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Abstract—The past years have witnessed great progress on re-
mote sensing (RS) image interpretation and its wide applications.
With RS images becoming more accessible than ever before, there
is an increasing demand for the automatic interpretation of these
images. In this context, the benchmark datasets serve as essential
prerequisites for developing and testing intelligent interpretation
algorithms. After reviewing existing benchmark datasets in the
research community of RS image interpretation, this article
discusses the problem of how to efficiently prepare a suitable
benchmark dataset for RS image interpretation. Specifically,
we first analyze the current challenges of developing intelligent
algorithms for RS image interpretation with bibliometric inves-
tigations. We then present the general guidances on creating
benchmark datasets in efficient manners. Following the presented
guidances, we also provide an example on building RS image
dataset, i.e., Million-AID 1, a new large-scale benchmark dataset
containing a million instances for RS image scene classification.
Several challenges and perspectives in RS image annotation
are finally discussed to facilitate the research in benchmark
dataset construction. We do hope this paper will provide the
RS community an overall perspective on constructing large-scale
and practical image datasets for further research, especially data-
driven ones.

Index Terms—Remote sensing image interpretation, annota-
tion, benchmark datasets, scene classification, Million-AID

I. INTRODUCTION

THE advancement of remote sensing (RS) technology

has significantly improved the ability of human beings
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to characterize features of the Earth surface [1], [2]. With

more and more RS images being available, the interpretation

of RS images has been playing an important role in many

applications, such as environmental monitoring [3], [4], re-

source investigation [5]–[7], and urban planning [8], [9], etc.

However, with the rapid development of the Earth observation

technology, the volume of RS images increases dramatically,

which raises high requirement of efficient image interpretation

for real-world applications. Moreover, the rich details in RS

images, such as the geometrical shapes, structural character-

istics, and textural attributes also pose great challenges to the

interpretation of image content [10]–[13]. These motivate the

increasing and stringent demands for automatic and intelligent

interpretation of the blooming RS imagery.

To characterize RS image content, quite a few methods

have been developed for various interpretation tasks, ranging

from the scene-level content recognition [14]–[23], object-

level image analysis [24]–[34] to the challenging pixel-wise

semantic understanding [35]–[46]. Benefiting from the in-

creasing availability and various ontologies of RS images,

the developed methods have reported promising performance

on the interpretation of RS image content. However, many

of the current methods are evaluated on small-scale image

datasets which usually show domain bias for applications.

Moreover, a dataset created toward specific algorithms rather

than real application scenarios is hard to objectively validate

the comprehensive performance of the algorithms. Recently, it

is observed that data-driven approaches, particularly the deep

learning ones [47]–[50], have become an important alternative

to manual interpretation and provided a bright prospect for

automatic interpretation, analysis and content understanding

for the massive RS images. However, the training and testing

effectiveness could be curbed owing to the lack of adequate

and accurately annotated ground-truth datasets. As a result,

it usually turns out to be difficult to apply the interpretation

models in real-world applications. Thus, it is natural to argue

that a great amount of efforts need to be paid for datasets

construction considering the following points:

• The ever-growing volume of RS images is acquired while
very few of them are annotated with valuable information.
With the rapid development and continuous improvement

of sensor technology, it is convenient to receive RS data

with various modalities, e.g., optical, hyper-spectral, and

synthetic aperture radar (SAR) images. Consequently, a

huge amount of RS images with different spatial, spectral,

and temporal resolutions is received every day than ever
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before, providing challenges as well as opportunities [51]

for the interpretation of surface features [5], [28], [52].

However, in contrast to the huge amount of received RS

images, those annotated with valuable information are

relatively few, making them difficult to be productively

utilized and also resulting in great waste.

• The generalization ability of algorithms for interpreting
RS images is of great urgency to be enhanced. Although

a multitude of machine learning [53]–[55] and deep

learning algorithms [47], [56], [57] have been developed

for RS image interpretation, their interpretation capability

could be constrained because of the complexity of RS

image content. Besides, existing algorithms are usually

trained on small-scale datasets, which shows weak rep-

resentation ability for the real-world feature distribution.

Consequently, the constructed algorithms inevitably show

limitations, e.g., weak generalization ability, in practical

applications. Therefore, more robust and intelligent al-

gorithms need to be further explored accounting for the

essential characteristics of RS images.

• Representative and large-scale RS image datasets with
accurate annotations are demanded to narrow the gap
between algorithm development and real applications.
An annotated dataset with large volume and variety has

proven to be crucial for feature learning [28], [58]–[60].

Although various datasets have been built for different

RS image interpretation tasks, there are inadequacies,

e.g., the small scale of images, the limited semantic cate-

gories, and deficiencies in image diversity, which severely

limit the development of new approaches. From another

point of view, large-scale datasets are more conducive

to characterize the pattern of feature distribution in the

real-world. Thus, it is natural to argue that the represen-

tative and large-scale RS image datasets are critical to

push forward the development of practical interpretation

algorithms, particularly deep learning-based methods.

• There is a lack of public platforms for systematic evalu-
ation and fair comparison among different interpretation
algorithms. A host of interpretation algorithms have been

designed for RS image interpretation tasks and achieved

excellent performances. However, many algorithms are

designed toward specific datasets, rather than practical ap-

plications. Without the persuasive evaluation and compar-

ison platforms, it is an arduous task to fairly compare and

optimize different algorithms. Moreover, the established

image datasets may show deficiencies in scale, diversity

and other properties as mentioned before. This makes

the learned algorithms inherently deficient. As a result, it

is difficult to effectively and systematically measure the

validity and practicability of different algorithms for real

interpretation applications.

With these points in mind, this paper first provides a review

of the available RS image datasets and discusses the creation

of benchmark datasets for RS image interpretation. Then, we

present an example of constructing a large-scale dataset for

scene classification as well as the discussion about challenges

and perspectives in RS image annotation. To sum up, our main

contributions are as follows:

• Covering literature published over the past decade, we

provide a comprehensive review on the existing RS image

datasets concerning the current mainstream of RS image

interpretation tasks, including scene classification, object

detection, semantic segmentation, and change detection.

• We present the general guidances, including the dataset

property desirability, image acquisition via semantic co-

ordinates collection, and annotation methodology, on

creating benchmark datasets for RS image interpretation.

The introduced guidances formulate an overall prototype,

which we hope to provide a picture for RS image

dataset creation with considerations in efficiency, quality

assurance, and property assessment.

• Following the general guidances of dataset creation, we

establish the solution of building a scene classifica-

tion dataset to further verify the practicability of the

formed guidances. Consequently, we create a large-scale

benchmark dataset for RS image scene classification,

i.e., Million-AID, which possesses a million RS images.

Besides, we conduct a discussion about the challenges

and perspectives in RS image dataset annotation to which

efforts need to be dedicated in the future work.

The remainder of this paper is organized as follows. Sec-

tion II reviews the existing datasets for RS image interpre-

tation. Section III presents the guidances of constructing a

meaningful annotated RS image dataset. Section IV gives an

example of creating large-scale RS image dataset for scene

classification. Section V discusses the challenges and perspec-

tives concerning RS image annotation. Finally, in Section VI,

we draw some conclusions.

II. ANNOTATED DATASETS FOR RS IMAGE

INTERPRETATION: A REVIEW

The interpretation of RS images has been playing an

increasingly important role in a large variety of applica-

tions, and thus, has attracted remarkable research attentions.

Consequently, many RS image datasets have been built to

advance the development of interpretation algorithms. In this

section, we firstly investigate the mainstream of RS image

interpretation. And then, a comprehensive review is conducted

from the perspective of dataset annotation.

A. RS Image Interpretation Focus in the Past Decade

It is of great interest to check what the main research stream

is in RS image interpretation. To do so, we analyzed the

journal articles published in the past decade in RS community

based on Web of Science (WoS) database. Specifically, we use

“remote sensing” as the keyword to perform topic retrieval

supported by tile, abstract, and keywords. Then, the retrieved

references published in the last decade (i.e., 2011-2020) are

gathered and those journals that published most articles ranked

top 10 are selected to investigate the mainstream of RS image

interpretation. Generally, remote sensing image interpretation

is closely related to the work of image/information/content ex-

tract/analysis/understanding. Relying on this idea, each term of
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“image interpretation”, “image analysis”, “image understand-

ing”, “content interpretation”, “content analysis”, “content

understanding”, “content extraction”, “information extraction”,

“information analysis”, “information interpretation”, and “in-

formation understanding” was combined with the keyword of

“remote sensing” to further screen those interpretation related

works by topic retrieval. By excluding the irrelevant results

(e.g., review articles), 5,827 articles were obtained and then

analyzed by CiteSpace [61]. Table I shows the final employed

journals and number distribution of investigated references.

It is shown that our investigated references are now well

presented at the major international RS journals.

TABLE I: Investigated Journals and number of papers.

Name of journal #Ref.
Remote Sensing 1,922
International Journal of Remote Sensing 587
IEEE Transactions on Geoscience and Remote Sensing 575
ISPRS Journal of Photogrammetry and Remote Sensing 536
Remote Sensing of Environment 528
IEEE Journal of Selected Topics in Applied Earth 493

Observations and Remote Sensing
Journal OF Applied Remote Sensing 329
International Journal of Applied Earth Observation and 304

Geoinformation
Sensors 277
IEEE Geoscience and Remote Sensing Letters 276

Figure 1 shows the highest frequency terms appearing in the

title, keyword, and abstract of the literature. The terms with

higher frequency are presented with larger font size. As can be

seen from this figure, RS image interpretation works mainly

focus on classification tasks (e.g., land-cover classification

and scene classification). Obviously, change detection, (image)
segmentation, and object detection occupy prominent positions

in the interpretation tasks. Specially, the terms around the

center, e.g., landsat, uav (unmaned aerial vehicle), modis,

synthetic aperture radar, and sentinel*, indicate the commonly

used image sources for interpretation tasks. It is worth noting

that feature extraction plays a significant role in the interpreta-

tion of RS images. This makes sense as the feature extraction

performed by interpretation models and algorithms, reflected

by the terms of deep learning, machine learning, convolutional
neural network (CNN), random forest, and support vector
machine), is indispensable to RS image interpretation tasks.

Notably, deep learning represented by convolutional neural
network also occupies the center of the tag cloud, where the

currently most popular method for RS image interpretation is

revealed. And this has heavily promoted dataset construction

to advance the development of RS image interpretation. We

subsequently filtered the meta articles by “deep learning”

and “convolutional neural network”. The highest-frequency

terms match well with Figure 1, where scene classification,

object detection, segmentation, and change detection possess

the centrality of interpretation tasks, verified by [57]. Thus,

the review given below focuses mainly on datasets concerning

these topics.

B. Annotated Datasets for RS Image Interpretation

During the past decade, a number of datasets for RS

image interpretation have been released publicly. The available

Fig. 1: Tag cloud of RS image interpretation.

datasets are arranged in chronological order as shown in

Tables II-V, in which the corresponding references can be

referred for more detailed information about these datasets.

Instead of simply delivering descriptions of the datasets, we

focus on analyzing the properties of the public RS image

datasets from the perspective of annotation 2.
1) Categories Involved in Interpretation: The interpretation

of RS images aims to extract content of interest at pixel-,

region-, and scene-level. Usually, the category information of

image content is extracted through elaborately designed inter-

pretation algorithms. Hence, some datasets are constructed to

recognize common RS scenes [10], [14], [62]–[66], [72] in the

earlier years. To extract specific information of objects, there

are datasets focusing on one or several main categories [80],

[82], [84]–[90], [93], [109], such as vehicle [80], [84], [85],

[87], [90], building [82], [97], [98], [100], [110], airplane [85],

[93], [109], and ship [91], [93], [99], [101], [106], [108]. The

determination of semantic categories plays a significant role in

real applications like land classification, urban planning, and

environmental monitoring. Hence, a number of datasets are

annotated for the purpose of land use and land cover (LULC)

or agriculture application [5], [14], [111]–[115]. There are

many semantic segmentation datasets that concern specific cat-

egories like building and road [97], [116]–[119], cloud [120]–

[124]. Some datasets aim to interpret multiple land-cover cate-

gories within specific areas, e.g., city areas [115], [125]–[129],

relating to intensive human activities. Even with accurate

annotation of category information, these datasets are with

relatively small numbers of interpretation categories, which

can be used for content interpretation when certain specific

objects are concerned.

It is obvious that the above mentioned datasets prefer to

advance interpretation algorithms with limited semantic cate-

2We pay our attention mainly to the publicly released and popular RS image
datasets while those for special domains, e.g., contest and private applications,
may not be fully covered due to their unstable accessibility or incomplete
dataset information.
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TABLE II: Comparison among different RS image scene classification datasets.

Dataset #Cat. #Images per cat. #Instances Resolution (m) Image size GL/IT/SP Year
UC-Merced [14] 21 100 2,100 0.3 256×256 � � � 2010
WHU-RS19 [10] 19 50 to 61 1,013 up to 0.5 600×600 � � � 2012
RSSCN7 [62] 7 400 2,800 – 400×400 ��� 2015
SAT-4 [63] 4 89,963 to 178,034 500,000 1 to 6 28×28 ��� 2015
SAT-6 [63] 6 10,262 to 150,400 405,000 1 to 6 28×28 ��� 2015
BCS [64] 2 1,438 2,876 – 600×600 ��� 2015
RSC11 [65] 11 ∼100 1,232 ∼0.2 512×512 ��� 2016
SIRI-WHU [66] 12 200 2,400 2 200×200 ��� 2016
NWPU-RESISC45 [67] 45 700 31,500 0.2 to 30 256×256 ��� 2016
AID [52] 30 220 to 420 10,000 0.5 to 8 600×600 ��� 2017
RSI-CB256 [68] 35 198 to 1,331 24,000 0.3 to 3 256×256 ��� 2017
RSI-CB128 [68] 45 173 to 1,550 36,000 0.3 to 3 128×128 ��� 2017
Planet-UAS [69] 17 – 40,480 3 to 5 256×256 ��� 2017
RSD46-WHU [70] 46 500 to 3,000 117,000 0.5 to 2 256×256 ��� 2017
MASATI [71] 7 304 to 1,789 7,389 – 512×512 ��� 2018
EuroSAT [72] 10 2,000 to 3,000 27,000 10 64×64 ��� 2018
PatternNet [73] 38 800 30,400 0.06 to 4.7 256×256 ��� 2018
fMoW [74] 62 – 132,716 0.5 74×58 to 16,184×16,288 ��� 2018
WiDS Datathon 2019 [75] 2 – 20,000 3 256×256 ��� 2019
Optimal-31 [76] 31 60 1,860 – 256×256 ��� 2019
BigEarthNet [77] 43 328 to 217,119 590,326 10,20,60 20×20;60×60;120×120 ��� 2019
CLRS [78] 25 600 15,000 0.26 to 8.85 256×256 ��� 2020
MLRSN [79] 46 1,500 to 3,000 109,161 0.1 to 10 256×256 ��� 2020
* As fMoW is constructed with multiple temporal views for each scene, we ignore the #Images per Cat. and count the total number of unique scene instances, i.e.,

#Instances. Note that MLRSN is a multi-label scene classification dataset. The Cat., GL, IT, and SP are short for Category, Geographic Location, Imaging Time,
and Sensor parameter, respectively. We present the GL/IT/SP column to indicate whether the datasets provide those complete and accurate meta information.

TABLE III: Comparison among different RS Image object detection datasets.

Datasets Annot. #Cat. #Instances #Images Resolution (m) Image width GL/IT/SP Year
TAS [80] HBB 1 1,319 30 – 792 ��� 2008
OIRDS [81] OBB 5 1,800 900 up to 0.08 256 to 640 ��� 2009
SZTAKI-INRIA [82] OBB 1 665 9 – ∼800 ��� 2012
NWPU-VHR10 [83] HBB 10 3,651 800 0.08 to 2 ∼1,000 ��� 2014
DLR-MVDA [84] OBB 2 14,235 20 0.13 5,616 ��� 2015
UCAS-AOD [85] OBB 2 14,596 1,510 – ∼1,000 ��� 2015
VEDAI [86] OBB 9 3,640 1,210 0.125 512;1,024 ��� 2016
COWC [87] CP 1 32,716 53 0.15 2,000 to 19,000 ��� 2016
HRSC2016 [88] OBB 26 2,976 1,061 – ∼1,100 ��� 2016
RSOD [89] HBB 4 6,950 976 0.3 to 3 ∼1,000 ��� 2017
CARPK [90] HBB 1 89,777 1,448 – 1,280 ��� 2017
SSDD/SSDD+ [91] HBB/OBB 1 2,456 1,160 1 to 15 ∼500 ��� 2017
SpaceNet1-6* [92] Polygon 1 859,982 – up to 0.3 – ��� 2018
LEVIR [93] HBB 3 11,028 22,000 0.2 to 1 800 ��� 2018
VisDrone [94] HBB 10 54,200 10,209 – 2,000 ��� 2018
xView [95] HBB 60 1,000,000 1,413 0.3 ∼3,000 ��� 2018
DOTA-v1.0 [28] OBB 15 188,282 2,806 up to 0.3 800 to 13,000 ��� 2018
ITCVD [96] HBB 1 29,088 173 0.1 3,744;5,616 ��� 2018
WHU building dataset [97] Polygon 1 221,107 25,420 0.075 to 2.7 512 ��� 2018
DeepGlobe Building [98] Polygon 2 302,701 24,586 0.3 650 ��� 2018
OpenSARShip [99] Chip 1 11,346 41 ∼10 – ��� 2018
CrowdAI Mapping Challenge [100] Polygon 1 2,910,917 341,058 – 300 ��� 2018
Airbus Ship Detection Challenge [101] Polygon 1 ∼131,000 208,162 – 768 ��� 2018
iSAID [28], [102] Polygon 15 655,451 2,806 up to 0.3 800 to 4,000 ��� 2019
HRRSD [103] HBB 13 55,740 21,761 0.15 to 1.2 152 to 10,569 ��� 2019
DIOR [104] HBB 20 192,472 23,463 0.5 to 30 800 ��� 2019
DOTA-v1.5 [105] OBB 16 402,089 2,806 up to 0.3 800 to 13,000 ��� 2019
SAR-Ship-Dataset [106] HBB 1 5,9535 43,819 up to 3 256 ��� 2019
AIR-SARShip [107] HBB 1 2,040 300 1;3 1,000 ��� 2020
HRSID [108] HBB 1 16,951 5,604 0.5;1;3 800 ��� 2020
RarePlanes [109] Polygon 1 644,258 50,253 0.3 – ��� 2020
DOTA-v2.0 [105] OBB 18 1,793,658 11,268 up to 0.3 800 to 20,000 ��� 2020
* For simplicity, we summarize the SpaceNet1∼6 as a whole, considering their common functionality for building detection. Note that SpaceNet3/5 are also associated with

road network detection. SpaceNet7 [92] with 11,080,000 and xBD [110] with 850,736 building footprints (referenced in Table V) can also be used for building object
detection and instance segmentation. CrowdAI Mapping Challenge is presented with the train and validation sets for their accessibility. Annot. refers to the Annotation
style of instances, i.e., HBB (Horizontal Bounding Box) and OBB (Oriented Bounding Box). CP refers to the annotation with only the Center Point of an instance.

gories. However, there are more semantic categories in practi-

cal applications of RS image interpretation. As compensation

for this situation, a lot of RS image datasets have been paid ef-

forts to annotate dozens of semantic categories of interest, such

as NWPU-RESISC45 [67], AID [52], RSI-CB [68], RSD46-

WHU [70], Patternet [73], Optimal-31 [76], fWoM [74],

CLRS [78], MLRSNet [79], xVew [95], SEN12MS [130]

and SECOND [131], SkyScapes [132], emphasizing broadly

on scene-, object-, and pixel-level information. Even with

enriched semantic categories, to fully interpret the content
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TABLE IV: Comparison of different RS image semantic segmentation datasets.

Datasets #Cat. #Images Resolution (m) #Channels Image size GL/IT/SP Year
Kennedy Space Center [133] 13 1 18 224 512×614 ��� 2005
Botswana [133] 14 1 30 242 1,476×256 ��� 2005
Salinas [126] 16 1 3.7 224 512×217 ��� –
University of Pavia [126] 9 1 1.3 115 610×340 ��� –
Pavia Centre [126] 9 1 1.3 115 bands 1,096×492 ��� –
ISPRS Vaihingen [127] 6 33 0.09 IR,R,G,DSM,nDSM ∼2,500×2,500 ��� 2012
ISPRS Potsdam [127] 6 38 0.05 IR,RGB,DSM,nDSM 6,000×6,000 ��� 2012
Massachusetts Buildings [116] 2 151 1 RGB 1,500×1,500 ��� 2013
Massachusetts Roads [116] 2 1,171 1 RGB 1,500×1,500 ��� 2013
Indian Pines [134] 16 1 20 224 145×145 ��� 2015
Zurich Summer [128] 8 20 0.62 NIR, RGB 1,000×1,150 ��� 2015
SPARCS Validation [120] 7 80 30 11 1,000×1,000 ��� 2016
Biome [122] 4 96 30 11 ∼9,000×9,000 ��� 2017
Inria [117] 2 360 0.3 RGB 5,000×5,000 ��� 2017
EvLab-SS [135] 10 60 0.1 to 2 RGB 4,500×4,500 ��� 2017
RIT-18 [136] 18 3 0.047 6 9,000×6,000 ��� 2017
CITY-OSM [119] 3 1,671 0.1 RGB 2,500×2,500 to 3,300×3,300 ��� 2017
Dstl-SIFD* [114] 10 57 up to 0.3 up to 16 ∼3,350×3,400 ��� 2017
IEEE GRSS Data Fusion Contest 2017 17 30 1,4 9 643×666;374×515 ��� 2017
IEEE GRSS Data Fusion Contest 2018 20 1 1 48 4,172×1,202 ��� 2018
Aeroscapes [137] 11 3,269 – RGB 720×1,280 ��� 2018
DLRSD [138] 17 2,100 0.3 RGB 256×256 ��� 2018
DeepGlobe Land Cover [98] 7 1,146 0.5 RGB 2,448×2,448 ��� 2018
So2Sat LCZ42 [139] 17 400,673 10 10 32×32 ��� 2019
SEN12MS [130] 33 180,662 triplets 10 to 50 up to 13 256×256 ��� 2019
95-Cloud [121] 1 43,902 30 NIR,RGB 384×384 ��� 2019
Shakeel et al. [118] 1 2,682 0.3 RGB 300×300 ��� 2019
ALCD Cloud Masks [123] 8 38 10 RGB 1,830×1,830 ��� 2019
SkyScapes [132] 31 16 0.13 RGB 5,616×3,744 ��� 2019
DroneDeploy [140] 7 55 0.1 RGB up to 12,039×13,854 ��� 2019
Slovenia LULC [141] 10 940 10 6 5,000×5,000 ��� 2019
LandCoverNet [111] 7 1,980 10 NIR,RGB 256×256 ��� 2020
UAVid [142] 8 420 – RGB ∼4,000×2,160 ��� 2020
GID [5] 15 150 0.8 to 10 4 6,800×7,200 ��� 2020
LandCover.ai [112] 3 41 0.25,0.5 RGB 9,000×9,500;4,200×4,700 ��� 2020
Agriculture-Vision [113] 9 94,986 0.1;0.15;0.2 NIR,RGB 512×512 ��� 2020
S2CMC* [124] 18 513 20 13 1,024×1,024 ��� 2020

* The UAVid consists of 30 video sequences captured by unmanned aerial vehicle and each sequence is annotated by every 10 frames, resulting in 420 densely annotated images.
The S2CMC is short for Sentinel-2 Cloud Mask Catalogue. The DSTL-SIFD is short for the challenge of Dstl Satellite Imagery Feature Detection.

of interest in RS images still remains difficult. Take the

LULC application as an example, there are a number of

semantic categories enven hundreds of fine-grained classes. As

a result, datasets with the limited number of scene categories

are not able to extract the various and complex semantic

content reflected in RS images. Moreover, categories in these

datasets are set equal while the relationship between different

categories, e.g., the including, included or cross relationship,

is ignored. This inevitably results in the chaotic category

organization and management for semantic information. Par-

ticularly, the intra-class and inter-class relationships are simply

neglected in many datasets. Not only that, the context which

can reveal the relationship between content of interest and their

surrounding environment is rarely considered. Encouragingly,

the significant exploration of relation modeling methods for

RS image interpretation has been developed to address these

issues [45]. Nevertheless, how to annotate datasets with rich

semantic categories and reasonable relationship organization

strives to be a key problem for practical dataset construction.

2) Dataset Annotation: To our knowledge, most of the

datasets listed in Tables II-V are manually annotated by

experts. Generally, the work of dataset annotation is to as-

sign semantic tags to scenes, objects or pixels of interest in

RS images. For the task of scene classification, a category

label is typically assigned to the scene components by visual

interpretation of experts [52], [67]. In order to recognize

specific objects, entities in images are usually labeled with

closed areas. Thus, many existing datasets manually anno-

tate objects in the form of bounding boxes, e.g., NWPU-

VHR10 [83], RSOD [89], HRRSD [103], and DIOR [104], or

enclosed polygons, e.g., iSAID [102] and xBD [110]. Before

annotating content of interest, a fundamental issue is the

acquisition of target RS images in which the intriguing content

is contained. Usually, the target images are manually searched,

distinguished, and screened in the image database by trained

annotators. Along with the subsequent label assignment, the

whole annotation process in the construction of RS image

datasets is time-consuming and labor-intensive, especially for

the pixel-wise annotations as shown in Tables IV-V. As a

result, dataset construction, from source image collection,

semantic information annotation, and quality review, relies

heavily on manual operations, making it an expensive project.

This raises an urgent demand for developing more efficient and

assistant strategies to lighten the burden of artificial annotation.

When it comes to the annotation tools, there is a lack of

visualization methods for the annotation of large scale and

hyper-spectral RS images. Currently, annotation tools designed

for natural images, e.g., LabelMe [161] and LabelImg [162],

are introduced to annotate RS images. These annotation tools

typically visualize an image with a limited scale. However,
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TABLE V: Comparison of different RS Image change detection datasets.

Datasets #Cat. #Image pairs Resolution (m) #Channels Image size GL/IT/SP Year
SZTAKI AirChange [143] 2 13 1.5 RGB 952×640 ��� 2009
AICD [144] 2 1,000 0.5 115 800×600 ��� 2011
Taizhou Data [145] 4 1 30 6 400×400 ��� 2014
Kunshan Data [145] 3 1 30 6 800×800 ��� 2014
Cross-sensor Bastrop [146] 2 4 30,120 7,9 444×300; 1,534×808 ��� 2015
MtS-WH [147] 9 1 1 NIR, RGB 7,200×6,000 ��� 2017
Yancheng [148] 4 2 30 242 400×145 ��� 2018
GETNET dataset [149] 2 1 30 198 463×241 ��� 2018
Urban-rural boundary of Wuhan [150] 20 1 4/30 4, 9 960×960 ��� 2018
Hermiston City, Oregon [151] 5 1 30 242 390×200 ��� 2018
OSCD [152] 2 24 10 13 600×600 ��� 2018
WHU building dataset [97] 2 1 0.2 RGB 32,507×15,354 ��� 2018
Season-varing dataset [153] 2 16,000 0.03 to 0.1 RGB 256×256 ��� 2018
ABCD [154] 2 16,950 0.4 RGB 128×128;160×160 ��� 2018
California flood dataset [155] 2 1 5,30 RGB,11 1534×808 ��� 2019
López-Fandiño et al. [156] 5 2 20 224 984×740; 600×500 ��� 2019
xBD [110] 6 11,034 up to 0.8 RGB 1,024×1,024 ��� 2019
HRSCD [157] 6 291 0.5 RGB 10,000×10,000 ��� 2019
LEVIR-CD [158] 2 637 0.5 RGB 1,024×1,024 ��� 2020
SECOND [131] 30 4,214 0.5 to 3 RGB 512×512 ��� 2020
Google Dataset [159] 2 1,067 0.55 RGB 256×256 ��� 2020
Zhang et al. [160] 2 4 2;2.4;5.8 NIR, RGB 1,431×1,431; 458×559; 1,154×740 ��� 2020
Hi-UCD [115] 9 1,293 0.1 RGB 1,024×1,024 –/–/Y 2020
SpaceNet7 [92] – 24 4 RGB – ��� 2020
S2MTCP [129] 2 1,520 up to 10 13 600×600 ��� 2021

different from natural images, RS images taken from the bird-

view are with large scale and wide geographic coverage. Thus,

the annotator can only conduct the labeling operations within

a local region of the RS image. In this situation, inaccurate

annotation could be produced since it is difficult for the anno-

tator to grasp the global content of the RS image. Meanwhile,

the image roam process will inevitably constrain annotation

efficiency. This problem is particularly serious when conduct-

ing annotation for semantic segmentation and change detection

tasks where labels are typically assigned pixel-by-pixel [127],

[134], [142], [143]. On the other hand, hyper-spectral RS

images [125], [127], [133], [134], [148], [150]–[152] which

characterize objects with rich spectral signatures, are usually

employed for elaborate interpretation of semantic content.

However, it is hard to label the hyper-spectral RS images since

annotation tools developed for natural images are not able to

visualize hyper-spectral images of hundreds of spectral bands.

Therefore, universal annotation tools are desperately desired to

be developed for efficient and convenient semantic annotation,

especially for the large scale and hyper-spectral RS images.

3) Image Source: A wide group of RS images has been

employed as the source of interpretation datasets, including

the optical, multi-/hyper-spectral, SAR images. Typically, the

optical images from Google Earth are widely employed as the

data standard, such as those for scene classification [14], [52],

[62], [65]–[67], [70], [73], object detection [28], [29], [80],

[85], [88], [89], [93], [104], and pixel-level analysis [116],

[117], [128]. In these scenarios, RS images are typically

interpreted by the visual content, of which the spatial pattern,

texture structure, information distribution as well as organi-

zation mode are more concerned. Although the Google Earth

images are post-processed with RGB formats using the origi-

nal optical aerial images, they possess the potential for pixel-

based LULC interpretation as there is no general statistical

difference between the Google Earth images and optical aerial

images [163]. Thus, Google Earth images can also be used as

RS images for evaluating interpretation algorithms [52].

Different from the optical RS image datasets, the construc-

tion of hyper-spectral and SAR image datasets should adopt

the original data formats. Compared to optical images, multi-

/hyper-spectral images can capture the essential characteristics

of ground features as the rich spectral and spatial information

are simultaneously involved. Therefore, the content interpre-

tation of hyper-spectral RS images is mainly based on the

spectral properties of ground features. Naturally, this kind

of images is typically employed to construct the dataset for

subtle semantic information extraction, such as semantic seg-

mentation [125], [127], [130], [133], [134], [139] and change

detection [41], [129], [148], [150]–[152], where more attention

is paid to the knowledge of the fine-grained compositions. For

SAR images acquired by microwave imaging, content interpre-

tation is usually performed by the radiation, transmission, and

scattering properties. Hence, SAR images are employed for

abnormal object detection by utilizing the physical properties

of ground features. And it is not encouraged to employ the

modified data of SAR images for visual interpretation of

interested content. It is worth noting that the advantages of

different RS images can be integrated. This is why the multi-

modal learning framework has drawn much attention and been

employed to greatly improve the performance of RS image

interpretation [50], which provide significant reference for

making the most of different RS image datasets, especially

those from different imaging sensors.

4) Dataset Scale: A large number of RS image datasets

have been constructed for various interpretation tasks. How-

ever, many of them are with small scales, reflected in aspects

like the limited number, small size, and lacked diversity of

annotated images. On the one hand, the size and number of

images are important properties concerning the scale of a RS

image dataset. RS images that typically taken from the bird-
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view perspective have a large geographic coverage and thus

possess large image size. For example, an image from GF-2

satellite usually exceeds 30, 000 × 30, 000 pixels. However,

many of the current datasets employ the chipped images,

usually with the width/height of a few hundred pixels as shown

in Tables II-V, to fit specific models that are designed to

extract features within the limited scale of images. In fact, the

preservation of the original image size is more close to real-

world applications [5], [28]. Some datasets with larger image

sizes, say, width/height of a few thousand pixels, are limited

with the number of annotated images or categories [87], [136],

[147], [153], [157], [158]. Furthermore, quite a few datasets

contain one or several images, especially those for semantic

segmentation [125], [133], [134] and change detection [97],

[145]–[151], [155], [156], [160], which are limited by the high

cost of pixel-wise annotation. As a result, the scale limitations

in size and number of images could easily lead to performance

saturation for interpretation algorithms.

On the other hand, due to the constraint of data scale,

existing datasets often show deficiencies in image variation

and sample diversity. Typically, content in RS images always

shows differences with the change of spatio-temporal attributes

while images in some of the datasets are selected from local

areas or with limited imaging conditions [64], [70], [84],

[133]. In addition, content reflected in RS images are with

complex texture, structure, and spectral features owing to the

high complexity of the Earth’s surface. Thus, datasets with

limited images and samples [14], [65], [82], [87], [133], [136]

are usually not able to completely characterize the properties

of objects of interest. As a result, there is a lack of repre-

sentativeness of real-world scenarios for datasets with small

scales. This can lead to weak interpretation ability of algo-

rithms with the change of application scenarios. Furthermore,

constrained by the scale of datasets, the currently popular deep

learning approaches are usually pre-trained using the large-

scale natural image datasets, e.g., ImageNet [58], and then

used for RS image interpretation [164], [165]. Nevertheless,

features learned by this strategy are hard to completely adapt

to RS data because of the essential difference between RS

images and natural images. For instance, the change of object

orientation is common to be observed in RS images. All of

these raise an urgent demand for annotating large-scale RS

datasets with rich images to advance RS image interpretation.

III. GUIDANCES OF BUILDING RS IMAGE BENCHMARKS

The availability of a good RS image dataset has been shown

critical for effective feature learning, algorithm development,

and high-level semantic understanding [58]–[60], [166], [167].

More than that, the performance of almost all data-driven

methods rely heavily on the training dataset. However, con-

structing a large-scale and meaningful image dataset for RS

image interpretation is not an easy job, at least from the points

of technology and cost factors. The challenge lies largely

in the aspect of efficiency and quality control. The absence

of systematic work involving these problems has limited the

construction of practical datasets and continuous advancement

of interpretation algorithms in RS community. Therefore, it is

valuable to explore the feasible scheme for creating a practical

RS image dataset. We believe that the following introduced

aspects can be taken into account when creating a desirable

dataset for RS image interpretation.

A. Desirable Properties of Benchmark Datasets

In order to enhance the practicality, the dataset for RS image

interpretation should be created toward practical application

requirements rather than the characteristics of interpretation

algorithms. Essentially, the creation of RS image dataset

aims at model training, testing, and screening for practical

applications. It is of great significance to get the whole picture

of a designed interpretation model before it is poured into

practical applications. Thus, the reliable benchmark dataset

becomes critical to comprehensively verify the validity of

designed interpretation model. To this end, the created dataset

should consist of sufficient and accurately annotated samples

that cover the challenges in practical application scenarios.

In this point of view, the annotation of RS image dataset

is better to be conducted by the application sides rather than

the algorithm developers. Annotations by algorithm developers

will inevitably possess bias as they may be more familiar

with the algorithm properties and lack of understanding of

challenges lying in practical applications. As a result, the

annotated dataset from developers could be at risk of being

algorithm-oriented. On the contrary, the application sides have

more opportunities to access the real application scenarios, and

thus, are more familiar with the issues and challenges lying

in the interpretation tasks. Therefore, the dataset annotation

from application sides is more reliable, and thus, conducive to

enhance the practicability of the interpretation algorithm.

In general, the RS image dataset should be constructed

toward the real-world scenarios instead of the specific algo-

rithms. Thus, it is possible to feed the interpretation system

with high-quality data, which boost the interpretation algo-

rithms to effectively learn and even extend knowledge that

people desired. With these points in mind, we believe that the

diversity, richness, and scalability (called DiRS), as illustrated

in Figure 2, could be considered as the desirable properties

when creating benchmark datasets for RS image interpretation.

1) Diversity: A dataset is considered to be diverse if its an-

notated objects depict various visual characteristics of relevant

semantic content with a certain degree of complementarity.

From the perspective of within-class diversity, annotated ob-

jects with large diversity are able to comprehensively represent

content distribution in real world. To this end, it is better that

each annotated object could reflect different attributes rather

than the repeated characteristics. For example, the annotated

objects in the same category, e.g., vehicle, can be distinguished

from each other in properties like appearance, scale, and

orientation that diversify the instances. Thus, the within-class

objects of large diversity are conducive for an algorithm to

learn the essential characteristics. In addition, it should be

emphasized that the imaging and geographic properties is also

desperately desired for dataset diversity improvement. In the

real world, the properties of objects of interest could vary

with its geographic location and imaging time. A fact is that
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Fig. 2: The DiRS properties: diversity, richness, and scalability. DiRS formulates the basic properties which can be considered as

basic desirability in the construction of datasets for RS image interpretation. We believe that these properties are complementary

to each other. That is, the improvement of dataset in one aspect can simultaneously promote the dataset quality reflected in

other properties.

the object of the same class could show differences in state,

surroundings, and position with the spatio-temporal property

variation. Thus, the imaging and geographic properties become

nonnegligible when building an interpretation dataset of high

diversity. Especially, this is very important for the large-

scale geographic application using method learned from a

given dataset. Therefore, annotated objects with these distinct

characteristics are able to provide insurance of training inter-

pretation model with powerful ability of feature representation

and application generalization. In this regard, the within-class

diversity actually emphasizes on the individual differences

between objects of interest in the same class.

On the other hand, in order to learn an interpretation

algorithm for effective discrimination of different classes, the

between-class diversity should also be taken into consideration

when constructing the RS image dataset. For this requirement,

the fine-grained classes, particularly those with high seman-

tic overlapping, should be contained as many as possible.

Objects of different semantic classes usually take specific

feature pattern and distribution. Thus, annotating objects with

diverse semantic classes can enable an interpretation model

to learn more powerful feature representation. Besides, high

semantic overlapping in different categorical objects means

large between-class similarity. It is easy to understand that the

notable intervals of content features can make an interpretation

model learn to distinguish different classes effortlessly. In

contrast, objects with high semantic overlapping, denoting the

small distance of different classes, will put forward higher

requirements for interpretation models to discriminate similar

semantic content. From this point of view, the between-class

diversity pays more attention to the common characters among

objects of different classes. Generally, the within-class and

between-class diversity simultaneously offer the guarantee for

feature complementarity and peculiarity for annotated objects,

which is crucial for constructing datasets of large diversity.

2) Richness: In addition to the diversity that emphasises

on the otherness of objects, the richness of a dataset is

another significant property, which attaches importance to

the variation of images. Specifically, the rich image variation

regards various content characteristics and large-scale samples

as important when constructing a RS image dataset. In order

to enrich the content characteristics, images can be collected

under various circumstances, such as the weather, season,

illumination, imaging condition, and sensor, which allow the

dataset to possess rich variations in translation, viewpoint,

object pose, spatial resolution, illumination, background, oc-

clusion, etc. Not only that, images collected from different

periods and geographic regions can also endow the dataset

with rich spatio-temporal distribution.

Moreover, different from natural images that are usually

taken from horizontal perspective with narrow extent, RS

images are taken with bird-views, endowing the images

with large geographic coverage, abundant ground features,

and complex background information. Thus, an interpretation

dataset is desired to contain images that reflect the rich

characteristics, e.g., variation in geometrical shape, structure

characteristic, textural attribute, etc. From this point of view,

the constructed dataset should consist of large-scale images

to contain sufficient annotated samples, which is able to

further ensure its comprehensive representativeness for real-

world scenarios. The reality is that insufficient images and

samples are more likely to lead to the over-fitting problem

in model training, particularly for data-driven interpretation

methods (e.g., CNN). In this regard, the scale of a RS image

dataset should be large enough to ensure the richness property.

Thus, the interpretation models built upon the dataset in

accordance with the above lines are able to possess more

powerful representation and generalization ability for practical

applications.

3) Scalability : Scalability can be a measure of the ability

to extend a constructed dataset. With the increasingly wide

applications of RS images, the requirements for a dataset

usually change along with the specific application scenarios.

For example, a new category of scene may need to be
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differentiated from the collected categories with the change of

LULC. Thus, the constructed dataset must be organized with

sufficient category space to involve the new category scenes

while keeping the existing category system extensible. Not

only that, but the relationship among the annotated features is

also better to be well managed according to the real-world

application requirements. That is, a constructed benchmark

dataset for RS image interpretation is better to be flexible and

extendable, considering the change of application scenarios.

Notably, there is a large number of RS images received

every day, which need to be efficiently labeled with valuable

information to maximize their application value. To this end,

the organization, preservation, and maintenance of annotations

and images are of great significance to be controlled for the

scalability of a dataset. Besides, it would be preferable if the

newly annotated images could be involved in the constructed

dataset effortlessly. Thus, the full operations of adding, up-

dating, removing, and retrieving data and information in the

constructed dataset become a significant property for scal-

ibility. With these considerations, a constructed RS image

dataset with excellent scalability can be conveniently adapted

to the changing requirements for real-world applications with-

out impacting its inherent accessibility, and thereby assuring

sustainable utilization even as modifications are made.

B. Semantic Coordinates to Facilitate Image Acquisition

The acquisition of RS images that contain content of interest

formulates the foundation of creating an interpretation dataset.

Benefiting from the spatial property possessed by RS images,

the RS images in the database can be accessed by utilizing

their inherent information of geographic coordinates [74],

[168]. And further, a geographic feature is commonly pre-

sented with a series of geographic coordinates. Meanwhile,

the feature is usually attached with specific tag attributes

that present its semantic meaning. From this perspective, the

geographic coordinates related to a specific feature element

can be regarded as the semantic coordinates, by referencing

the feature’s tag attributes. Thus, we are able to collect the

geographic coordinates and then access the corresponding tag

attributes to efficiently identify the locations of RS images that

contain content of interest.

Typically, this strategy can be performed to prepare a public

optical RS image dataset, by utilizing the public map appli-

cation interface, open source data, and public geodatabases.

The coordinates collection may not be an optimal strategy but

can also be employed as a reference when creating a private

dataset of which images are from other sensors and databases.

1) Map Search Engines: A convenient way to collect

RS images with content of interest is to utilize public map

search engines, such as Google Map3, Bing Map4, and World

Map5. As common digital map service solutions, they provide

satellite images covering the whole world in different spatial

resolutions. Many existing RS datasets, such as UCM [14] and

NWPU-RESISC45 [67] for scene classification, LEVIR [93]

3https://ditu.google.com
4https://cn.bing.com/maps
5http://map.tianditu.gov.cn

and DOTA [28] for object detection, Google Dataset [159] and

LEVIR-CD [158] for change detection, have been built based

on Google Map. When collecting RS images on such map

search engines, the developed map application programming

interface (API) can be utilized to extract images and acquire

the corresponding semantic tags. Based on the rich positional

data composed of millions of point, line and region vectors

that contain specific semantic information, the large amount

of candidate RS images can be collected through these map

engines. For example, by searching “airport” on Google Earth,

all searched airports in a specific area will be indicated

with specific geographic locations. The corresponding satellite

images can be accessed using the coordinates of search results.

Then, the acquired satellite images can be used to annotate

airport scene and aircraft object samples.

2) Open Source Data: Open source geographic data is

established on the global positioning system (GPS) informa-

tion, aerial photography images, other free content and even

local knowledge (such as social media data) from users. Open

source geographic data, such as the Open Street Map (OSM)

and WikiMapia, are created upon the collaboration plan which

allows users to label and edit the ground feature information.

Therefore, the open source geographic data can provide rich

semantic information that is timely updated, low cost and

has a large amount in quantity compared with the manual

collection strategy for RS images [68], [119]. With the abun-

dant geographic information provided by various open source

data, we are able to collect elements of interest like points,

lines, and regions with specific geographic coordinates. Then,

we can match the collected geographic elements with their

corresponding RS images. Moreover, the extracted geographic

elements of interest can be aligned with temporal RS images

which can be downloaded from different map engines as

described above. With these advantages and operations, it is

possible to collect large-scale RS images of great diversity for

dataset construction.

3) Geodatabase Integration: Different from the collection

of natural images, which can be conveniently accessed through

web crawling, search engines (e.g., Google image search),

and sharing databases (e.g., Instagram, Flickr), the acquisition

of RS images that contain content of interest is difficult

because of the high searching cost. Nevertheless, the public

geodatabases and geographic information products released

by state institutions and communities usually provide accurate

and rich geographic data. With this facility, the geographic

coordinates attached with specific semantic information can be

obtained through these databases. For example, the National

Bridge Inventory (NBI) 6 presents detailed information of the

bridges, including the geographic locations, length, material,

and so on. Benefiting from this advantage, we can extract a

large number of geographic coordinates of bridges for the

collection of bridge images. By integrating these kinds of

public geodatabases, we are able to obtain the geographic

locations of RS images with specific semantic information,

and thus, efficiently collect a large number of RS images that

contain content of interest at relatively low cost.

6https://www.fhwa.dot.gov/bridge/nbi.cfm
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C. Annotation Methodology

With the collected images for a specific interpretation task,

annotation is performed to assign specific semantic labels to

the content of interest in the images. Next, the common image

annotation strategies will be introduced.

1) Annotation Strategies: Depending on whether human

intervention is involved, the solutions to RS image annotation

can be classified into three types: manual, automatic, and

interactive annotation.

• Manual Annotation The common way to create an im-

age dataset is to employ the manual annotation strategy.

The great advantage of manual annotation is its high ac-

curacy because of the fully supervised annotation process.

Based on this consideration, many RS image datasets

have been manually annotated for various interpretation

tasks, such as those for scene classification [14], [52],

[65], [66], object detection [28], [82], [86] and semantic

segmentation [5], [142]. Regardless of the source from

which the natural or RS images are acquired, the way

to annotate content in RS images is similar. And many

tools have been built to relieve the monotonous annota-

tion work. Hence, image annotation tools developed for

natural images can be further introduced for RS images

(typically the optical RS images) to pave the way for

cost-effective construction of large-scale datasets. The

resource concerning to image annotation tools will be

introduced in Section V.

In practice, constructing a large-scale image dataset

by manual scheme is laborious and time-consuming as

introduced before. For example, a number of people

spent several years to construct the ImageNet [58]. To

relieve this problem, crowd-sourcing annotation becomes

an alternative solution that can be employed to create a

large-scale image dataset [60], [74], [95] while paying

efforts to its challenge with quality control. Besides,

benefiting from excellent ability of image interpretation

algorithms, annotators can also resort to machine learning

schemes [169], [170], which can be integrated as the

preliminary annotation, to speed up the efficiency of

manual annotation.

• Automatic Annotation In contrast to natural images, RS

images are often characterized with complex structures

and textures because of the spectral and spatial variation.

It is difficult to annotate semantic content for annotators

without domain knowledge. As a result, the manually

annotated dataset is prone to have bias problem because

of annotators’ difference in domain knowledge, educa-

tional background, labelling skill, life experience, etc. In

this situation, automatic image annotation methods are

naturally employed to alleviate annotation difficulties and

further reduce the cost of manual annotation [171].

Automatic annotation methods reduce the cost of annota-

tion by leveraging learning schemes [172]–[177]. In this

strategy, a certain number of images are initialized to

train an interpretation model, including the fully super-

vised [178] and weakly supervised methods [179]–[181].

The candidate images are then poured into the established

model for content interpretation and the interpretation re-

sults finally serve as annotation information. And iterative

and incremental learning [182] can be employed to filter

noisy annotation and enhance the generalization ability

of annotation model [180], [183]–[185]. Nevertheless,

one disadvantage of automatic annotation is that the

generalization ability of the annotation model can be af-

fected by both the quality of the initial candidate images.

In addition, to decompose the difficulty of annotation

and enhance the connectivity between annotation and

real applications, the existing semantic information, e.g.,
thematic products as a unique presentation for RS image

content, can serve as the source for automatic RS image

annotation and content update [186]. With the inherent

semantic information contained in thematic products,

reliable training samples are able to be extracted [187].

And this idea has also been successfully employed in

dataset construction, e.g., BigEarth [77], which shows

promising prospect in the automatic annotation of large-

scale dataset for RS image interpretation.

• Interactive Annotation In the era of big RS data,

annotation with human-computer interaction, which falls

in semi-automatic annotation, could be a more practical

strategy considering the demand for RS image annotation

with high quality and efficiency. In this strategy, an initial

framework can be constructed using the existing archives

with available annotation and then employed to annotate

the unlabeled RS images. On this basis, the performance

of an annotation model can be improved greatly with

the intervention from annotators [188]. The intervention

from annotators can be in the form of relevance feedback

or identification of the relevant content in the images to

be annotated. In this scheme, the overall performance of

the annotation models mostly depends on the time that

annotators spend on creating annotations [189].

By employing active learning strategy [190], [191] and

setting restrict constraints, those images that are difficult

to be interpreted can be screened out and then manual

annotated by experts. The received feedback can then

be used to purify the annotation model through a loop

learning way. Consequently, a large number of annotated

images can be acquired to optimize the interpretation

model and further boost the annotation task in an iterative

way. With the iteration process, the number of images to

be annotated will be greatly reduced to relieve annotation

labor. The general workflow of semi-automatic image

annotation is shown in Figure 3. Benefiting from the

excellent feature learning ability, deep learning based

methods can be developed for image annotation with sig-

nificant improvement of quality and efficiency [170]. In-

stead of annotating the full image, human intervention by

simple operations, e.g., point-clicks [192], boxes [193],

and scribbles [194], can significantly improve the effi-

ciency of interactive annotation. By utilizing the semi-

automatic annotation strategy, a large-scale annotated RS

image dataset can be constructed efficiently and also with

quality assurance owing to the involvement of human

labor.
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Fig. 3: General workflow of Semi-automatic annotation in RS images.

2) Quality Assurance: The dataset with high annotation

quality is important for developing and evaluating interpre-

tation algorithms. The following introduced strategies can be

employed for the quality control when creating a dataset for

RS image interpretation.

• Rules and Samples The annotation rules without ambi-

guity are the guarantee of creating a high-quality dataset.

Specifically, annotation rules like category definition, an-

notation format, viewpoint, occlusion, image quality, and

others should be explained clearly. For example, whether

to exclude the objects in occlusion, whether to annotate

the objects of small sizes. If there are no clear rule

descriptions, different annotators will annotate the image

with their individual preferences [59]. For annotation in

RS images, it is difficult for annotators to recognize the

categories of ground features if they have no professional

backgrounds. Therefore, samples are better to be provided

by experts in the field of RS image interpretation and then

presented to annotators as references.

• Training of Annotators Each annotator is required to

pass the test of annotation training. Specifically, each

annotator is given a small part of the data and asked to

annotate the data to meet the articulated requirements.

Those annotators that failed to pass the test cannot

be invited to participate in the later annotation project.

With such a design, dataset builders are able to build

an excellent annotation team. Take xView [95] as an

example, the annotation accuracy of objects is vastly

improved with trained annotators. Therefore, the training

of annotators can be a reliable guarantee for high-quality

image dataset annotation.

• Multi-stage Pipeline A serial of different annotation op-

erations are easy to cause fatigue and result in annotation

errors. To avoid this problem, the pipeline of multi-stage

annotation can be designed to decouple the difficulties of

the annotation task. For example, the annotation of object

detection can be decoupled to be spotting, super-category

and sub-category recognition [60]. By this method, each

annotator only needs to focus on one simple stage during

the whole annotation project and the error rate can be

effectively decreased.

• Grading and Reward A comprehensive evaluation of

annotators can be performed with the annotation result.

For example, the analysis of an annotators’ behavior, e.g.,
the required time per annotation stage and the amount of

annotation result over a period, can be conducted to assess

the potentially weak annotations. Thus, different types

of annotators can be identified, e.g., spammers, sloppy,

incompetent, competent and diligent annotators [195].

Then, incentive mechanism (e.g., financial payment) can

be employed to reward the excellent annotators and

eliminate the inferior labels from unreliable annotators.

• Multiple Annotations A feasible measurement to guar-

antee high-quality image annotation is to obtain mul-

tiple annotations from different annotators, merge the

annotations and then utilize the response contained in

the majority of annotations [58]. To acquire high-quality

annotations, majority voting can be utilized to merge

multiple accurate annotations [196]. One disadvantage

of this approach is that multiple annotations require

more annotators and it is not reliable if the majority of

annotators produce low-quality annotations.

• Annotation Review Another effective method to ensure

the annotation quality is to introduce the review strat-

egy, which is usually integrated among other annotation

pipelines when creating a large-scale image dataset [161].

Specifically, some annotators can be invited to conduct

peer review and rate the quality of the created anno-

tations. Besides, further review work can be conducted

by experts with professional knowledge. Based on the

reviews of supervisors in each annotation step, the overall

annotation quality can be strictly controlled in the whole

annotation process.

• Spot Check and Assessment To check the annotation

quality, a test set can be sampled from the annotated

images. Also, gold data can be created by sampling

and labeling a proper proportion of images annotated

by experts. Then, one or several interpretation models

can be trained based on these datasets and the inter-

pretation performance (e.g., Recall and Precision for
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Fig. 4: The hierarchical scene category network of Million-AID. All categories are hierarchically organized in a three-level

tree: 51 leaf nodes fall into 28 parent nodes at the second level which are grouped into 8 nodes at the first level, representing

the 8 underlying scene categories of agriculture land, commercial land, industrial land, public service land, residential land,

transportation land, unutilized land, and water area.

object detection [28], [29]) can be evaluated to compare

annotation from annotators and gold data from experts. If

the evaluation result is lower than the preset expectation,

annotations from the corresponding annotator would be

rejected and required to be resubmitted for repetitive

annotation.

IV. AN EXAMPLE: MILLION-AID

Following the aforementioned prototype for building bench-

mark datasets for RS image interpretation, in this section

we present an example to construct a large-scale benchmark

dataset for RS scene classification, i.e., the Million Aerial
Image Dataset (Million-AID). Limited by the scale of scene

images and number of scene categories, current datasets for

scene classification are far from meeting the requirements

of the real-world feature representation and the scale for

interpretation model development. It is desperately expected

that there is a much reliable dataset for scene classification

in RS community. In this section, we build Million-AID in

the spirit of DiRS. And the introduced coordinates collection

strategy is employed for efficient scene image acquisition. The

dataset quality is guaranteed with a handful of human labor,

which finally formulates a semi-automatic and reproducible

framework for the construction of RS image scene dataset.

The constructed Million-AID will be released for public

accessibility.

A. Scene Category Organization

1) Main Challenges in Application: Benefiting from the ad-

vancement of RS technologies, the accessibility of RS images

has been greatly improved. However, the construction of a

large-scale scene classification dataset still faces challenges in

aspects like scene taxonomy and image diversity. Obviously,

a complete taxonomy of RS image scenes is better to have

wide coverage of categorical space since there are a large

number of semantic categories in practical applications, e.g.,
LULC. With various scene images in different categories,

the completeness of a scene taxonomy is also significant to

enhance the diversity of the dataset. Thus, the determination

of scene categories is of great significance to construct a high-

quality and practical RS image dataset for scene classification.

Some existing datasets, such as the UCM [14], RSSCN7 [62],

and RSC11 [65], contain limited scene categories, which make

the them not sufficiently represent the diverse content reflected

by RS images. Consequently, the scene classification models

learned from datasets of limited categories usually show weak

generalization ability.

When facing practical applications, the excellent organiza-

tion of scene categories is an important feature for scalability
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and continuous availability of a large-scale RS image dataset.

Typically, the semantic categories which are closely related

to human activities and land utilization are selected for the

construction of scene categories. Because of the complexity

of RS image content, there is a large number of semantic

categories and also a hierarchical relationship among different

scene categories. Usually, it is difficult to completely cover

all the semantic categories and the relationship information

between different scene categories can be easily neglected, ow-

ing to the subjectivity of dataset builders. Therefore, effective

organization of scene categories should be of great significance

to construct a RS image dataset of high quality and scalability.

2) Scene Category Network: Faced with the above chal-

lenges, we build a hierarchical network to manage the cate-

gories of RS image scenes, as shown in Figure 4. To satisfy the

requirements of practical application rather than the classifi-

cation algorithms, we construct the scene category system by

referencing to the land-use classification standards of China

(GB/T 21010-2017). Considering the inclusion relationships

and content discrepancies of different scene categories, the

hierarchical category network is finally built with three seman-

tic layers. In accordance with the semantic similarity, those

categories with overlapping relationships are merged into a

unique semantic category branch. Thus, the scene classifica-

tion dataset can be constructed with category independence

and semantic completeness.

As shown in Figure 4, the proposed category network is

established upon a multi-layered structure, which provides

scene category organization with different semantic levels.

When it comes to the specific categories, we extract aerial

images on Google Earth and determine whether the images

can be assigned with the semantic scene labels in the category

network. For those images that cannot be recognized with

specific categories within the existing nodes, new category

nodes will be embedded into the original category network

by experts according to the image scene content. In view of

the fact that there are inclusion relationship among different

scene categories, all classes are hierarchically arranged in a

three-level tree: 51 leaf nodes fall into 28 parent nodes at the

second level, and the 28 parent nodes are grouped into 8 nodes

at the first level, representing the 8 underlying scene categories

of agriculture land, commercial land, industrial land, public

service land, residential land, transportation land, unutilized

land, and water area. Benefiting from the hierarchical structure

of category network, the scene labels from the parent nodes

can be directly assigned to the images belonging to the

corresponding leaf nodes. Therefore, each image will possess

semantic labels with different category levels. This mechanic

also provides potentiality for scene classification at flexible

category levels.

As can be seen, the category definition and organization can

be achieved by the proposed hierarchical category network.

The synonyms of the category network are relevant to the

practical application of LULC and hardly need to be purified.

One of the most prominent advantages of the category network

lies in its semantic structure, i.e., its ontology of concepts.

Hence, a new scene category can be easily embedded into the

constructed category network as a new branch of synonym.

The established category hierarchy can not only serve as the

category standard for Million-AID dataset but also provides

a valuable reference for dataset construction toward other

interpretation tasks. Thus, these properties endow our proposed

dataset with high practicability when facing real applications.

B. Semantic Coordinates Collection

In the conventional pipeline of constructing a scene clas-

sification dataset, one needs to manually search the target

region that contain specific scenes. Then the scene images

are collected from the image database. However, finding the

target region with given semantic scenes is a time-consuming

procedure and usually requires high-level technical expertise.

Besides, in order to ensure the reliability of scene information,

images need to be labeled by specialists with domain knowl-

edge of RS image interpretation. To alleviate this problem,

we employ the introduced coordinates collection strategy and

interactive annotation methodology to build the scene classifi-

cation dataset. Specifically, we employ public map search en-

gines, open sourced data, and public geodatabase resources to

collect and label RS scene images. With the rapid development

of geographic information and RS technologies, there are rich

and publicly available geographic data like online map, open

source data, and archives published by agencies as introduced

before. Typically, these public geographic data present the

surface features in forms like point, line, and plane, which

describe the semantic information of ground objects and carry

corresponding geographic location information. Based on the

public geographic data, we search for coordinates of specific

semantic tags, and then utilize the semantic coordinates to

collect the corresponding scene images.

In RS images, scenes are presented with different geometric

appearances. In the case of our practice, different methods

are presented to acquire the labeling data. Google Map API

and publicly available geographic data are mainly employed

to obtain the coordinates of point features while OSM API

is mainly utilized to acquire the coordinates of line and

plane features. In application, these methods can be combined

to obtain different coordinate data of different forms. The

acquired coordinates are then integrated into block data which

presents the scene extent. Finally, the block data are further

processed to obtain scene images which are automatically

assigned with scene labels.

1) Point Coordinates: The point features, such as tennis

courts, baseball fields, basketball courts, and wind turbines,

take relatively small ground space in the real-world. The online

Google map makes it possible to discover the world with rich

location data, e.g., over 100 million places. This provides a

powerful solution to search the ground objects with specific

semantic tags. Therefore, we develop a semantic tag search

tool based on the Google Map API. With the customization

search tool, we input semantic tags to retrieve correspond-

ing point objects using the online map search engine and

obtain the geographic coordinates that match the semantic

information within a certain range. The retrieved point results

with location information, i.e., geographic coordinates, are

naturally attached with scene tags. Figure 5 shows the search
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Fig. 5: The points of searched tennis courts shown in Google Earth Pro (©2020 Google LLC.), where the top-left and bottom-

right coordinates are (34.1071° N, 118.3605° W) and (33.9823° N, 118.3605° W), respectively. We consider the tennis courts

as point ground features. The red marks show the searched locations of tennis courts. The eagle window shows the detail of

a tennis court scene, which confirms the validity of collecting semantic coordinates by our proposed method.

Fig. 6: The points of wind turbines extracted from USWTDB and integrated in Google Earth Pro (©2020 Google LLC.),
where the geographic range is indicated with the top-left coordinates (41.2695° N, 90.3315° W) and bottom-right coordinates

(41.1421° N, 90.0424° W). The eagle window shows the details of two wind turbines.

result returned by the semantic tag “baseball field” based on

the tool. To enhance the diversity of the dataset, we search

points of interested objects through a wide range of geographic

areas. This strategy makes it possible to cover individual point

objects in distinct positions, which is able to greatly enhance

the within-class diversity and quickly obtain a large number

of points with semantic tags.

The map search engines have provided a powerful interface

for accessing point data. However, many of them are associ-

ated with categories of common scenes, which will limit the

diversity of dataset. For those scenes related to specific scene

categories, it is reasonable to employ the publicly available

geographic information and obtain the point data. Using the

online platforms that publish geographic dataset, we collect the

coordinate data of storage tanks, bridges, and wind turbines.
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Fig. 7: The river lines within a local area of China are extracted from OSM and displayed in Google Earth Pro (©2020 Google
LLC.), where the upper left and bottom right coordinates of geographic range are (32.2826° N, 111.1027° E) and (28.7477°

N, 118.5372° E), respectively. The zoomed image shows the details of river lines.

For example, the U.S. Wind Turbine Database (USWTDB)7

provides a large number of locations of land-based and off-

shore wind turbines in the United States. Figure 6 shows the

tagged data of wind turbines, which can indicate the accurate

positions of wind turbines in a local area. By processing these

data, a single point coordinate data corresponding to a wind

turbine scene is obtained. Consequently, with the publicly

released geographic information, we are able to employ the

strategy of geodatabase integration to collect coordinates of

specific scenes.

2) Line and Plane Coordinates: The ground features, such

as river and railway, are usually presented in the form of lines.

Other features like grassland and residential land are typically

presented by planes. In order to obtain the scene images of

line and plane features, we employ the open source data for

scene coordinates collection as introduced before. Specifically,

the OSM is utilized to extract the location information of

line and plane features. OSM is a collaborative project to

create a free editable map of the world. The elements in

OSM consist of node, way, and relation, which are also the

basic components of OSM conceptual data model that depicts

the physical world. A node represents a point feature on the

ground surface. It can be defined by a pair values of latitude

and longitude. The way feature is composed of two or more

connected nodes. An open way describes a linear feature, such

as roads, streams, and railway lines. A plane or area feature

can be described in a closed way. A relation element in OSM

is utilized to describe one or several complex objects with

a data structure that records a relationship between nodes,

ways, and other relations. Every node or way has tags and

geographic information that describe the corresponding ground

7https://eerscmap.usgs.gov/uswtdb

object. Therefore, a line or plane feature that belongs to

certain semantic classes can be obtained by searching its

corresponding tags.

Many methods can be employed to obtain the geographic

coordinates of ground features from OSM. As the most

convenient way, we collect the line and plane features directly

from the free, community-maintained data, e.g., Geofabrik8,

produced by OSM. Figure 7 shows the river line features

collected through Geofabrik, which provides maps and geo-

graphic data extracted from OSM. Besides, we also employ

the OSM interface, i.e., Overpass API, to extract the features

of interest. In order to obtain the semantic coordinates of

scenes in the constructed network, we also search features

by utilizing the powerful query language. The query criteria

are associated with location information, type of objects,

proximity of tag properties, and their combinations. Figure 8

shows the illustration of searching scenes of airport areas

around the world. And the searched airports within a local

area of the United States are integrated into Google Earth as

shown in figure 9. It can be seen from Figure 8-9 that the

extracted plane data is consistent with the real-world airport

scenes, and thus, the semantic label is reliable. These results

indicate that the former introduced method of employing the

open source data is a practical, efficient, and reliable strategy

for scene image acquisition via the collection of semantic

scene coordinates.

C. Scene Image Acquisition

The geographic point, line, and plane coordinates collected

through the above processes are employed to extract scene

images from Google Earth. Figure 10 illustrates the overall

8http://www.geofabrik.de/geofabrik
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Fig. 8: The illustration of searching scenes of airports around the world. An airport in OSM contains a large amount of tags,

which can be employed to search airports with specific semantic key-value labels, e.g., aeroway and name. More than 5,000

world airports in forms like way and relation can be obtained with accurate geographic coordinates, using English and Chinese

semantic tags.

framework of collecting RS scene images. For the searched

point data, the coordinates are attached with specific tags of

semantic categories and we take the geographic coordinates as

the center of a square box. For line data, we sample the points

along the line by intervals and a sampled point is selected as

the center of a square box. Based on the center point, a square

box of customized size is generated to serve as a scene box

characterized by four geographic coordinates. For the plane

data, e.g., commercial area, a mesh grid is generated to divide

the plane area into individual scene boxes. Some scenes like

airport and train station are usually presented with individual

blocks. Therefore, the envelop rectangles of these blocks are

extracted as the scene boxes directly. Thus, the content of a

scene box is consistent with its corresponding scene category.

All the scene boxes are utilized to outline and download

scene images from Google Earth. The scene images are

extracted with different sizes, such as 256×256 and 512×512,

according to the scene scales and resolutions of Google Earth

images. There may be inaccurate semantic label assignments

caused by noisy coordinates and wrong scene boxes. To

ensure the correctness of the category labels, all of the scene

images are checked by specialists in the field of RS image

interpretation. Specifically, those downloaded images in a

specific category are deleted if they are assigned with wrong

scene labels. For those scene boxes that are overlapped with

each other, only one of the scene boxes will be chosen to

extract the corresponding scene image. With these operations,

we are able to improve the accuracy of the scene images

that are automatically annotated, and therefore, guarantee the

quality of the constructed datasets for scene classification.

D. Discussion

By following the presented guidances, the above procedure

formulates a framework for the collection of RS scene images.

As shown in Table II, Million-AID consists of the most

scene categories compared to the existing scene classification

datasets except for fMoW [74]. Different form the existing

datasets of which categories are organized with parallel or

uncertain relationships, scene categories in Million-AID are

organized with systematic relationship architecture, giving it
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Fig. 9: The airport planes within a local area of the United States are extracted from OSM and shown in Google Earth

Pro (©2020 Google LLC.), where the upper left and bottom right coordinates of geographic range are (37.2262° N, 115.8819°

W) and (32.6005° N, 110.6497° W), respectively. The zoomed image shows the accurate extent of an airport in a closed OSM

way feature.

Fig. 10: The illustration of the acquisition of RS scene images based on the collected geographic point, line and area data. The

points are set as the centers of scene square boxes. For line data, the center points are sampled by intervals. For plane data,

scene square boxes are generated by mesh grids. The red frames indicate the generated scene square boxes which is consistent

with the final scene image blocks.

superiority in management and scalability. More importantly,

the scene categories are customized to match the land-use

classification standards. All of these have greatly enhanced

the practicability of the constructed dataset.

The property of diversity is important for a dataset to train

interpretation algorithms of strong generalization ability. In

the construction of Million-AID, the diversity of scenes in

each category is greatly enhanced by the wide geographic

distribution of scene locations. Specifically, images in each

scene category are extracted from different areas around the

world. When some acquired scene coordinates are intensively

located in a local area, we try to collect more scene coordinates

from other different areas to increase the scene diversity in

spatial distribution. The advantage of this strategy is obvious as
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the wide distribution of scene coordinates makes our collected

scenes of interest be individually and spatially independent.

Each scene object is able to reflect the unique characteristic

from different perspectives. Thus, the within-class diversity

of scene images can be greatly improved. In addition, the

large-scale semantic categories also improve the between-

class diversity of scene images. Some scenes belonging to

different categories may share similar characteristics, e.g.,
stadium and ground track field. Especially, the fine-grained

scene categories also possess the same semantic information

as they all belong to the same parent scene class. In general,

the independent scene objects within the same category and the

unique characteristics among different scene categories make

the constructed dataset characterized with big diversity.

As introduced before, the collected images in Million-

AID are mainly from Google Earth. It is well-known that

images in Google Earth are from different satellites, includ-

ing but not limited to the GeoEye, WorldView, QuickBird,

IKONOS, SPOT, and Landsat serial satellites. The multiple

data sources can naturally improve the richness of the scene

images. Besides, scene images in Million-AID are with broad

resolutions, ranging from 0.5m to 153m per pixel. Note that

there are also images of different resolutions in the same scene

category, in which scene images are acquired according to

the scene scale. At the same time, in the process of scene

image inspection, we pay more attention to choose scene

images under different imaging conditions, e.g., viewpoint

and illumination, to increase the richness of scene images.

In the scene image acquisition stage, those scene images

with regional overlap are eliminated and only one of them is

retained. Thus, the collected content information of each scene

image is not repeated and different scene images have different

scene background information. In this way, the variety of

dataset is greatly guaranteed by the large-scale and individual

scene images. These characteristics allow us to greatly enhance

the richness of the dataset at the image level.

The construction process of Million-AID also largely fol-

lows the idea of semi-automatic annotation. At the stage of

scene location acquisition, map search engines, open source

data, and public geographic information database are used

to obtain the point, line, and plane features that indicate the

scene objects. The scene labels are then acquired with the

corresponding semantic tags of coordinates. In practice, each

kind of scene objects can be acquired by combing several

scene coordinate collection methods as introduced. Compared

with the manual search method, our method can greatly reduce

the difficulty of scene information acquisition and improve the

efficiency of dataset construction. Thus, it is easy to collect

large-scale scene images. Consequently, the number of images

in each scene category goes beyond 2,000 and reach over 20,

000 in average. All of these provide guarantees of diversity

and richness for the constructed dataset. Not only that, owing

to our strategy that automatically obtain scene coordinates

and semantic annotations, only image check and deletion are

performed manually, which is a really easy work. Therefore,

the interactive annotation strategy makes the dataset construc-

tion falls into a semi-automatic annotation mode which can

greatly reduce the manpower cost and ensure the label quality

simultaneously. Thus, it is feasible to build the large-scale

scene image dataset with high quality. Consequently, following

the introduced guidances and annotation methodology, the

Million-AID dataset is achieved with more than 1,000,000

annotated semantic images of 51 scene categories.

V. CHALLENGES AND PERSPECTIVES

Driven by the wide applications of RS image interpretation,

various datasets have been constructed for the development

of interpretation algorithms. In spite of the great success in

RS image datasets construction over the past years, there

are still a giant gap between the requirement of large-scale

dataset and interpretation algorithm development, especially

for data-driven methods. Thus, how to speed up the annotation

process of RS images remains to be a key issue for the

construction of interpretation datasets. After investigating the

current annotation strategies for RS image datasets, this section

discusses the current challenges and potential perspectives for

efficient dataset construction.

A. Visualization Technology for RS Image Annotation
In the process of RS image annotation, semantic content

in the image is firstly recognized by visual interpretation

of experts. Then, the semantic labels are assigned to the

corresponding objects in pixel, region, or image levels. Thus,

the visualization technology for RS image plays a significant

role in the process of accurate semantic annotation, especially

for the hyper-spectral, SAR, and large size RS images.
Hyper-spectral image annotation with visualization tech-

nology. A hyper-spectral image usually contains hundreds of

spectral bands, which can provide rich spatial-spectral infor-

mation of features of the Earth’s surface. However, the high

dimensionality of hyper-spectral image brings the challenge

for semantic information annotation. The reality is that the

existing display devices are designed for gray or color images

with typical RGB channels. Thus, it is impossible to directly

display a hyper-spectral RS image which consists of hundreds

of spectral bands using conventional display strategies. In

order to alleviate this problem, the strategy of band selection

can be explored to choose three representative bands of the

original image as RGB channels [197]. The fundamental idea

of this strategy is to select bands with as much information

as possible from the original hyper-spectral image or directly

reference the characteristics of the annotation objects. Al-

ternatively, band transformation can also be considered by

making the best use of the rich bands. The basic principle

is to transform the original image into a new feature space by

spectral transformation, e.g., dimensionality reduction, band

fusion, and clustering. Then, the three representative channels

can be selected for visualization [198]. These strategies should

rely on effective algorithms developed for band selection and

transformation. Besides, hyper-spectral RS images collected

from different sensors usually suffers from spectral variability,

making it difficult for information extraction and content anno-

tation. Thus, effective hyper-spectral unmixing method [199]

can be developed to accurately estimate the content to be anno-

tated. Thus, hyper-spectral RS images can be well visualized,

providing a guarantee for annotating reliable information.
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SAR image annotation via physical signal expression. Com-

pared with optical RS images, the challenge of SAR image

annotation mainly comes from the weak legibility in visual

appearance. SAR’s all-weather, all-day, and penetrating imag-

ing ability endow it with great superiority over optical RS

images in some practical applications, e.g., disaster rescue.

However, due to the interference of coherent returns scattered

by small reflectors within each resolution cell, SAR images

are contaminated by multiplicative noise called speckle. Also,

SAR images are usually with gray-scale mode and there is

not any color information except for full-polarimetric SAR

images [200]. All of these pose great challenges for SAR

image annotation. An essential point is that the SAR image

is represented with signal information, where different objects

show different polarimetric features. Thus, the utilization of

physical information of objects can be a promising solution

for SAR image annotation, relying upon the basic principles

related to surface roughness/smoothness and changes in the

back-scattering signal intensity of surface conditions [201].

On the other hand, visualization technology should also be

explored to enhance the legibility of SAR image content.

One direction is to colorize the non-full-polarimetric to full-

polarimetric SAR images based on the radar polarimetry the-

ories. Inspired by the success of transfer learning in computer

vision, it is also valuable to color the SAR images through

simulating RGB images using DCNNs [200]. With these

considerations, more efforts should be poured into SAR image

visualization to relieve the difficulties of annotation.

Large-size image annotation with high interaction efficiency.
Annotation for large size RS images is another important

challenge. Currently, RS images are usually annotated by tools

designed for natural image labeling [161], [162], where only

images of limited sizes, e.g., image width/height of several

hundred pixels, can be fully visualized for interactive anno-

tation. However, with the improvement of image resolution,

RS images taken from the bird-view have large geographic

coverage and thus possess large sizes, e.g., width/height of

tens of thousands pixels. Thus, the conventional annotation

solution can only visualize the local region of a RS image

for annotation operations. Besides, current machine monitor

devices are also with limited sizes and resolution. It requires

constant image roaming and zooming operations when an-

notating large size RS images, which heavily hinders the

interaction efficiency of annotation and loss the possibility

of catching the features with spatial continuity from a global

perspective of the image content. On the other hand, the RS

images with spatial information needs large storage space

because of its large amount of data. Thus, the visualization

of RS images also requires large-scale computing capability

when conduct annotating operations. Considering these points,

the visualization technology for displaying, roaming, zooming,

and annotating large size RS images needs to be stressed for

efficient annotation.

B. Annotation Efficiency and Quality Improvement

There is no doubt that the constructed RS image dataset

is ultimately utilized for various interpretation applications.

Thus, the application products can be employed in turn to

facilitate the annotation of RS images. And in the annotation

process, the reliable tools developed for RS image annotation

also play an important role in efficiency improvement. Besides,

noise data is a common problem in RS image annotation,

which makes the handling of noise annotation a valuable

topic for dataset quality control as well as the development

of interpretation algorithms.

Cooperation with application departments. A feasible way

to improve the efficiency of RS image annotation is to coop-

erate with application departments and convert the application

products to annotated datasets. Once the product data in

the application department is produced, they naturally carry

semantic information which can be utilized as the source of RS

image annotations. For example, thematic map as the typical

application product is able to be involved in creating training

dataset and generating new annotation product [186], [187],

[208]. Usually, the map data of land survey from the land-

use institution is obtained through field investigation and thus

possesses accurate land classification information, which can

be easily combined with RS images to create reliable anno-

tated datasets for model adaption. This scheme is reasonable

because the product data from the application department is

oriented to the real application scenarios. At this point the cre-

ated dataset for RS image interpretation can most truly reflect

the key challenges in the real application scenarios. Thus, the

interpretation algorithms built upon this kind of dataset would

be more practical. Besides, the product data will change with

the alternation of application department’s business. Thus, the

product data can be employed to update the created dataset

promptly. In this way, it ensures the established dataset to be

always oriented to real applications, and therefore, promote

the design and training of practical interpretation algorithms.

In general, the efficiency and practicality of the dataset for RS

image interpretation can be greatly improved by cooperating

with application departments.

Tools for RS image annotation. Another point worth noting

is the necessity of developing professional and open-sourced

tools for RS image annotation. A number of popular tools for

image annotation have been published, as listed in Table VI.

These include excellent tools for specific image content inter-

pretation tasks, e.g., object recognition [162], [169], [203].

Some annotation tools strive to provide diverse annotation

modalities, such as polygon, rectangle, circle, ellipse, line,

and point [161], [204]–[207], serving as universal annotation

platforms that are applicable to build image-level labels, the

local extent of objects, and semantic information of pixels.

Due to the differences in interpretation tasks and application

requirements, the most common concerns among annotators

are the features and instructions of these tools. The properties

of these annotations tools are summarized in Table VI and

more details can be found in the corresponding reference

materials. In general, when building an annotated dataset

for RS image content interpretation, the choice of a flexible

annotation tool is of great significance for efficiency and

quality assurance.

Processing for noisy annotations. The processing of noise

annotations and also algorithms tolerant to noise annotations
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TABLE VI: Annotation tools for image dataset construction

No. Name Ref. Year Description

1 LabelMe [161] 2008
An online image annotation tool that supports various annotation primitives,

including polygon, rectangle, circle, line and point.

2
Video Annotation Tool
from Irvine, California

(VATIC)
[202] 2012

An online tool that efficiently scaling up video annotation with crowdsourced
marketplaces (e.g., AMT).

3 LabelImg [162] 2015
A popular graphical image annotation application that labels objects in images

with bounding boxes.

4
Visual Object
Tagging Tool

(VOTT)
[203] 2017

An open source annotation and labeling tool for image and video assets,
extensible for importing/exporting data to local or cloud storage providers,

including Azure Blob Storage and Bing Image Search.

5
omputer Vision
Annotation Tool

(CVAT)
[204] 2018

A universal data annotation approach for both individuals and teams,
supporting large-scale semantic annotation for scene classification, object

detection and image segmentation.

6 Image Tagger [205] 2018
An open source online platform to create and manage image data and diverse
labels (e.g., bounding box, polygon, line and point), with friendly support for

collaborative image labeling.

7 Polygon RNN++ [169] 2018
A deep learning-based annotation strategy, producing polygonal annotation of

objects segmentation interactively using humans-in-the-loop.

8 Makesence.AI [206] 2019
An open source and online image annotation platform, using different

artificial model to give recommendations as well as automate repetitive and
tedious labeling activities.

9 VGG Image Annotator

(VIA)

[207] 2019
A simple and standalone manual annotation software for image and video,
providing rich labels like point, line, polygon as well as circle and ellipse

without project management.

* This table non-exhaustively presents the popular and representative image annotation tools.

are the common requirements in real application scenarios. In

the construction of a RS image dataset, images can be anno-

tated by multiple experts while different annotators possess

varying levels of expertise. Besides, the opinions of anno-

tators may conflict with each other because of the personal

bias [209]. Not only that, but RS images with high complexity

is hard to be correctly interpreted even for the experts due to

the high demand for specialized background and knowledge

of RS image interpretation. All of these will inevitably lead

to noisy annotations. An intuitive approach to overcome this

problem is to remove the noisy annotations by manual cleaning

and correction. However, cleansing annotations by the manual

way usually results in high costs of time and labor. Thus,

how to quickly find out the possible noise annotations in

constructed dataset becomes a challenging problem. Faced

with this situation, it is valuable to build effective algorithms

to model and predict noise annotations for data cleansing and

quality improvement. On the other hand, in order to obtain

a high-performance algorithm for RS image interpretation,

most data-driven methods require a fair amount of data with

precise annotations for proper training, particularly the deep

learning algorithms. Thus, the effect of noise annotation on

the performance of interpretation algorithms is necessary to be

explored for better utilization of the annotated dataset [210],

[211]. Furthermore, it is crucial to consider the existence of

annotation noise and develop noise-robust algorithms [212],

[213] to efficiently fade away its negative effects on RS image

interpretation.

VI. CONCLUSIONS

RS technology over the past years has made tremendous

progress and been providing us a huge amount of RS images

for systematic observation of the earth surface. However, the

lack of publicly available large-scale RS image datasets with

accurate annotation has become a bottle-neck problem to the

development of new and intelligent approaches for image

interpretation.

Through a bibliometric analysis, this paper first presents

a systematic review of the existing datasets related to the

mainstream of RS image interpretation tasks. It reveals that

many of the annotated RS image datasets, to some extent, show

deficiencies in one or several different aspects, e.g., diversity

and scale, that hamper the development of practical inter-

pretation models. Hence, the creation of RS image datasets

needs to be paid with more attention, from the annotation

process to property control for real applications. Subsequently,

we paid efforts to explore the guidances for building the

useful dataset for RS image interpretation. It is suggested

that the construction of the RS image datasets should be cre-

ated toward the requirements of practical applications, rather

than the interpretation algorithms. The presented guidances

formulates a prototype for RS image dataset construction

with consideration in efficiency and quality assurance. With

the introduced guidances, we created a large-scale RS image

dataset for scene classification, i.e., Million-AID, through a

semi-automatic annotation strategy. It provides a new idea

and approach for the construction of RS image datasets. And

the discussion about challenges and perspectives in RS image

dataset annotation delivers a new sight for the future work
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where efforts need to be dedicated for RS image dataset

annotation.
In the future, we will devote our endeavor to develop a

publicly online evaluation platform for various interpretation

datasets and algorithms. We believe that the trend of intelligent

interpretation for RS images is unstoppable, and more practical

datasets and algorithms oriented to real RS applications will

be created in the coming years. It should be encouraged that

more datasets and interpretation frameworks be shared within

the RS community to advance the prosperity of intelligent

interpretation and applications of RS images.
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