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Abstract— The rising popularity of wireless services resulting
in spectrum shortage has motivated dynamic spectrum sharing to
facilitate efficient usage of the underutilized spectrum. Wideband
spectrum sensing is a critical functionality to enable dynamic
spectrum access by enhancing the opportunities of exploring
spectral holes, but entails a major implementation challenge in
compact commodity radios that only have limited energy and
computation capabilities. In contrast to traditional sub-Nyquist
approaches where a wideband signal or its power spectrum is
first reconstructed from compressed samples, this paper proposes
a sub-Nyquist wideband spectrum sensing scheme that locates
occupied channels blindly by recovering the signal support, based
on the jointly sparse nature of multiband signals. Exploiting
the common signal support shared among multiple secondary
users (SUs), an efficient cooperative spectrum sensing scheme
is developed, in which the energy consumption on wideband
signal acquisition, processing, and transmission is reduced with
detection performance guarantee. Based on subspace decompo-
sition, the low-dimensional measurement matrix, computed at
each SU from local sub-Nyquist samples, is deployed to reduce
the transmission and computation overhead while improving
noise robustness. The theoretical analysis of the proposed sub-
Nyquist wideband sensing algorithm is derived and verified by
numerical analysis and further tested on real-world TV white
space signals. It shows that the proposed scheme can achieve
good detection performance as well as reduce computation and
implementation complexity, in comparison with conventional
cooperative wideband spectrum sensing schemes.

Index Terms— Wideband spectrum sensing, cooperative spec-
trum sensing, sub-Nyquist sampling, multicoset sampling, joint
sparse recovery.

I. INTRODUCTION

W
ITH the explosive proliferation of wireless devices and

rapid growth of wireless services, spectrum scarcity
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has become a major bottleneck for wireless industry. The

threat of spectrum shortage has encouraged the governments

to take critical steps towards releasing multiple bands for

dynamic spectrum sharing, motivated by the fact that the actual

spectrum is underutilized in practice [2]–[4]. For instance,

Fig. 1, collected by the RFeye node [5] located at Queen Mary

University of London (QMUL) in London, United Kingdom,

shows that a large portion of the spectrum remains unused.

In particular, TV white space (TVWS) is one of the most

promising section for dynamic spectrum sharing, which is

composed of the channels that are not used by digital terrestrial

televisions (DTT) or programme making and special events

(PMSE) users, and those freed up by the switch-over from

analogue to digital TV broadcasting [3], [6]. The UK com-

munications regulator, Ofcom of Communications (Ofcom),

has announced the licence exempt regulations for TVWS in

December 2015 [7]. Compact and low-power white space

devices for rural broadband/WiFi-like accesses and Machine-

to-Machine (M2M) communications could therefore operate

on these vacant channels without causing interferences to the

primary transmissions [8], [9].

To enable dynamic spectrum access over TVWS, one needs

fast and accurate detection of the surrounding spectrum that

does not cause interferences to primary transmissions. One

major current approach to discover available TVWS channels

is using a Geo-location database [6]. However, this approach

requires an initial wired or wireless link available at the master

white space device in order to report its location to the central

database [3]. Moreover, rapid dynamic changes of the wireless

environment pose significant challenges to this database-only

approach. Dynamic spectrum sensing and its combination with

database approaches could address these challenges [10]–[12].

Spectrum sensing is a critical functionality to enable the

implementation of dynamic spectrum access in cognitive radio

systems [13]. Its goal is to allow secondary users (SUs) to

identify the spectrum occupancy states before opportunistically

exploiting the temporarily vacant frequency channels, while

protecting primary users (PUs) from harmful interferences

caused by secondary transmissions. To achieve spectrum

awareness over a wide frequency range, wideband spectrum

sensing is a highly desirable feature in cognitive radio net-

works. If a PU reappears over a certain band, the availability

of several other possible vacant channels facilitates the seam-

less handoff from one spectrum channel to another, which

reduces secondary data transmission interruptions. However,
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Fig. 1. The real-time spectrum occupancy recorded at QMUL (51.523021◦N
0.041592◦W) on March 5th, 2016. The figure shows that the spectrum is
sparsely occupied on F = [0, 6000] MHz.

for wideband spectrum sensing, a stringent requirement arises

from the Nyquist signal acquisition, which is quite expensive,

power-consuming and computation intensive [14]. Due to the

energy constraint in compact SUs, efficient real-time wideband

spectrum sensing emerges as a crucial challenge for dynamic

spectrum sharing in cognitive radio networks.

A simple approach for wideband spectrum sensing is to use

a tunable narrowband bandpass filter at the radio-frequency

(RF) front-end to scan through all of the narrow channels one

by one to detect the existence or non-existence of licensed

primary transmissions [15]. However, the sequential nature of

such schemes could introduce a long sensing period and thus

requires additional energy supply at the SUs. Such delay in the

sensing process will also cause missed opportunities or inter-

ferences to PUs. In [16], a filter bank algorithm is proposed to

process the wideband signal by multiple narrowband bandpass

filters with different shifted central frequencies. However, it

requires a great number of RF front-end components, e.g.,

bandpass filters, analog-to-digital converters (ADCs), etc.,

which may be a serious issue at SUs with restricted energy

resources.

Landau in [17] demonstrated that an arbitrary wideband

signal can be perfectly reconstructed if being sampled at a

rate no less than the total bandwidth of occupied spectrum.

As wireless signals over an open spectrum are typically sparse

in the frequency domain, it can be recovered by sampling at

a rate far less than the Nyquist rate in practice. Compressive

sensing were thus introduced to implement wideband spec-

trum sensing [18]. Although the energy consumption at the

wideband signal sampling part is reduced, compressive sens-

ing requires random sub-Nyquist projections [19]. Therefore,

custom ADCs with complex hardware that can perform analog

mixing or analog matrix multiplication at high frequency are

needed in compressive wideband spectrum sensing schemes,

which do not work well with low-power commodity hard-

ware [20]–[22]. Moreover, estimating a wideband spectrum

from its compressed samples is usually achieved by solving an

optimization problem, which requires high computation com-

plexity and thus is hard to implement in compact commodity

radios with limited computational capabilities [14].

In [23], a wideband spectrum sensing scheme based on

multicoset sampling was proposed, which is a nonuniform sub-

Nyquist sampling technique and can be realized using an effi-

cient multi-channel architecture. In addition, a low-speed sub-

Nyquist multicoset sampling strategy was proposed in [24] for

wideband spectrum sensing without the need of analog front-

end processing. However, it requires the knowledge of the

spectral support to allow for the perfect reconstruction at the

minimal sampling rate provided by the Landau’s theorem [17].

To estimate the locations of the occupied channels, Feng and

Bresler showed its similarity to the direction of arrival estima-

tion in the traditional sensor array processing, and proposed

to use the MUltiple SIgnal Classification (MUSIC) algorithm

for signal detection [23], [25]. However, the detection accuracy

based on MUSIC algorithm degrades severely when the signal-

to-noise ratio (SNR) decreases.

To overcome the SNR degeneration due to multipath fading,

shadowing, and noise uncertainty over wireless channels,

cooperative spectrum sensing was proposed to improve sensing

reliability by exploiting the spatial diversity across multiple

SUs [26], where as PUs typically transmit at much higher

power levels, a common sparse spectrum support is usually

perceived by all the surrounding SUs. To minimize the com-

munication overhead for collaboration, distributed orthogonal

matching pursuit (DOMP) was proposed in [27], where each

SU estimates the common signal support independently based

on its local compressed samples via orthogonal matching pur-

suit (OMP) and then the estimated supports are fused through

a majority voting rule to get the final decision. Although the

scheme in [27] is efficient to reduce the transmission overhead,

it suffers from the disadvantage of requiring a local detector

at each SU and losing certain information due to the non-

optimal decision fusion. In [28], Tian proposed a distributed

cooperative sensing algorithm based on compressive sensing,

in which sampling statistics rather than sensing decisions

are exchanged to reach a reliable global fusion. However, it

increases the transmission cost and the local l1 optimization

introduces a high computation complexity. In [29], each SU

implements wideband channel division to sense K out of

L channels and then matrix completion is performed at a

fusion center to reconstruct the original spectrum for decision

making. As SUs do not sense the whole spectrum, spatial

diversity among SUs is not fully exploited and a threshold

needs to be predefined to obtain the final decision.

Motivated by the above challenges, this paper first proposes

a reliable individual (working at each individual SU node) sub-

Nyquist wideband spectrum sensing scheme that can locate

active channels blindly, without knowing a priori spectral

support of the signal before sampling and processing. The only

prior information required is an upper bound κ on the possible

number of active channels, the maximum bandwidth fmax , and

the bandwidth of each channel B . Thus there are up to κ out

of L = fmax/B channels occupied. Following the individual

wideband spectrum sensing scheme, an efficient cooperative

scheme is then proposed to reduce energy consumption on

signal acquisition, processing, and transmission, with certain

detection performance guarantee. The major contributions of

the proposed scheme are summarized as follows:
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• As compact SUs have limited energy and computational

capabilities, no signal reconstruction is performed at the

SUs to reduce the computation load. Each SU simply

implements a multicoset sampler to subsample the wide-

band signal in the goal of reducing energy consumed on

signal sampling. Then a low-dimensional measurement

matrix is computed based on subspace decomposition to

estimate the active channel locations by recovering the

joint signal support of the multiband signal. Compared

with the original sub-Nyquist samples, the constructed

measurement matrix improves the computation efficiency.

As noise distortion is reduced in the constructed measure-

ment matrix, the detection performance is improved in the

low SNR regime in comparison with the one solved by

the traditional MUSIC algorithm.

• By exploiting the common signal support perceived

at all SUs, simultaneous-orthogonal matching pursuit

(SOMP) [30] is extended to recover the signal support by

jointly fusing measurements shared among the SUs. The

index that accounts for the largest residual norm among

all SUs is selected in each iteration to achieve accurate

detection performance. Different sampling patterns are

assigned to different SUs for measurement diversity, with

cooperation among SUs reducing the required number of

cosets close to the active channel number, where reliable

cooperative spectrum sensing is achieved at the minimal

sampling rate specified by the Landau’s theorem [17].

The rest of the paper is organized as follows. In Section II,

signal and network models are described. Section III describes

the proposed individual sub-Nyquist wideband spectrum sens-

ing scheme. Section IV develops the centralized cooperative

spectrum sensing scheme. Section V analyzes and validates

the proposed individual and cooperative schemes, over both

simulated and real-world TVWS signals. Conclusions are

drawn in Section VI.

II. SIGNAL AND NETWORK MODELS

As shown in Fig. 2, we investigate both the individual

(J = 1) and cooperative (J > 1) wideband spectrum sensing

in a cognitive radio network with a fusion center and J

SUs, which share the same spectrum with a PU network.

To reduce the energy consumption in high frequency signal

processing, compressive multicoset sampling is applied to

reduce the signal sampling and acquisition costs by exploiting

the sparsity in the wireless wideband signal given the low

spectrum utilization. With no prior information assumed on

the band locations, blind sub-Nyquist sampling and reliable

support recovery are implemented at each individual SU to

estimate the active channel locations. To further improve the

detection performance in low SNR regimes, a centralized

cooperative spectrum sensing scheme will be later developed,

in which soft fusion is adopted, i.e., SUs send their sampling

statistics to the fusion center, where a high-resolution global

sensing decision is made. However, traditional soft fusion rules

suffer from the disadvantage of large transmission overheads

and high computation complexity [31]. Thus, this paper further

aims to reduce the transmission and computation overhead by

Fig. 2. Cooperative spectrum sensing model in a cognitive radio network.

Fig. 3. Signal Spectrum X ( f ) with L = 10 and κ = 4 active channels,
S = [1, 2, 5, 8].

TABLE I

NOTATION

adopting a new fusion rule, without degrading the detection

accuracy with cooperative spectrum sensing.

Without loss of generality, the wideband sparse spectrum to

be monitored in the cognitive radio network is F = [0, fmax ],
which is evenly segmented into L narrowbands, each of them

with bandwidth B , as illustrated in Fig. 3. The channels are

indexed from 0 to L − 1. Suppose there are up to κ active

channels occupied by PUs during the sensing period with
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Fig. 4. Examples of two sampling patterns for (L , p) = (10, 4). (a) C =
{0, 1, 4, 6}; (b) C = {1, 3, 6, 8}.

S = [S1,S2, ...,Sκ ] denoting the set containing the indices of

the occupied channels. Given the prior information on fmax ,

B , and κ , the task of wideband spectrum sensing is to find

the presence and locations of the PU signals or equivalently

locating the active channel set S. Common notations, as

summarized in Table I, are used throughout the paper.

III. PROPOSED INDIVIDUAL SUB-NYQUIST WIDEBAND

SPECTRUM SENSING

In this section, we first consider a non-cooperative blind

sub-Nyquist wideband spectrum sensing at each individual SU

based on multicoset sampling, i.e., J = 1. For convenience,

we drop the index j in this section.

A. Blind Sub-Nyquist Wideband Signal Acquisition

Given the prior information on the number of narrowband

channels L, multicoset sampling is first executed at each

SU by taking non-uniform samples at the time instants t =
(mL + ci )T , where i = 1, ..., p, m ∈ Z, and 1/T = fs is the

Nyquist sampling rate. The set C = {ci }p

i=1, which comprises

of p distinct integers chosen from {0, 1, ..., L − 1}, is referred

as a (L, p) sampling pattern. Fig. 4 presents two multicoset

sampling patterns for (L, p) = (10, 4).

To implement the periodic non-uniform sampling, a mul-

ticoset sampler can be realized by p parallel cosets, each

of which takes uniform samples at time instants {mLT +
ci T }, m ∈ Z, via a decimated sampling rate 1

LT
= fs/L

with a sampling time offset of {ci T }, i = 1, ..., p, as shown

in Fig. 5.

From the practical standpoint, the non-uniform sub-Nyquist

sampling can be realized by a time-interleaved ADC, in which

only a subset of channels are used. In [32], [33], efficient

fabrications of time-interleaved ADC implemented as a single

integrated circuit are proposed. As multicoset sampler only

needs fewer channels than the time-interleaved ADC (p ≤
L), the hardware implementation would be simpler and less

power-consuming. In addition, the time offsets can be realized

by connecting the antenna to different ADCs using different

delay lines.

The measurement sequence of the i -th coset is defined as

xci [n] =
{

x(nT ), n = mL + ci , m ∈ Z

0, otherwise.
(1)

Fig. 5. The parallel implementation of the non-uniform sub-Nyquist
sampling.

Fig. 6. Flow chart to get the multicoset sampling measurements.

In practice, the ADCs of the parallel cosets provide p sample

sequences, given by

xi [m] = x[(mL + ci )T ], m ∈ Z, i = 1, 2, ..., p. (2)

In (1), each sequence xci [n], i = 1, ..., p, contains L−1 zeros

in between the downsampled signals. To get xci [n], each xi [m]
is upsampled by a factor of L:

xui [n] =
{

xi [ n
L
], n = mL, m ∈ Z

0, otherwise,
(3)

and then filtered to get xhi [n] = xui [n] ∗ h[n], where h[n] is

an interpolation filter with the frequency response:

H ( f ) =
{

1, f ∈ [0, B]
0, otherwise.

(4)

The filtered sequence is then delayed with ci samples to obtain

xci [n] as

xci [n] = xhi [n − ci ]. (5)

The whole process to obtain the compressed measurements

in multicoset sampling can be implemented as shown in

Fig. 6 [23].

The average sampling rate of each (L, p) multicoset sam-

pling pattern is
1

Tavg

= p

LT
, (6)

where α = p/L is termed as the sub-Nyquist sampling ratio.

According to the Landau’s theorem [17], α is lower-bounded

by the maximum possible spectrum occupancy ratio. However,

an average sampling rate above the Landau’s rate, which

equals the total bandwidth of the occupied spectrum, may not

be sufficient for individual blind spectrum recovery, and the



5

number of cosets p ≥ 2κ is needed when the band locations

are unknown [34].

Applying Fourier transform to xci [n] gives the link between

its spectrum Xci (e
j2π f T ) and the unknown Fourier Transform

of x(t) [23]:

Xci (e
j2π f T ) =

∑+∞
n=−∞ xci [n]e− j2π f nT

= 1
LT

∑L−1
l=0 X ( f + l

LT
)

︸ ︷︷ ︸

Xl ( f )

e j 2π
L ci l

= 1
LT

∑L−1
l=0 X l( f )e j 2π

L
ci l ∀ f ∈ [0, B],

(7)

for every 1 ≤ i ≤ p, where X l( f ), l = 0, ..., L − 1,

corresponds to the pieces of the original spectrum X ( f ) in

the channel l, which is shifted to the left by l
LT

units such

that all L channels are folded into the first narrowband [0, B].
Assume that the observed signal is given by x(t) = s(t) +

n(t), where s(t) is the primary signal and n(t) is the additive

white Gaussian noise with zero mean and variance σ 2
n . The

corresponding Fourier transform is given by X ( f ) = S( f ) +
N( f ). Define Sl( f ) = S( f + l

LT
), l = 0, ..., L − 1, and

S( f ) = [S0( f ), S1( f ), ..., SL−1( f )]T . Similarly we define

Nl ( f ) and N( f ). We can rewrite (7) into the matrix form

as
⎡

⎢
⎢
⎢
⎣

Xc1(e
j2π f T )

Xc2(e
j2π f T )
...

Xcp(e
j2π f T )

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

Y( f )

= 1

LT

⎡

⎢
⎢
⎢
⎢
⎢
⎣

e
j2πc10

L e
j2πc11

L · · · e
j2πc1(L−1)

L

e
j2πc20

L e
j2πc21

L · · · e
j2πc2(L−1)

L

...
...

...
...

e
j2πcp0

L e
j2πc21

L · · · e
j2πcp(L−1)

L

⎤

⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

A

×

⎡

⎢
⎢
⎢
⎣

X0( f )

X1( f )
...

X L−1( f )

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

X( f )

= A[S( f ) + N( f )], ∀ f ∈ [0, B],

(8)

where Y( f ) is a matrix whose i -th row is Xci (e
j2π f T ),

X( f ) = [X0( f ), X1( f ), ..., X L−1( f )]T is the unknown spec-

trum vectors of x(t) in the L channels, and A ∈ Cp×L is a

matrix with (i, j)-th element given by

Ai, j = 1

LT
e j 2π

L ci ( j−1). (9)

As the parameter L in the adopted multicoset sampler

is set according to the number of channels in the original

spectrum, the support of the original spectrum supp(S( f ))

in (8) is equivalent to the active channel index set S. Thus

in the proposed wideband spectrum sensing scheme, signal

reconstruction is unnecessary and only the support of the

spectrum is of interest.

B. Reliable Computation Efficient Joint Sparse Recovery

With multicoset samplers, each SU gets p sample sequences

in a matrix from Y( f ) ∈ C
p×N , where N is the number of

samples in each coset. The correlation matrix of the sampled

sequence Y( f ) is defined as

R � E[Y( f )YH ( f )], (10)

where the superscript ()H denotes the Hermitian transpose.

Since there is no correlation between the signal and the noise,

it follows that

R = A[Rs + σ 2
n I]AH , (11)

where Rs � E[S( f )SH ( f )] is the primary signal correlation

matrix. Note that A is a sub-matrix of the complex conjugate

of the L × L discrete Fourier Transform matrix (consisting of

p rows indexed by the sampling pattern C) multiplied by a

factor of 1
LT

. It is shown that for a larger L, the randomly

selected sampling pattern C enables the matrix A to have

almost orthogonal columns, i.e., < ai , a j >= 0 for i 	= j ,

and < ai , a j >= 1
LT 2 for i = j with a high probability [19],

[35]. Therefore, R can be derived as:

R = ARsAH + σ 2
n

LT 2
I, (12)

From Parseval’s identity [36], the correlation matrix R̂ can

be computed directly from the sampled sequence xci [n] in the

time domain, where R̂i j = 1
N

∑N
n=1 xci [n]x H

c j
[n] [37]. It is

shown in [38], [39] that when the number of measurement

samples N is much larger than the observation dimension p,

R̂ is an accurate estimator of the true correlation matrix.

As there are up to κ active channels occupied during the

sensing period, i.e., Rs has a rank of κ and A is of full

rank, it follows that the rank of ARsAH equals κ . Denoting

λ1 ≥ λ2 ≥ ... ≥ λp and µ1, µ2, ..., µp as the eigenvalues and

corresponding eigenvectors of R, respectively, i.e.,

Rµi = λiµi , i = 1, ..., p. (13)

We then have

[ARsAH + σ 2
n

LT 2 I][µ1, ..., µp]

= [µ1, ..., µp]

⎡

⎢
⎢
⎢
⎣

λ1 0

λ2

. . .

0 λp,

⎤

⎥
⎥
⎥
⎦

,

(14)

i.e.,

[ARsAH ][µ1, ..., µp]

= [µ1, ..., µp]

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λ1 − σ 2
n

LT 2 0

λ2 − σ 2
n

LT 2

. . .

0 λp − σ 2
n

LT 2 ,

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(15)
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Fig. 7. Eigenvalues of the sample correlation matrix ordered in decreasing
order with p = 9, κ = 4.

Since ARsAH has a rank of κ , there must be p−κ λi ’s equal to
σ 2

n

LT 2 . As ARsAH is positive semidefinite, the λi ’s with values

equal to
σ 2

n

LT 2 must be the smallest ones of λi ’s. Therefore, we

have

λκ+1 = λκ+2 = ... = λp = σ 2
n

LT 2
. (16)

As N → ∞, it follows that except for the κ largest, the

eigenvalues of R are related to the noise variance σ 2
n , as shown

in Fig. 7.

Thus R can be decomposed via the rank-revealing eigen-

value decomposition (RREVD) as

R = U�UH = Us�sUH
s + σ 2

n

LT 2
UnUH

n , (17)

where U = [Us, Un], �s = diag{λ1, ..., λκ} contains the κ

non-increasing principal eigenvalues and Us contains the cor-

responding eigenvectors, while Un contains the corresponding

eigenvectors associated with the smallest p − κ eigenvalues
σ 2

n

LT 2 . As the noise term only perturbs the eigenvalues, the

range of R, spanned by Us , coincides with the signal subspace

spanned by AS( f ), and its orthogonal complement spanned

by Un is the noise subspace. Therefore, we choose the κ

largest eigenvalues �s and the corresponding eigenvectors Us

to construct the measurement matrix as χ s = Us

√
�s ; so we

can define the following linear system

χ s = Aνs, (18)

where the support of the sparest solution to (18) converges

to the original primary signal, i.e., supp(νs) = supp(S( f )).

Moreover, using χ s ∈ Cp×κ for support recovery instead

of Y( f ) ∈ C
p×N reduces the transmission overhead and

enhances the computational efficiency.

The separation between the signal and noise eigenvalues

needs a threshold. Depending on the noise variance and the

number of samples, the threshold could vary. To avoid the

tricky threshold setting, some information theoretic criteria

for the model order selection, such as exponential fitting test

(EFT) can be applied for the estimation of the signal support

dimension κ̂ [40].

As only κ active channels assumed to be occupied by

primary transmissions, νs can be approximated to be jointly

Algorithm 1 Joint sparse recovery in SA-SOMP

Require: R ∈ Cp×p , κ̂ , A = [a1, ..., aL ] ∈ Cp×L

Ensure: S

1: [Us , �s ] ← RREVD(R, κ̂), χ s = Us

√
�s

2: t = 0, R0 = χ s , ν0 =, S =
3: while t ≤ κ̂ do

4: t ← t + 1

5: lt = arg max
l

‖ aH
l Rt−1 ‖2, l ∈ 1, ..., L

6: S ← S ∪ lt , ν t = A
†
S

χ s

7: Rt ← χ s − ASν t

8: end while

9: return S=S-1

κ-sparse as it contains no more than κ significant rows. Recon-

struction of the unknown matrix νs with jointly sparse columns

in (18) is referred to as the joint sparse problem, which aims

to estimate the support of νs from the measurement matrix

χ s . Some existing greedy algorithms for the sparse recovery

problem could be extended to this joint sparse problem, such

as SOMP [30]. To improve the detection robustness against

noise interference and reduce the computation complexity,

SOMP is applied to the constructed low-dimensional mea-

surement matrix χ s , denoted as subspace-augmented SOMP

(SA-SOMP) in this paper. The detailed procedure of the joint

sparse recovery in the proposed individual wideband spectrum

sensing is summarized in Algorithm 1.

IV. PROPOSED COOPERATIVE WIDEBAND SPECTRUM

SENSING

As sub-Nyquist measurements are quite vulnerable to chan-

nel degradations, cooperation among multiple SUs is necessary

in sub-Nyquist wideband sensing. Assume that there are J co-

existing SUs within the local region that cooperatively sense

the wideband to locate the active channel set S. The received

signals at the SUs are from the same primary transmissions but

affected differently by fading and shadowing from the common

PU transmitter to each SU. Thus all SUs share a common

sparse support with different amplitudes.

The proposed cooperative spectrum sensing scheme can be

formulated into a three-step framework:

1) Each SU implements a multicoset sampler that inde-

pendently samples the signal with a different sampling

pattern C( j ) from the others, e.g., randomly chosen to

allow for more sampling diversity.

2) Measurement matrix χ
( j )
s is constructed at each SU from

its sub-Nyquist samples based on subspace decompo-

sition. Then the local matrix χ
( j )
s with the sampling

pattern C( j ) is transmitted to the fusion center.

3) The fusion center locates the active channels by jointly

fusing measurements shared among the SUs to reach a

global sensing decision with enhanced accuracy.

Based on the measurement matrix χ
( j )
s and the sampling

pattern C( j ) sent from each SU, the fusion center computes

the corresponding reconstruction matrix A( j ) and then locates

the active channels by exploiting the common signal support
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shared by ν
( j )
s , j = 1, · · · , J , across all SUs. At each SU, the

following relationship holds:

χ
( j )
s = A( j )ν

( j )
s , 1 ≤ j ≤ J. (19)

Exploiting the common sparse support shared by the J SUs,

the fusion center fuses measurements sent from all SUs to

locate the original active channels. Grouping the rows of

ν
( j )
s , j = 1, ..., J , with the same indices, forms the matrix

ζ s as

ζ s =
[

ν(1)
s [1]T · · · ν(J )

s [1]T

︸ ︷︷ ︸

νs [1]T

· · · ν(1)
s [L]T · · · ν(J )

s [L]T

︸ ︷︷ ︸

νs [L]T

]T

,

(20)

where ν
( j )
s [i ] denotes the i -th row of ν

( j )
s at the j -th SU.

Furthermore, ζ s can be partitioned as a concatenation of

blocks νs [l]T , l = 1, ..., L, and the block size is equal to the

number of SUs J . As there are at most κ channels occupied,

ζ s can be modeled as a block κ-sparse matrix. Thus, in each

iteration, the block index that accounts for the largest residual

norm among all SUs is selected, i.e.,

lt = arg max
l

J
∑

j=1

‖ a
( j )H
l R

( j )
t−1 ‖2, l ∈ 1, ..., L, (21)

where R
( j )
t−1 is the residue at the (t − 1)-th iteration at the j -th

SU, a
( j )
l is the l-th column in A( j ), and lt is the selected index.

The detailed algorithm for the proposed joint support recovery

at the fusion center is described in Algorithm 2, where each

SU implements EFT to estimate the signal sparsity κ̂ ( j ), and

then the fusion center takes the average κ̂, i.e.,

κ̂ = 1

J

J
∑

j=1

κ̂ ( j ), (22)

for the number of iterations at the joint support recovery in

Algorithm 2.

Based on the measurements shared among the SUs, the

detection performance is improved in low SNR regimes.

Moreover, thanks to the measurement diversity across multiple

SUs given the different sampling patterns, the fusion center

could obtain an accurate estimate of the occupied channel

locations at the sampling rate approaching the Landau’s rate

as the number of SUs increases, as shown in Fig. 17. This is

due to the fact that the sub-coherence within the block,

µ = max
1≤l≤L

( max
1≤i 	= j≤J

||a(i)H
l a

( j )
l ||), (23)

is substantially smaller than the conventional coherence in the

equivalent reconstruction matrix A [41]. Reconstruction of the

block sparse signal in the cooperative sensing scheme therefore

can be guaranteed with an eased requirement comparing to the

reconstruction in the individual scheme. Therefore, a small

number of cosets p proportional to the signal sparsity κ is

sufficient for cooperative spectrum sensing. The computation

complexity of support recovery at the fusion center could be

expressed as O(κ3 L J ).

Algorithm 2 Measurement fusion in the proposed centralized

cooperative spectrum sensing scheme

Require: χ
( j )
s ∈ C

p×κ̂( j)
, κ̂ ( j ), A( j ) = [a( j )

1 , ..., a
( j )
L ] ∈ C

p×L

Ensure: S

1: κ̂ = 1
J

∑J
j=1 κ̂ ( j )

2: t = 0, R
( j )
0 = χ

( j )
s , ν

( j )
0 = ∅, S = ∅

3: while t ≤ κ̂ do

4: t ← t + 1

5: lt = arg max
l

∑J
j=1 ‖ a

( j )H
l R

( j )
t−1 ‖2, l ∈ 1, ..., L

6: S ← S ∪ lt , ν
( j )
t = A

( j )†
S

χ
( j )
s

7: R
( j )
t ← χ

( j )
s − A

( j )
S

ν
( j )
t

8: end while

9: return S = S − 1

Fig. 8. Simulated signal illustration in time and frequency domains, with
L = 40, κ = 4 and S = [4, 11, 19, 26].

V. NUMERICAL ANALYSIS

This section provides simulation results to evaluate the

proposed wideband spectrum sensing scheme using both sim-

ulated signals and real-world TVWS signals. We first describe

the simulation setup and relevant performance evaluation mea-

sures, and then analyze and discuss the obtained results.

A. Experimental Setup and Performance Measures

Consider the received signal x(t) ∈ F = [0, 320] MHz

containing L = 40 channels of equal bandwidth B = 8 MHz

and up to κ ≤ L active channels. The simulated signal is

generated as

x(t) =
κ

∑

i=1

√

Ei Bsinc(B(t − ti ))e
j2π f i t + n(t), (24)

where sinc(x) = sin(πx)/(πx), Ei , ti , and fi define the

energy, time offset, and carrier frequency respectively, on each

active channel, and n(t) ∼ N (0, σ 2
n ) is the additive white

Gaussian noise. Thus the spectrum occupancy ratio of primary

transmissions can be expressed as � = κ/L. The signal is

observed on a time frame of T = 25.6 µs starting at t = 0,

which corresponds to T ·320·106 = 8192 Nyquist rate samples.

Fig. 8 depicts one example of the signal with κ = 4 active

channels, i.e., � = 10%. In this example, Ei = {1, 1, 1, 1},
ti = {4, 8, 16, 20} µs and the spectrum support is centered at

fi = {36, 92, 156, 212} MHz. Thus the active channel set is

S = [4, 11, 19, 26].
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Fig. 9. Measurements setup for real-time TVWS signals recording at Queen
Mary University of London.

The real-time TVWS signals are recorded by an RFeye

node, an intelligent spectrum monitoring system that can

provide real-time 24/7 monitoring of the radio spectrum [5].

The RFeye node is located at (51.523021◦N, 0.041592◦W),

and the height is about 15 meters above the ground, as shown

in Fig. 9. There are 40 channels (indexed as Channel 21

- Channel 60) in the recorded TVWS signal, ranging from

470 to 790 MHz and each channel contains either noise

only or PU signal with noise. Fig. 10 shows the normalized

downconverted TVWS signal in the baseband F = [0, 320]
MHz. Strong DVB-T signal reception at channel set S =
[22, 23, 25, 26, 28, 29, 30, 33] can be observed in the recorded

spectrum. Thus the spectrum occupancy ratio is � = 20%.

To quantify the detection performance we compute the

detection probability Pd , i.e., the fraction of occupied channels

correctly being reported as occupied. The estimated active

channel set Ŝ is compared against the original signal support

S to compute the detection probability under 2000 trials.

Once the signal support is recovered, reconstruction of

the sparse signal has a closed-form solution. Based on the

estimated signal support Ŝ and the sample sequence xci [n],
the reconstruction formula can be expressed as

xr [n] =
κ̂

∑

q=1

p
∑

i=1

[A†

Ŝ+1
]i,q xci [n]e

j2πŜqn

L , (25)

where xr [n] is the reconstruction signal and κ̂ is the estimated

signal sparsity. The accuracy of the reconstructed signal is

evaluated by the relative reconstruction mean squared error

(MSE) compared with the original signal, which is defined as

M SE = ||xr [n] − x[n]||
||x[n]|| . (26)

B. Individual sub-Nyquist Wideband Spectrum Sensing

To reduce the computation complexity with good noise

robustness, subspace decomposition is applied at each SU to

derive the measurement matrix χs based on the local sub-

Nyquist samples. In this section, the detection performance

of the proposed scheme based on SA-SOMP is compared

Fig. 10. Normalized power spectrum density (PSD) of the real-time TVWS
signal recorded at QMUL, S = [22, 23, 25, 26, 28, 29, 30, 33]

Fig. 11. Detection Probability Pd vs. varying SNR values under different
sub-Nyquist sampling ratios α = p/L with κ = 4.

with the one with the MUSIC algorithm, which was proposed

in [23] for sparse support recovery with multicoset sampling.

The impact of system parameters, such as the SNR, the sub-

Nyquist sampling ratio, and the channel occupancy ratio, are

also investigated.

1) Spectrum Sensing Performance versus SNR: Fig. 11

shows the detection probability Pd with respect to received

SNR ranging from −5 dB to 20 dB. The channel occupancy

ratio � is assumed to be 10%, such that 4 out of 40 channels

are randomly chosen to be occupied. Multicoset samplers

with p = 10, 15, 20 are used to sample the received signal,

corresponding to the sub-Nyquist sampling ratios of α =
p/L = 25%, 37.5%, 50%. The p integers of each sampling

pattern C are selected randomly out of L. It is shown in Fig. 11

that the performance of the proposed SA-SOMP scheme is

superior to that with the MUSIC algorithm, and improves

monotonically as SNR increases.

2) Spectrum Sensing Performance versus sub-Nyquist Sam-

pling Ratio: Fig. 12 depicts the reconstructed signal in time

and frequency with p = 15. Thus the sub-Nyquist sampling

ratio is α = p/L = 37.5%. Compared with original signal

shown in Fig. 8, the reconstruction MSE is computed to be

2.7%.

To show the relationship between the detection performance

and the sub-Nyquist sampling ratio α, we plot Pd against p in

Fig. 13. The channel occupancy ratio � is still assumed to be

10% (κ = 4). When the number of cosets p is greater than the

number of occupied channels κ only by one, i.e., α = 12.5%,

it yields a poor support recovery at individual SUs, thus
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Fig. 12. Reconstructed signal in the time and frequency domains with p =
15. The relative reconstruction MSE compared with the original signal in
Fig. 8 is 2.7%.

Fig. 13. Detection Probability Pd vs. number of cosets p under different
SNR values with κ = 4, α = p/L .

Fig. 14. Detection Probability Pd vs. varying SNR values for different
numbers of active channels κ with p = 20 (α = 50%).

resulting in a low detection probability. As the number of

cosets increases to p ≥ 2κ , better detection performance is

achieved, increasing Pd close to 1 under SNR = 5 dB when

p = 10 for the proposed scheme and outperforming that with

the MUSIC algorithm. At SNR = -5 dB, a high detection

probability (Pd ≥ 0.9) is achieved when p increases above

20 (α = 50%) in the proposed scheme, while MUSIC needs

more cosets at p = 30 (α = 75%).

3) Spectrum Sensing Performance versus Spectrum Occu-

pancy Ratio: Fig. 14 shows the detection performance of the

proposed spectrum sensing scheme with different numbers

of active channels κ . A multicoset sampler with p = 20 is

used, such that the sub-Nyquist sampling ratio is α = 50%.

The number of active channels κ varies from 4, 8 to 12 and

their positions are randomly selected out of L = 40 channels.

Fig. 15. Global detection probability Pd vs. varying SNR values.

TABLE II

COMPARISON OF COMPLEXITY

As Fig. 14 shows, the detection performance degrades as the

number of active channels increases, which indicates that more

samples should be collected for signal reconstruction to ensure

that the detection performance is not degraded as the channel

occupancy ratio � increases.

C. Cooperative sub-Nyquist Wideband Spectrum Sensing

In this section, the performance of the proposed cooperative

wideband spectrum sensing scheme is compared with several

other cooperative schemes in terms of transmission and com-

putation complexity and detection accuracy. The impacts of

the sub-Nyquist sampling ratio and the number of cooperative

SUs on cooperative spectrum sensing are also analyzed.

1) Performance Comparison against SOMP and DOMP:

To analyze the efficiency of the proposed scheme in terms

of transmission overhead and local/fusion computation com-

plexity, we compare the proposed algorithm with two extreme

cases: performing OMP at each SU independently and then

fusing the estimated supports via majority rule (termed

DOMP), and transmitting the original sub-Nyquist samples

and then jointly recovering signal support based on SOMP

(termed SOMP), as shown in Table II. Fig. 15 presents

the detection performance of the three schemes. Although

DOMP has the minimum transmission overhead, its detection

performance is the worst. Compared with SOMP, the pro-

posed scheme achieves good detection performance with lower

transmission overhead and computation complexity, due to the

subspace decomposition.

2) Spectrum Sensing Performance versus Number of SUs

and Sub-Nyquist Sampling Ratio: Fig. 16 shows the global

detection probability Pd of the proposed cooperative spectrum

sensing scheme with different numbers of SUs. It is observed

that the detection performance is improved as the number

of cooperative SUs increases. This is because as more SUs

joints, measurements shared among SUs make the wideband
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Fig. 16. Global detection probability Pd vs. varying SNR values with
different numbers of SUs, κ = 4 and p = 10 (α = 25%).

Fig. 17. Global detection probability Pd vs. varying SNR values with
different numbers of SUs, κ = 4 and p = 5 (α = 12.5%).

sensing more accurate. By incorporating the observations from

multiple SUs, it is possible to achieve the desired detection

performance even at low SNR levels. For the desired detection

performance, e.g., Pd ≥ 0.9, individual spectrum sensing

(J = 1) requires SNR = 2 dB under sub-Nyquist sampling

ratio α = 25% (p = 10), while the collaboration of 10 SUs

can achieve it at SNR = -4 dB.

For the same wideband signal, Fig. 17 shows the global

detection performance when the number of cosets at each SU

reduces to p = 5. As p is greater than the number of occupied

channels κ only by one, individual sensing (J = 1) yields poor

detection performance even in the high SNR region. Based

on measurements fusion among multiple SUs, cooperative

spectrum sensing can improve the detection performance as

the number of joint SUs J increases. As the value of SNR

increases, SU cooperation could achieve highly reliable detec-

tion at the minimal sampling rate provided by the Landau’s

theorem [17], such that a lower number of cosets p is required

at each SU.

D. Real-world TVWS Signal Analysis

After the robust performance of the proposed sub-Nyquist

wideband spectrum sensing schemes have been validated with

simulated signals under individual and cooperative sensing

setups, it is further tested over real-world TVWS signals

collected by the RFeye sensing node installed in our lab as

shown in Fig. 9.

Fig. 18. Normalized PSD of the reconstructed real-world TVWS signal under
p = 10 and p = 15 at individual spectrum sensing.

Fig. 19. Normalized PSD of the reconstructed real-world TVWS signal under
p = 10 at cooperative spectrum sensing of J = 3 SUs.

Fig. 20. Detection Probability Pd vs. number of cosets p for the real-world
TVWS signal.

To obtain the channel occupancy information over the real-

world TVWS signals, a multicoset sampler is firstly applied to

subsample the time domain signal, and then the signal support

is recovered to estimate the active channel set. Compared

with conventional energy detection, which needs to compute

the received signal power at each channel and then compare

the power against the predefined threshold from the historical

statistics to distinguish between the channel occupied by PU

signals and a spectrum hole, the proposed wideband spectrum
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sensing scheme does not require knowledge of the spectrum

information either at the sampling stage or at reconstruction

stage; thus the computation and implementation complexity

is reduced. In addition, the blind signal support estimation

directly obtains the positions of the active channels. Once the

signal support is recovered, reconstruction of the wideband

signal has a closed-form solution, as presented in (25).

Fig. 18 shows the reconstructed real-world TVWS spectrum

at an individual SU equipped with a multicoset sampler, for

p = 10 and 15, respectively. It is observed that a smaller

MSE of the reconstructed signal is achieved under a higher

p, but at the cost of a higher sampling rate thus more sample

processing. When p = 10, i.e., κ < p < 2κ , the individual

wideband spectrum sensing scheme misses some occupied

channels such that the detection probability Pd reduces to

0.625 and the reconstruction MSE gets higher as well.

We then consider the proposed cooperative spectrum sens-

ing scheme with p = 10 and J = 3. Due to the measurements

sharing among SUs, the fusion center gets an accurate signal

support estimation such that the detection probability Pd

increases to 1 and the reconstructed signal achieves a good

approximation to the original signal, as shown in Fig. 19.

Fig. 20 illustrates the detection probability Pd against the

sub-Nyquist sampling ratio α over the real-world TVWS sig-

nal. Similarly as shown in Fig. 17, the detection performance

is improved as the number of SUs J increases. We see that

a smaller number of cosets p proportional to the number of

occupied channels κ suffices for the reliable detection in the

cooperative cognitive radio networks.

VI. CONCLUSION

Wideband spectrum sensing is of critical importance to

enable dynamic spectrum sharing. In this paper, efficient mul-

ticoset sampling based wideband spectrum sensing schemes

have been proposed for both individual and cooperative sens-

ing cases to reduce energy consumption on wideband sig-

nal acquisition, processing, and transmission, with detection

performance guarantee by exploiting the joint sparsity of the

multiband signals. Based on a low-rate multi-channel architec-

ture, sub-Nyquist sampling is implemented without complex

analog front-end processing. The proposed wideband spectrum

sensing schemes locate the active channels blindly without the

prior knowledge of the spectral support for the received signal

at either the sub-Nyquist sampling or reconstruction stage.

Compared with individual wideband spectrum sensing

scheme based on MUSIC, the proposed scheme improves

the detection accuracy in low SNR regimes. Exploiting the

common signal support perceived at all SUs, the detection

accuracy is further improved through cooperative spectrum

sensing, in which measurements from multiple SUs are fused

jointly to reach a final sensing decision. Based on low-

dimensional measurements derived by subspace decomposi-

tion, the proposed cooperative spectrum sensing scheme gains

better noise robustness while reduces both computation com-

plexity and transmission overhead. Moreover, thanks to the

measurement diversity across multiple SUs, reliable sensing

results can be achieved at the minimal sampling rate specified

by the Landau’s theorem, such that the number of cosets p

proportional to the signal sparsity κ is shown sufficient for

reliable cooperative spectrum sensing.

The robust performance of the proposed wideband spectrum

sensing scheme has also been validated over real-world TVWS

signals recorded by the RFeye node at QMUL. In comparison

with conventional sub-Nyquist wideband spectrum sensing

schemes, numerical analysis and experimental results show

that the proposed scheme can achieve good detection perfor-

mance as well as reduced computation and implementation

complexity.
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