as network neuroscience [16]) has offered intuitions for the

fundamental principles of organization and function in the

brain [48].

A quintessential concept in network neuroscience is the

notion of network modularity, wherein neural units are struc-

turally or functionally connected to one another in clusters

or modules [139]. Intuitively, modularity is an architectural

design feature that allows system processes to implement local

integration of information, while maintaining systems-level

adaptability. Graphs that display modular structure [82] can

give rise to more complex dynamics than graphs that display
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Fig. 1: Brain graphs and communities within them. One

can construct a brain graph in several ways, and subsequently

study its modular architecture using community detection

techniques developed for graphs. Here, we illustrate an ex-

ample pipeline in which we use non-invasive neuroimaging

in humans to obtain regional timeseries of continuous neural

activity (Left). Next, we define a weighted undirected graph

and represent that graph in an adjacency matrix, each element

of which provides an estimate of the statistical similarity

between the time series of region i and the time series of region

j (Middle). Finally, we apply community detection techniques

to the brain graph to identify modules. Here, a module is

composed of nodes (regions) that are more densely intercon-

nected with one another than expected in some appropriate

random network null model. If we have temporally extended

data, we can also consider defining a temporal graph, and

using dynamic community detection techniques to study the

temporal evolution of modules and their relation to cognition

(Right). In this review, we discuss considerations, methods,

statistics, and interpretations relevant to this process.

random structure [196]. Modular networks of coupled oscil-

lators also promote synchronizability [7] as well as the for-

mation of chimera states, characterized by the coexistence of

synchronized and desynchronized elements [216]. Modularity

often exists across multiple hierarchical levels [138], enabling

rapid responses to fluctuating external input [122, 25, 142], and

supporting complex dynamics alongside functional efficiency

[187, 113]. The functional properties that modularity confers

to a system provide strong motivation for studying modular

organization in brain graphs across both health and disease

(Fig. 1).

In this tutorial, we survey the literature pertinent to an

understanding of modular structure in brain graphs, and its rel-

evance for human cognition. We begin by discussing common

methods for building brain graphs from diverse data sources

representing distinct types of neurophysiological signals. We

then turn to a description of community detection approaches

commonly applied to such graphs, and we place a particular

emphasis on the method of modularity maximization. Next,

we offer a resource of statistical measures that can be used

to characterize community structure in brain graphs, including

measures of their topology and embedding into physical space.

We complement the discussion of methods and statistics for

single graphs with a description of extensions of community

detection approaches for time-evolving graphs. Next, we pro-

vide a resource of statistical measures that can be used to
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Fig. 2: Defining brain graphs: common datatypes. Vari-

ous neuroimaging techniques can be used to measure brain

network dynamics. Due to their prominence in the literature,

we focus on direct measurements from implanted electrodes

on the cortical surface (ECoG; orange), sensors on or above

the scalp (EEG or MEG; green), and indirect measurements

from BOLD and diffusion (MRI; purple). Each technique is

associated with a specific spatial and temporal scale that can

offer different insights into brain structure and function.

characterize dynamic community structure in brain graphs.

We then review applications of these techniques to questions

in neuroscience to give the reader an appreciation of the

usefulness of these approaches in uncovering behaviorally-

relevant network dynamics in neuroimaging data. Finally, we

discuss methodological innovations that are needed to advance

our understanding of how patterns of coordinated activity in

the human brain account for behavior.

BUILDING BRAIN GRAPHS

In its general form, a brain graph is composed of (i) a

set of nodes characterizing anatomical, functional, or com-

putational units, and (ii) a set of edges representing pairwise

relations between two nodes (Fig. 2). Brain graphs can be

built from many types of neuroimaging data, including mag-

netic resonance imaging (MRI), electrocorticography (ECoG),

electroencephalography (EEG), and magnetoencephalography

(MEG). Across all modalities, one seeks a definition of nodes

that distills the brain into its most fundamental pieces relevant

to the hypothesis being tested, and a definition of edges that

constitutes the fundamental relation relevant to the function

under study [51]. The choice of nodes and edges guides the

appropriate interpretations that can be drawn from the graph

[171, 51, 215].
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a) Defining nodes: In MRI studies, nodes can be defined

using anatomical landmarks [1], cytoarchitecture [45, 212],

sulcal and gyral landmarks [105, 68, 69, 207], or boundaries

of functional activation [167, 222], either in controlled [219]

or uncontrolled [223, 127] tasks. Indeed, functional atlases

[61, 151] can incorporate activation information across many

tasks [71] or parse which regions tend to be activated indepen-

dently [171]. Nodes at a large-scale can also be defined based

on connectivity at a small scale. For example, in connectivity-

based parcellation [214, 26], one begins with voxel-level

estimates of structural connectivity from diffusion MRI [210],

and then applies a clustering technique to extract modules of

densely interconnected voxels; each module is then treated as

a node in the brain graph [73].

In ECoG, MEG, and EEG studies, graphs are constructed to

study synchronized activity of neuronal ensembles [163, 89,

46]. Frequently, nodes are chosen to reflect electrodes in EEG

or ECoG (e.g., [119, 50, 118]) and sensors in MEG (e.g., [22,

15, 197]). However, electrode and sensor time series reflect a

combination of signals from cortical and subcortical sources,

and are susceptible to artifacts from muscles contractions, head

movements, and environmental noise [211]. To address these

limitations, one can apply source reconstruction [for review,

99, 177], and then use those sources as nodes [191, 147]. One

can also use multiple functional neuroimaging measurements

such as simultaneous fMRI and EEG recordings [47] to define

nodes [148]. Importantly, each method of node determination

has implications for network estimates of brain dynamics, as

described more thoroughly in several recent reviews [106, 198,

192].

Defining edges

Edges can reflect structural connections across spatial scales

[30], such as bundles of axonal fibers between regions (e.g.,

[218, 146, 112]) or synapses between neurons. In humans,

structural connections are measured using diffusion MRI [for

review, see 10, 210], and fiber trajectories are estimated using

tractography methods [143, 27]. The resultant brain graph can

be used to identify specific connections that enable efficient

and rapid communication between regions [18], or collections

of connections with diverse higher order structures [94, 190,

189].

Edges can also reflect coordinated activity between regions

thought to underlie cognition [83, 84, 92], where coordination

is quantified by correlation, coherence, phase lag index, or a

measure of synchronization between time series [23, 107], or

by effective connectivity methods that estimate casual relations

[85]. Such functional time series can be derived from MRI

[111, 108, 109, 96] or from EEG in cognitively relevant

frequency bands [52, 43]. An important caveat for estimates

of functional connectivity between two regions is that they can

be driven by a third source [37, 98].

When studying relations among edges in time-varying

graphs – where a graph is constructed from each of many

time windows–, one can use a hypergraph to formalize the idea

that groups of edges, rather than single edges alone, represent

a fundamental unit of interest [20, 65, 102]. This approach

is partially motivated by evidence suggesting that edges can

develop differentially in a coordinated fashion over the lifespan

[66], leading to architectural features that cannot simply be

defined by graphs composed of dyads [20]. Such developmen-

tal coordination of functional connections might be driven by

intrinsic computations [20], and subsequently have mutually

trophic effects on underlying structural connectivity [17]. Co-

varying functional connections in early life could support the

emergence of cognitive systems observed in adulthood [102].

Hypergraphs can formalize these relationships, and thereby

offer a unique perspective on brain graph architecture.

EVALUATING COMMUNITY STRUCTURE IN BRAIN GRAPHS

After choosing nodes and edges, we let G = (V,A) be

a complex network of N nodes, where V = {1, · · · , N} is

the node set, and A ∈ R
N×N is the adjacency matrix whose

elements Aij give the weight of the edge between node i and

node j. In a binary graph, elements are either values of 0 or

1, which indicate whether an edge exists, while in a weighted

graph, elements have non-binary values that reflect the strength

of their pairwise connection. If the edge weight between a

node pair is symmetric, the graph is called undirected, and

Aij = Aji for all (i, j); the graph is called directed otherwise.

In an undirected binary graph, the degree of a node, ki, is

given by the number of its non-zero edges: ki =
∑

j∈N Aij .

To evaluate community structure in the brain graph, we note

that a community structure is a partition C = {C1, · · · , CK},

where Ci ⊂ V consists of the nodes in the ith community

and K is the number of communities in G. Here we only

consider non-overlapping community structure, which means

that Ci∩Cj = ∅ if i 6= j. We note that in the case of a temporal

graph with L layers, and where the adjacency matrix of layer

l has elements Aijl, one can similarly define a community

structure as a set of L partitions.

The overarching goal of community detection is to pro-

vide an understanding of how nodes are joined together into

tightly knit groups, or modules, and whether such groups are

organized into natural hierarchies in the graph. Community

structure exists in a variety of real world systems including

several social, biological, and political systems [82], and com-

munity detection methods can be used to uncover that structure

algorithmically. Recent applications of these methods to real-

world systems have uncovered segregated committees in the

US House of Representatives [169], segregated protein classes

in protein-protein interaction networks [56], and segregated

functional groups of areas in brain graphs [19]. Uncovering

community structure can provide important intuition about

the system’s function, and the large-scale functional units that

drive the system’s most salient processes [93].

Mathematics of modularity maximization

Many methods exist for community detection [81]. Some

draw on notions in physics such as the Potts model [174],

while others draw on notions in mathematics such as random

walks [225] and spectral properties of the adjacency matrix

[153, 158, 154, 224]. Still others more closely track other

concepts and techniques in computer science and engineering
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[e.g., 57]. In this section, we will primarily discuss a single

method – modularity maximization – due to its frequent use

in the network neuroscience community. However, readers

interested in understanding various other algorithms and ap-

proaches may enjoy several other recent reviews [82, 170].

Importantly, the summary metrics that we define and discuss

for both static and time-varying graphs are applicable to any

study of community structure, independent of the specific

method used to identify that structure.

Modularity maximization refers to the maximization of a

modularity quality function, whose output is a hard partition

of a graph’s nodes into communities. The most common

modularity quality function studied in network neuroscience

to date is

Q =
∑

ij

[(Aij − γPij)] δ (Ci, Cj) , (1)

where Aij is the ijth element of the adjacency matrix, i is a

node assigned to community Ci and node j is assigned to

community Cj . The Kronecker delta δ(Ci, Cj) is 1 if i, j
are in the same community and zero otherwise, γ is called

a structural resolution parameter [14]. The element Pij is the

expected weight of the edge connecting nodes i, j under a

specific random network null model. A common null model

is the Newman-Girvan null model which is given by kikj/2m
where ki is the degree of node i and m is the number of non-

zero elements in the upper triangle of the undirected adjacency

matrix [157]. This null model encodes the intuition that two

nodes of high degree are more likely to share an edge than

two nodes of low degree. For a discussion of alternative null

models, see [14].

The structural resolution parameter, γ, is often set to unity

for simplicity. However, due to a well-known resolution limit

[174], this choice will tend to produce a fixed number of

communities, even if a stronger community structure could

be identified at smaller or larger topological scales. To deal

with this limitation, it is common to vary γ over a wide range

of values. The benefit of such a parameter sweep is that it

can also uncover hierarchical organization in the graph: robust

community structure across several topological scales [169].

Some graphs contain a single scale (or several discrete scales)

at which community structure is present. For these graphs, it

has been suggested that a useful method by which to identify

that scale(s) is to search for γ values at which all partitions

estimated (from multiple runs of the modularity maximization

algorithm) are statistically similar [14].

Maximization of the modularity quality function defined

above is NP-hard. Because an exact solution is unknown,

various heuristics have been devised to maximize (or nearly

maximize) Q without resorting to an exhaustive search of all

possible partitions, which for most real-world graphs proves

to be computationally intractable [170]. Heuristics vary in

terms of their relative speed, fidelity, and appropriateness for

large versus small graphs. One common heuristic is a Louvain

locally-greedy algorithm [38], which contains two phases: one

where modularity is optimized by allowing only local changes

of communities, and one where the identified communities

are aggregated to build a new network of communities. These

two phases are repeated iteratively until modularity no longer

increases. A second common heuristic is based on simulated

annealing, which appears particularly natural when one real-

izes that finding the modularity of a network is analogous to

finding the ground-state energy of a spin system [175, 104]. In

this approach, nodes are combined into communities, and such

communities are maintained with some probability dependent

on whether they increase or decrease the modularity quality

index; the probability of accepting a decrease in modularity

slowly decreases as the solution space is explored. A third and

complementary approach is based on extremal optimization,

and optimizes the global variable (modularity quality index)

by improving extremal local variables (contribution of a single

node to the modularity quality index) [72]. For example, a

simple heuristic randomly partitions the network into two

communities, and the node with the lowest fitness (extremal)

is moved from its partition to the opposite partition. This

procedure is repeated until an optimal division of the network

into two components is completed; then each component is

iteratively bipartitioned in the same way. Generally speaking,

greedy algorithms tend to be relatively swift [59], while

simulated annealing [103], extremal optimization [72], and

others [160] can be slower yet provide quite stable partitions.

With most heuristics, one should perform the optimization

many times in order to create an ensemble of partitions, and

both understand and report the variability in those solutions.

The modularity landscape is rough, containing many near

degeneracies [97]. This means that there are many structurally

diverse alternative partitions of nodes into communities with

modularity values very close to the optimum. Near degen-

eracy is particularly prevalent in large binary graphs, and

less prevalent in small weighted graphs. Degeneracy becomes

especially problematic when the partitions identified by mul-

tiple optimizations of the modularity quality function are

dissimilar. In these cases, we might wish to identify a single

representative partition from the set of partitions observed.

One common approach to identify a consensus community

structure is similarity maximization [70], where the partition

of interest is that which has the greatest similarity to all

other observed partitions. A second common approach is an

association-recluster method [128, 14, 30], which uses a clus-

tering algorithm to find a consensus partition by exploiting the

fact that across an ensemble of partitions, a single node may

be affiliated with the same other nodes. Partition degeneracy

can also be addressed by expressing the best partition as an

average across multiple near-optimal partitions, and by treating

the community allegiance of nodes as fuzzy variables [28] or

via probabilistic clustering [110].

SUMMARIZING COMMUNITY STRUCTURE IN BRAIN

GRAPHS

Topological summary statistics

Several summary statistics that can be derived from commu-

nity detection methods are reported in neuroimaging studies.

Many of these can be defined based on the network’s topology,

independent of any embedding of that network into a physical
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space (Fig. 3). Here we offer a summary of these statistics, and

point the reader to a few (certainly not all) recent references

that have used them in the neuroimaging literature to address

questions of import to neuroscientists.

b) Number of communities:: The number of communi-

ties provides an indication of the scale of community structure

in a network. Note that NCk
= |Ck| is the number of nodes in

module Ck. A large number of communities suggests a small

scale of structure in the network, while a small number of

communities suggests a large scale of structure in the network.

c) Size of communities:: The average size of communi-

ties, and the distribution of community sizes are also useful

diagnostics of community structure. The number of nodes N
divided by the number of communities K gives the mean size

of communities in the graph.

d) Modularity quality index:: For community structure

identified with modularity-based approaches, the modularity

quality index Q serves as a useful measure of the quality of

the partition of nodes into communities (see Eq. (1)). To some

degree, higher values indicate more optimal partitions than

lower values, after accounting for caveats of the roughness of

the modularity landscape [97], the size of the graph, and the

edge weight distribution, among potentially other confounds.

For a recent review of the use of this metric in neuroimaging

studies, see [195].

e) Within- and between-module connectivity:: It is also

of interest to calculate the strength of edges inside of modules,

and the strength of edges between modules. We refer to

these notions as within- and between-module connectivity,

respectively and define

Ik1,k2
=

∑

i∈Ck1
,j∈Ck2

Aij

NCk1
NCk2

, (2)

to be the strength between module Ck1
and module Ck2

. When

the two modules are identical (k1 = k2), this measure amounts

to the average strength of that module, and we interpret it

as the recruitment of the module. When the two modules are

different (k1 6= k2), we might also wish to compute the relative

interaction strength

RIk1,k2
=

Ik1,k2
√

Ik1,k1
Ik2,k2

, (3)

to account for statistical differences in module size. Within-

and between-module connectivity has been shown to vary

appreciably with learning [21], differ across motor versus

working memory function [62], mark neuromodulatory effects

[185], track neurodevelopment [101, 24], and change in psy-

chiatric disease [180].

f) Intra-module strength z-score:: One might also wish

to quantify how well connected a node is to other nodes in

its community, a notion that is formalized in the intra-module

strength z-score [103]:

zi =
SCi

− ¯SCi

σ ¯SCi

, (4)

where SCi
denotes the strength (i.e., total edge weight) of

node i’s edges to other nodes in its own community Ci, the

quantity ¯SCi
is the mean of SCi

over all of the nodes in Ci,

x

y
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Fig. 3: Distinction between network space and physical

space. Spatial network statistics are important for under-

standing how a network is embedded into physical space.

Here we illustrate the distinction between network space and

physical space, motivating the importance of using stastistics

in both spaces to understand a system’s organization. (Left)

An example graph that has been embedded into a physical (2-

dimensional Euclidean) space. (Right) A list of connections

between nodes and their respective network and physical

distances, demonstrating that long physical distances need not

be long network distances, and visa versa.

and σ ¯SCi
is the standard deviation of SCi

in Ci. This statistic

was recently applied to brain graphs to study the learning of

categories [193].

g) Participation coefficient:: One might also wish to

measure how the connections emanating from a node are

spread among nodes in the different communities, a notion

that is formalized in the participation coefficient [103]:

Pi = 1−
K
∑

k=1

(
SiCk

Si

)2, (5)

where SiCk
is the strength of edges of node i to nodes

in community Ck. This statistic has been used to better

understand how learning is impacted by patterns of inter-

modular connectivity [193], how brain function is altered in

antipsychotic-naive first-episode schizophrenia patients [131],

and how structural modular segregation mediates the relation-

ship between age and executive function in youth [24].

Spatial summary statistics

It is often interesting to quantify how a network is embedded

into physical space (Fig. 3), and specifically the spatial prop-

erties of communities. Currently, relatively few measures exist

and future work should focus on this important area. Below

we present five measures previously proposed to quantify the

spatial aspects of community structure. Many of these statistics

have not yet been used in the neuroimaging literature, and

there is therefore an open opportunity to use them to better

understand the spatial embedding of modular structure in the

brain.

h) Community average pairwise spatial distance:: The

community average pairwise spatial distance, lCk
is the av-

erage Euclidean distance between all pairs of nodes within a
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community [76]:

lCk
=

2

NCk
(NCk

− 1)

∑

i,j∈Ck

‖ri − rj‖ , (6)

where ri is the position vector of node i. The average pairwise

spatial distance of the entire network is given by the same

equation calculated over all nodes within the network.

i) Community spatial diameter:: The community spatial

diameter, dCk
is defined as the maximum Euclidean distance

between all pairs of nodes within a community [76]:

dCk
= max (‖ri − rj‖) . (7)

The spatial diameter of the entire network is given by the same

equation, but calculated over all nodes within the network.

j) Community spatial extent:: The spatial extent of a

community is an inverse estimate of the density of a com-

munity and quantifies the area or volume of the community,

normalized by the number of nodes within the community

[76]. Specifically, we can define

sCk
=

1

NCk

Vh (ri)i∈Ck
, (8)

where Vh is the volume (3 dimensions) or area (2 dimensions)

of the region bounded by the points of the convex hull of nodes

within the community. The convex hull is the minimal convex

set containing all of the points within the community and is

informally described as the polygon created by connecting

all points that define the perimeter of the community. It

should be noted that in this definition of the spatial extent,

the normalization assumes the average size of a region is

approximately constant. If this is not the case, the equation

could be modified to take into account the boundaries or sizes

of individual regions to better estimate the inverse measure

of density. This statistic has been used to assess the spatial

embedding of synchronized functional clusters estimated from

two-photon calcium imaging data acquired in a chronically

epileptic dentate gyrus of a mouse model of temporal lobe

epilepsy [76].

k) Community radius:: We can define the community

radius ρCk
as the length of the vector of standard deviations

of all nodes in the community [134]:

ρCk
= (

1

NCk

∑

i∈Ck

‖ri‖
2 −

1

N2
Ck

‖
∑

i∈Ck

ri‖
2)

1

2 . (9)

The average community radius of the entire network is a

dimensionless quantity that expresses the average relationship

between individual community radii and the network as a

whole

ρ =
1

N

∑

k

NCk

ρCk

R
, (10)

where NCk
serves to weight every community by the num-

ber of nodes it contains, and R is a normalization con-

stant equal to the radius of the entire network: R =
√

( 1
N

∑N

i=1 ‖ri‖
2 − 1

N2 ‖
∑N

i=1 ri‖
2). In the context of human

brain graphs, this statistic has previously been used to assess

the changes in the spatial extent of modules as they are

identified across different levels of the topological hierarchy

[134].

l) Community laterality:: Laterality is a property that can

be applied to any network in which each node can be assigned

to one of two categories, J1 and J2, and describes the extent

to which a community localizes to one category or the other.

For an individual community Ck, the laterality ΛCk
is

defined as [70]:

ΛCk
=

|NJ1 −NJ2|

NCk

, (11)

where NJ1 and NJ2 are the number of nodes located in

each category, respectively. The value of ΛCk
ranges between

zero (i.e., the number of nodes in the community are evenly

distributed between the two categories) and unity (i.e., all

nodes in the community are located in a single category).

The laterality of a given partition, C, of a network is defined

as:

ΛC =
1

N

(

∑

k

NCk
ΛCk

−

〈

∑

k

NCk
ΛCk

〉)

, (12)

where 〈
∑

kNCk
ΛCk

〉 denotes the expectation value of the

laterality under the null model specified by randomly reas-

signing nodes to the two categories while keeping the total

number of nodes in each category fixed. One of the most

important functional specializations of the brain is laterality,

and prior work has used this statistic to demonstrate subtle in-

terhemispheric discrepancies in functional brain graphs during

linguistic processing due to task demands [70].

Strength and significance of communities

When reporting values for either topological or spatial

diagnostics, it is important to consider potential sources of

error or variation that would inform the confidence in the

measured values. For example, there may be error in the

estimated weights of individual edges in the network, either

from errors in the images themselves, or errors in the statistical

estimates of structural or functional connectivity from those

images. There may also be variance associated with multiple

estimates of a network, either from different subjects, or from

the same subject at different instances in time or in different

brain states. In each case, it is useful to discuss the potential

errors or sources of variance contributing to the estimated

diagnostics of community structure, and to quantify them

where possible.

In addition to accurately describing the potential sources of

error in one’s data, it can also be useful to explicitly measure

the significance of a given community structure. In this section,

we describe two notions that can be used to quantify the

strength and significance of communities. (Note that in this

section, we use a few variable names that have been defined

differently in earlier sections, largely to remain consistent with

the traditional use of these variable names in their relevant

subfields.)

m) Normalized persistence probability:: The persistence

probability is a measure of the strength of a community in

a graph with salient community structure [165]. Given an

adjacency matrix A, we construct an N -state Markov chain

with transition matrix P by performing a row-normalization
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on A. Specifically, the transition probability from i to j is

given by

pij =
Aij

∑

j Aij

. (13)

Under some mild conditions, there exists a unique equilibrium

distribution π ∈ R
N that satisfies π = πP . Roughly speaking,

this implies that if an individual takes a random walk on V
with transition probabilities given by P , then — after some

sufficiently long period of time — the probability that the

individual is on the ith node is πi regardless of where the

individual started.

Now, given P and any distribution π on V , we can construct

a K-state Markov chain with transition probability

Q = [diag(πH)]−1HTdiag(π)PH, (14)

where H is an N×K binary matrix coding the partition C; that

is, hni indicates whether the nth node is in the kth community.

We call the K-state Markov chain a lumped Markov chain. We

can check that Π = πH is an equilibrium distribution of the

lumped Markov chain, which satisfies Π = ΠQ, and therefore

the lumped Markov chain can be treated as an approximation

of the transition of communities in the original Markov chain.

We note that then, the expected escape time of Ck is τk =
(1 − qkk)

−1, which implies that if now the individual is in

Ck, then on average it will take τk jumps for the individual to

jump to another community. The persistence probability of the

kth comunity is therefore defined as qkk; the larger this value,

the longer the expected escape time, and the more significant

the community.

In practical applications, the persistence probability is in-

fluenced by the size of the community. Larger communities

always have larger persistence probabilities. Importantly, this

fact can bias empirical results for graphs whose community

size distribution is relatively broad. To address this limitation,

we can normalize the persistence probability as follows

q̃k =
N

NCk

qkk. (15)

The kth community is significant if q̃k ≫ 1. Intuitively, this

normalization assumes that the graph is fully connected and

that the weights of edges are all equal; then, the persistence

probability of the k-th cluster is
NCk

N
. Whenever a community

has a persistence probability that is larger than some threshold

α, we will refer to it as an α-community. If all communities

are α-communities, we call the entire partition an α-partition.

n) Statistical comparison to a permutation-based null

model:: Given a community structure C, we can in fact

compute the contribution of each community to the modularity

quality index as follows:

Q(Ck|C) =
∑

i,j∈Ck

(Aij − γPij), (16)

where as before γ is the structural resolution parameter, A is

the adjacency matrix, and P is a null model adjacency matrix.

Intuitively, Q(Ck|C) measures how strong the kth community

is, and it is interesting to ask whether it is stronger than

expected under some appropriate null model.

To address this question, we can algorithmically generate a

community structure Cr, which has exactly the same number

of communities and the same number of nodes in each

corresponding community as in C, by simply permuting the

order of nodes in V . We use this permutation-based approach

to construct an ensemble of partitions, and for each partition

we can calculate Q(Ck|C
r). Now, we define

S(Ck|C) =
Q(Ck|C)−Qmax(k)

Qmax(k)−Qmin(k)
, (17)

where Qmin(k) = miniQ(C
r(i)
k |Cr(i)) and Qmax(k) =

maxiQ(C
r(i)
k |Cr(i)). The quantity S(Ck|C) is a normalized

measure that provides information about how strong the

community is in comparison to what is expected under a

permutation-based null model. This method was recently used

to identify hyperedges in a set of functional brain graphs

ordered over the developmental time period spanning 8 years

of age to 22 years of age [102].

MODULARITY MAXIMIZATION FOR TEMPORAL GRAPHS

The methods described above can be applied to a single

graph, or separately to all graphs in a graph ensemble.

However, in the study of neural function and its relation to

cognition, or its change with age and disease, we often have an

ordered set of graphs, where the order is based on time (Fig. 4).

In this case, it is useful to consider methods for modularity

maximization in temporal graphs — a set of graphs ordered

according to time from earliest time to latest time [188]. A

recent generalization of modularity maximization for graphs

with L layers is given by the multilayer modularity quality

function [144]:

Qmultilayer =
1

2µ

∑

ijlr

{(Aijl − γlPijl) δlr + δijωjlr} δ (Cil, Cjr) ,

(18)

where the adjacency matrix of layer l has elements Aijl, and

the null model matrix of layer l has elements Pijl, γl is the

structural resolution parameter of layer l, ωjlr is the temporal

resolution parameter and gives the strength of the inter-layer

link between node j in layer l and node j in layer r, δ is

the Kronecker delta, and µ is the total edge weight. Small

values of the temporal resolution parameter result in greater

independence of partitions across neighboring layers, and large

values of the temporal resolution parameter result in greater

dependence of partitions across neighboring layers. Note that

ω can vary from 0 to infinity.

Determining appropriate choices for the values of the

structural (γ) and temporal (ω) resolution parameters is an

important enterprise. In some cases, one might have infor-

mation about the system under study that would dictate the

number of communities expected, or their relative size, or

their relative variation over time. However, if such information

is not available for the system under study, then one must

turn to data-driven methods to obtain values for γ and ω
that most accurately reflect the spatial and temporal scales

of community structure within the data. Several heuristics

have been suggested in the literature, including (i) comparison
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Fig. 4: Building temporal brain graphs and characterizing

their dynamic community structure. Here we illustrate

methodological steps to build a temporal brain graph and to

estimate its dynamic community structure. First, we define

nodes, shown here as a whole-brain parcellation. Next, in

each time window, we define edges, shown here as statistical

similarities in regional time series. We build a multilayer

graph from the ordered set of graphs across all time windows,

and we link graphs in neighboring layers by identity links

(edges between node i in layer t and itself in layer t − 1
and t + 1). After constructing the multilayer brain graph,

we can apply a community detection technique such as the

maximization of a multilayer modularity quality function.

This process produces a time-dependent partition of nodes

into communities or modules. Because multilayer modularity

maximization contains tunable parameters, we might also

wish to search the 2-dimensional parameter space to find a

parameter pair that results in a stable partition (for example,

here reflected by a low variance of Qmultilayer across multiple

iterations of the maximization algorithm). Finally, the dynamic

community structure can be quantitatively characterized with

to statistical null models (which we will describe in a later

section) [14], (ii) identifying a point in the γ-ω plane where the

set of partitions obtained from multiple maximizations of the

multilayer modularity quality function are statistically similar

[53], or (iii) identifying the point in the γ-ω plane where the

dynamic community structure displays certain features [202].

Topological summary statistics for dynamic community struc-

ture

Several summary statistics exist which are frequently re-

ported to characterize dynamic community structure in empir-

ical studies. A few particularly simple statistics include (i) the

mean and temporal variance of the number of communities,

(ii) the mean and temporal variance of the size of communities,

and (iii) the multilayer modularity quality index Qmultilayer.

In addition to these simple statistics — which have their

correlaries in the single-layer case — we can also define

several statistics that explicitly capitalize on the temporal

nature of the data.
o) Flexibility:: The flexibility of a single node i, ξi, is

defined as the number of times a node changes in community

allegiance across network layers, normalized by the number

of possible changes [19]. Mathematically,

ξi =
gi

L− 1
, (19)

where gi is the number of times that the particle changes its

community. The flexibility of the entire multilayer graph is

then given by the mean flexibility of all nodes

Ξ =
1

N

∑

i

ξi. (20)

Intra-individual differences in this metric have been linked

to mood [35] and attention [186], while inter-individual dif-

ferences in this metric have been linked to learning [19],

cognitive flexibility and working memory performance [41],

and reinforcement learning [91]. The metric has also been

shown to be an intermediate phenotype for schizophrenia risk

[42], and is altered by an NMDA-receptor antagonist [42].
p) Node disjointedness:: Node disjointedness describes

how often a node changes communities independently. Specifi-

cally, we are interested in when a node moves from community

s to community k, and no other nodes move from community

s to community k. If node i makes gindi such changes out of

L− 1 possible changes, we define the node disjointedness as

follows [203]:

∆i =
gindi

L− 1
. (21)

q) Cohesion strength:: The node cohesion can be defined

as the number of times a node changes communities mutually

with another node. Specifically, node cohesion is a pairwise

measure that is expressed as a cohesion matrix, M , where

edge weight Mij denotes the number of times a pair of nodes

moves to the same community together, gmut
ij divided by L−

1 possible changes. The cohesion strength of node i is then

defined as follows [203]:

Ωi =
∑

j 6=i

Mij . (22)
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This metric has been shown to be more sensitive to individual

differences in motor skill learning than either node disjointed-

ness or node flexibility [203].

r) Promiscuity:: The promiscuity ψi of node i is de-

fined as the fraction of all communities in which the node

participates at least once, across all network layers [162], and

importantly can determine whether a node’s flexibility may be

high simply because it is switching between two communities

or is truly flexible across all communities. The network

promiscuity Ψ can be defined as the average promiscuity over

all nodes

Ψ =
1

N

∑

i

ψi. (23)

s) Stationarity:: To define stationarity, we first write the

autocorrelation J(Cl, Cl+m) between a given community at

layer l, Cl, and the same community at layer l+m, Cl+m, as

J(Cl, Cl+m) =
|Cl ∩ Cl+m|

|Cl ∪ Cl+m|
, (24)

where |Cl ∩ Cl+m| is the number of nodes present in com-

munity C in layer l and in layer l +m, and |Cl ∪ Cl+m| is

the number of nodes present in community Ck at layer l or

layer l+m [161]. Then if li is the layer in which community

C first appears, and lf is the layer in which it disappears, the

stationarity of community Ck is

ζCk
=

∑l=lf−1
l=li

J(Cl, Cl+1)

lf − li
. (25)

The stationarity of the entire multilayer network is then

given by

ζ =
1

NCk

∑

k

ζCk
. (26)

While initially defined in the context of social networks [161],

the stationarity has also proven useful as a marker of temporal

variation in functional brain graphs in healthy adult humans

in the process of motor skill acquisition [19].

STATISTICAL VALIDATION AND PREDICTION

After estimating community structure from a single brain

graph, or from a multilayer brain graph, one is next faced with

the questions of (i) whether and how that community structure

is statistically significant, (ii) how to compare community

structure in one graph ensemble to community structure in

a second graph ensemble, and (iii) how to infer underly-

ing mechanisms driving the observed community structure.

Answering these questions requires tools from statistics that

are directly informed by network architecture, and tools from

generative modeling that can provide insights into possible

mechanisms.

The statistical significance of a community structure can

only be determined in relation to a defined null model. One

of the most common approaches to defining null models for

brain graphs is via permutation: for example, the placement

or weight of the edges in the true graph can be permuted

A B

C

Fig. 5: Permutation-based null models for statistical testing

of community structure. (A) Schematic of a toy network

with four nodes and four edes in a single time window. (B)

Multilayer network framework in which the networks from

four time windows are linked by connecting nodes in a time

window to themselves in the adjacent time windows (colored

curves). (C) Statistical framework composed of a connectional

null model (Left), a nodal null model (Middle), and a temporal

null model (Right) in which intranetwork links, internetwork

links, and time windows, respectively, in the real network are

randomized in the permuted network. (We show all of the

randomized links in red.) Figure reproduced with permission

from [19].

uniformly at random (Fig. 5). In prior work, this null model

has been referred to both as a connectional null model [19] or

a random edges null model [188]. If the graph is a temporal

multilayer brain graph, one could also consider permuting the

inter-layer links uniformly at random (sometimes referred to

as a nodal null model). One could also consider permuting the

order of the layers uniformly at random (sometimes referred

to as a temporal null model) [19]. For a discussion of related

null models specifically for dynamic graphs, see [188, 120].

When graphs are built from functional data, one can also

consider null models that are constructed from surrogate

time series [14, 120]. Perhaps the simplest surrogate data

technique begins by permuting the elements of each time series

uniformly at random and then continues by recomputing the

measure of functional connectivity between pairs of time series

[205]. This approach is sometimes referred to as a random

shuffle null model. While a fundamental benchmark, this null

model is quite lenient, and it is commonly complemented by

more stringent tests [14]. For example, the Fourier Transform

surrogate preserves the linear correlation of the series by

permuting the phase of the time series in Fourier space before

taking the inverse transform to return the series to temporal

space. A related technique – the Amplitude Adjusted Fourier

Transform – works similarly except that it also preserves the

amplitude distribution of the original time series [204]. For

helpful additional discussion of surrogate data time series, see
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[181, 182].

After confirming that the community structure observed in

the empirical graph is unlike that observed in either graph-

based or time-series-based null models, one might next wish

to compare two sets of empirical graphs. Specifically, one

might wish to state that the community structure in one

graph ensemble (e.g., healthy brains) is significantly different

from the community structure in another graph ensemble

(e.g., brains from individuals with disorders of mental health).

One simple approach would be to use traditional parametric

statistics to determine group differences in a summary measure

such as the many defined in the earlier sections of this

review. Broadly speaking, this approach assumes the data

are normally distributed with a mean that is parameterized

by a linear model. Common techniques include t-tests, F -

tests, and analyses of variance. However, the assumption that

network statistics are normally distributed is often violated

in real-world data. In such cases, it is more appropriate to

use non-parametric permutation testing, which accounts for the

true variation in the empirically observed data. This method

is computationally costly since it requires an estimation of

the null distribution via unlabeled simulation of the available

data. For a recent review of this method as it applies to

neuroimaging data, see [159].

Finally, moving beyond statistical validation, one might

also wish to understand the mechanisms by which commu-

nity structure arises in one’s data of interest, and predict

how alterations in those mechanisms could lead to altered

community structure. These sorts of topics are particularly

important in understanding normative development and ag-

ing, and in understanding changes in graph architecture with

disease or injury. To begin to build an intuition for possible

mechanisms of community structure, it is natural to turn to

generative network modeling techniques [31], in which wiring

rules are posited and the resultant graph is compared to the

empirically observed graphs; if the observed graph displays

similar architecture to the modeled graph, then the wiring rule

is said to constitute a potential mechanism. Such generative

models can be either static or growing models [126], and can

be defined either in a deterministic or probabilistic manner

[194]. A particularly useful model for mesoscale structure

— including but not limited to community structure — is

the stochastic blockmodel, which has recently been used in

the context of both structural [32] and functional [164] brain

graphs (Fig. 6). Importantly, stochastic blockmodels have also

recently been extended to multilayer graphs [200], suggesting

their potential utility in understanding mechanisms of brain

dynamics as well.

Collectively, these statistical approaches provide a rich set of

tools to examine the robustness and reliability of brain graphs

constructed from neuroimaging techniques sensitive to neural

structure and activity across different spatial scales. Further-

more, recent advancements in generative network modeling

provide new avenues to examine the mechanisms supporting

network modularity that will complement work using commu-

nity detection to characterize the static and dynamic evolution

of these networks.

Fig. 6: Stochastic blockmodels can detect other types of

meso-scale structure unseen by modularity maximization.

Networks can exhibit different types of meso-scale structure.

(A) Assortative communities are sub-networks whose internal

density of connections exceeds their external density. (B)

Disassortative (multi-partite) communities are sub-networks

where connections are made preferentially between communi-

ties so that communities’ external density exceed their internal

density. (C) Core-periphery organization consists of a central

core that is connected to the rest of the network and then

peripheral nodes that connect to the core but not to one another.

(D) These meso-scale structures can be present simultaneously

in the same network. For example, communities I-II interact

assortatively, III-IV interact disassortatively, while I-III inter-

act as a core and periphery. Reproduced with permission from

[32].

FROM MODULARITY IN NEURAL SYSTEMS TO BEHAVIOR

Mounting evidence supports the notion that modularity in

brain graphs is important for healthy task-based and resting-

state dynamics. Functional network communities correspond

to groups of regions that are activated by the performance of

specific cognitive and behavioral tasks requiring for example

perception, action, and emotion [63]. Interestingly, evidence

suggests that the human brain transitions among functional

states that maximize either segregation or integration of com-

munities, and the integrated states are associated with faster

and more accurate performance on a cognitive task [185, 184].

Several studies have identified relationships between indi-

vidual differences in modularity and memory performance
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[209, 58, 3, 185, 78, 199]. Changes in global modularity

predict effective memory retrieval [213], account for reaction

time on correct responses [209], and relate to individual

variability on other measures of behavioral performance [199].

Converging evidence from electroencephalography studies in

which community detection approaches are applied [206, 166]

further suggest that increased integration is required for suc-

cessful working memory function [39, 124, 226].

The relationship between network modularity and perfor-

mance is also expressed in the resting brain. Global network

modularity at rest has been shown to predict inter- and

intra-individual differences in memory capacity [201]. When

network modularity in resting state dynamics decreases follow-

ing sleep deprivation, it accounts for behavioral performance

impairments [29]. Aging brains typically become less modular

at the global scale [137, 90, 54], including specific modular-

ity decreases in the executive control network and attention

subsystems associated with typical cognitive decline [33].

Similarly, increased modularity is associated with improved

learning and neuroplasticity. Patients with brain injury [8] as

well as older adults [87] with more modular brain networks

at baseline have been shown to exhibit greater improvements

following cognitive training.

Importantly, community detection approaches have also

revealed the importance of time-evolving changes in modular

networks that underlie human behavior. When participants

successfully learn a simple motor skill across several days,

the community organization and its dynamics change as the

skill becomes more automatic [19, 21]. Motor skill learning is

also accompanied by a growing autonomy of the sensorimotor

system, and by a disengagement of frontal-cingulate circuitry

which predicts individual differences in learning rate [21].

Even at much shorter time-scales and over the course of

a single session, dynamic community structure can capture

changes in task demands and changes in cognitive state

[6, 95, 41, 35, 62].

Finally, the importance of modular network organization

for healthy brain function is underscored by its alteration in

clinical samples [80]. Connectopathy has been documented

in patients with several mental health disorders including but

not limited to schizophrenia, depression, anxiety, dementia,

and autism [140, 136, 220]. Schizophrenia has been character-

ized by diminished small-world organization [141, 133, 176],

altered modular organization [221, 130, 140, 121, 17, 4],

and dysmodularity: an overall increase in both structural and

functional connectivity that greatly reduces the anatomical

specialization of network activity [64]. Other disorders of

mental health, such as depression, have also been documented

to exhibit altered network modularity [135, 217, 179], and

emerging evidence suggests that changes in inter-module con-

nectivity could underlie common reward deficits across both

mood and psychotic disorders [183].

METHODOLOGICAL CONSIDERATIONS AND FUTURE

DIRECTIONS

There are several methodological considerations that are

important to mention in the context of applying modularity
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Fig. 7: From modularity to behavior. Dynamic changes

in the modular organization of functional brain networks

capture the short- and long-term network reconfigurations

triggered by the requirements of an on-going task or following

weeks of training. (A) Dynamic task-related fluctuations of

community structure during task performance. (Left) Time

series plot demonstrated the close relationship between mean

BT (participation coefficient) across 100 subjects (thick black

line; individual subject data plotted in gray and task-block

repressors plotted in blue). (Right) distinct changes in com-

munity structure during N-back task (a common working

memory task) compared to the resting state. Note that during

N-back performance, the frequency of time points where the

network is more integrated significantly increases (red/yellow)

compared to the rest blocks (marked by a significant increase

in the network segregation) [185]. (B) Learning-induced au-

tonomy of sensorimotor systems captured by a reduction in

the probability that motor and visual regions are allied to one

another in a single community. The module allegiance matrices

are calculated over different phases of learning (naive, early,

middle, and late). The bottom row magnifies the visual and

motor modules’ allegiance matrices (highlighted with green

and yellow brain overlay on the left). Note that the strength

of the allegiance between the visual and motor modules

decreases as the motor sequences become more automatic,

which signifies the increased autonomy of these systems over

the course of learning [21]. Figure reproduced with permission

from [185] and [21].
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Fig. 8: The multiscale brain. Brain networks are organized

across multiple spatiotemporal scales and also can be analyzed

at topological (networks) scales ranging from individual nodes

to the network as a whole. Figure reproduced with permission

from [30].

maximization techniques to neuroimaging data condensed into

brain graphs. Perhaps one of the most fundamental consider-

ation relates to the notion that one might be able to iden-

tify an “optimal” structural or temporal resolution parameter

with which to uncover the graph’s most salient community

structure. Such a notion presupposes that the graph displays

strongest community structure at only a single topological or

temporal scale. Yet, in many real-world systems — including

brain graphs — modules exist across a range of topological

scales from small to large, each contributing in a different

manner to the system’s overall function. Moreover, such nested

modules might display dynamics over different temporal

scales, enabling segregation and integration of computational

processes from transient control to long-distance synchrony.

Thus, while choosing an optimal resolution parameter may

not only be difficult, it may also be unfounded, depending on

the architecture of the single-layer graph or multilayer graph

under study.

Several approaches have been proposed to address the

x (γx

y (γy

τ

j

z (γz

C
o

m
m

u
n

it
ie

s

Fig. 9: Schematic representing the construction of a mul-

tilayer network for use in multi-scale modularity maxi-

mization. Duplicates of a graph are connected in a multilayer

fashion to construct a 3D graph. The smallest resolution

parameter γ is assigned to the first layer (x), and it is linearly

increased for the neighboring layers (y, z). The topological

scale coupling parameter, τ , tunes the strength of dependence

of the communities across layers. Since the community as-

signments are dependent on the adjacent layers, nodes that

display high clustering over neighboring topological scales

are identified as a single community spanning several scales.

In this schematic, the large communities identified at initial

layers progressively break into smaller sub-communities, re-

vealing the hierarchical community organization of the graph.

Reproduced with permission from [9].

multi-scale organization of brain graphs (Fig. 8; for a recent

review, see [30]). One intuitive solution is to sweep across the

topological and temporal scales of the system by incrementally

changing the resolution parameters [77]. The advantage of this

approach is that it allows us to track the stability of parti-

tions across topological scales and identify robust modules.

Nevertheless the communities in this approach are identified

independently at each scale and thus a secondary algorithm

is necessary for the reconstruction of a continuous topologi-

cal community structure. An explicit multi-scale community

detection algorithm can be used to address this limitation,

by allowing simultaneous identification of the community

organization across several scales [144]. A recent application

of this approach to neuroimaging data has uncovered notable

topological heterogeneity in the community structure of both

structural and functional brain graphs, and in the extent of

coupling across these modalities [9] (Fig. 9).

In addition to understanding community structure across

different scales in a single data modality, it is becoming

increasingly important to identify and characterize commu-

nity structure across different data modalities. The multilayer

network formalism, which we described in this review in the

particular context of temporal graphs, can also be used to link

graphs from different imaging modalities together [208, 145].
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Intuitively, community structure — and the topological or

temporal scales at which it is most salient — can differ

significantly across imaging modalities. In functional brain

graphs estimated over long time scales, the community struc-

ture is of neural origin, and thus communities at coarser scales

imply higher temporal independence and functional segrega-

tion between the communities. By contrast, in structural brain

graphs, the community structure can be more reflective of the

brain’s spatial organization, constituted by small focal clusters,

mesoscale distributed circuits, and gross-scale hemispheres.

Since the topological organization of a brain graph can differ

across scales in different imaging modalities, it is useful to

apply methods that can explicitly compare and contrast com-

munity structure across a range of topological and temporal

resolutions [9].

Advantages and Disadvantages of the Graph Approach

A key advantage of community detection techniques is their

relative simplicity. Nevertheless, this same simplicity can chal-

lenge mechanistic understanding of the organizational princi-

ples that shape emerging real-time dynamics of the system.

This challenge is particularly apparent in the interpretation of

the value of the modularity quality index: researchers often

interpret higher (lower) modularity values as an increase (de-

crease) in overall segregation (integration) of brain networks.

Yet, it is critical to realize that one can change the structure

of a network in a host of ways that all lead to comparable

changes in the value of the modularity quality index, but also

lead to strikingly different large-scale functional dynamics.

Moreover, modularity values themselves are dependent on the

resolution parameter at which they are calculated, and direct

comparison between modularly values in two graphs using

the same resolution parameter hinges on the assumption that

both graphs display “optimal” community structure at the

same topological scale. Modularity values are also difficult

to compare in two graphs that exhibit community structure at

different topological scales, as the resolution parameters used

for the calculation of the modularity are different. Thus, in

general, the interpretability of the modularity value is quite

limited.

More generally, it is important to bear in mind that commu-

nity detection techniques such as modularity maximization as-

sess one specific type of organization in a graph. It may there-

fore be useful to combine this approach with other techniques

to examine complementary types of organization present in

the same graph or present in the time series irrespective of the

graph [for several recent reviews, see 117, 114, 120]. Within

the network science discipline, community detection can be

used to examine a specific type of meso-scale organization

[for others, see 32], while other graph measures can be used to

examine organization at other scales [150]. Examples of these

other measures include centralities [13], clustering coefficient

[178], path-length [12], and global and local efficiency [129]

to name a few. Future work could also use generalizations of

these network measures to multilayer data (see [125] for a

recent review, and see [188] for a toolbox for use in applying

those notions to neuroimaging data). Furthermore, these tools

may also provide novel avenues for studying the coupling

between the time-varying and multi-scale community structure

in functional brain graphs and the underlying hierarchical

scaffold in structural brain graphs [9].

Finally, it is important to note that the most common

approach used to construct a brain graph treats brain regions

as nodes and inter-regional connections as edges. Although

this simple graph model has proven useful in advancing

our understanding of the organization of brain networks in

health and disease, it suffers from an implicit assumption of

node homogeneity. That is, each node is distinguished not by

any feature of its own, but by its relation to other nodes.

Future work could aim to explore and advance community

detection methods for annotated graphs [156] in the context of

brain networks to account for the heterogeneous function and

anatomy of different brain regions [149] (Fig. 10). Moreover,

exploring alternative ways to construct brain networks such

as hypergraphs [20, 102], and alternative methods to identify

community structure such as link-communities [2, 67], could

offer important and complimentary information regarding the

organizational principles of brain network architecture.

CONCLUSION

Here, we have reviewed recent efforts to model brain

structure and function using graphs. We focused on describing

methods to identify, characterize, and interpret community

structure in such graphs, with the goal of better understanding

cognitive processes and resulting behavior in health and dis-

ease. We began by describing how brain graphs are commonly

built, and then we discussed two community detection algo-

rithms based on modularity maximization: one constructed for

use on single graphs, and one constructed for use on multilayer

graphs. We also offered a collation of summary statistics that

can be used to characterize topological features of community

structure, spatial features of community structure, and features

of dynamic community structure. We closed with a discussion

of methodological considerations and future directions, as well

as a few comments on the advantages and disadvantages of

the graph approach. Our hope is that this review will serve

as a useful introduction to the study of community structure

in brain graphs, and will spur the development of new tools

to more accurately parse and interpret modularity in human

brain structure and function.
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Fig. 10: Mesoscale network methods can address activity,

connectivity, or the two together. In the human brain, the

structural connectome supports a diverse repertoire of func-

tional brain dynamics, ranging from the patterns of activity

across individual brain regions to the dynamic patterns of

connectivity between brain regions. Current methods to study

the brain as a networked system usually address connectivity

alone (either static or dynamic) or activity alone. Methods

developed to address the relations between connectivity and

activity are few in number, and further efforts connecting

them will be an important area for future growth in the field.

In particular, the development of methods in which activity

and connectivity can be weighted differently – such as is

possible in annotated graphs – could provide much-needed

insight into their complimentary roles in neural processing.

Figure reproduced with permission from [120].
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