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Abstract—Interventional applications of photoacoustic imaging
typically require visualization of point-like targets, such as
the small, circular, cross-sectional tips of needles, catheters, or
brachytherapy seeds. When these point-like targets are imaged
in the presence of highly echogenic structures, the resulting
photoacoustic wave creates a reflection artifact that may appear
as a true signal. We propose to use deep learning techniques to
identify these type of noise artifacts for removal in experimental
photoacoustic data. To achieve this goal, a convolutional neural
network (CNN) was first trained to locate and classify sources
and artifacts in pre-beamformed data simulated with k-Wave.
Simulations initially contained one source and one artifact with
various medium sound speeds and 2D target locations. Based on
3,468 test images, we achieved a 100% success rate in classifying
both sources and artifacts. After adding noise to assess potential
performance in more realistic imaging environments, we achieved
at least 98% success rates for channel signal-to-noise ratios
(SNRs) of -9dB or greater, with a severe decrease in performance
below -21dB channel SNR. We then explored training with
multiple sources and two types of acoustic receivers and achieved
similar success with detecting point sources. Networks trained
with simulated data were then transferred to experimental
waterbath and phantom data with 100% and 96.67% source
classification accuracy, respectively (particularly when networks
were tested at depths that were included during training). The
corresponding mean ± one standard deviation of the point source
location error was 0.40 ± 0.22 mm and 0.38 ± 0.25 mm for
waterbath and phantom experimental data, respectively, which
provides some indication of the resolution limits of our new
CNN-based imaging system. We finally show that the CNN-
based information can be displayed in a novel artifact-free image
format, enabling us to effectively remove reflection artifacts
from photoacoustic images, which is not possible with traditional
geometry-based beamforming.

I. INTRODUCTION

Photoacoustic imaging has promising potential to detect

anatomical features or metal implants in the human body [1]–

[3]. It is implemented by transmitting pulsed laser light, which

is preferentially absorbed by structures with higher optical

absorption than their surroundings. This absorption causes

thermal expansion, which then generates a sound wave that is

detected with conventional ultrasound transducers. Potential

uses of photoacoustic imaging and its microwave-induced

counterpart (i.e., thermoacoustic imaging) include cancer de-

tection and treatment [3]–[6], monitoring blood vessel flow [7]
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and drug delivery [8], detecting metal implants [4], [6], and

guiding surgeries [6], [9]–[15].

The many potential clinical uses of photoacoustic imaging

are hampered by strong acoustic reflections from hyperechoic

structures. These reflections are not considered by traditional

beamformers which use a time-of-flight measurement to create

images. As a result, reflections appear as signals that are

mapped to incorrect locations in the beamformed image.

The surrounding acoustic environment additionally introduces

inconsistencies, such as sound speed, density, or attenuation

variations, that make acoustic wave propagation difficult to

model. Although photoacoustic imaging has not yet reached

widespread clinical utility (partly because of the presence of

these confusing reflection artifacts), the outstanding challenges

with reflection artifacts would be highly problematic for the

clinicians reading the images when relying on existing beam-

forming methods. These clinicians would be required to make

decisions based on potentially incorrect information, which

is particularly true in brachytherapy for treatment of prostate

cancers [4], [16] as well as in minimally invasive surgeries

where critical structures may be hidden by bone [17], [18].

Several alternative signal processing methods have been

implemented to reduce the effect of artifacts in photoacoustic

images and enhance signal quality, such as techniques us-

ing singular value decomposition [19] and short-lag spatial

coherence [6], [20], [21]. However, these methods exhibit

limited potential to remove artifacts caused by bright acoustic

reflections. A recent technique called photoacoustic-guided

focused ultrasound (PAFUSion) [22] differs from conventional

photoacoustic artifact reduction approaches because it uses

ultrasound to mimic wavefields produced by photoacoustic

sources in order to identify reflection artifacts for removal.

A similar approach that uses plane waves rather than focused

waves was similarly implemented [23]. These two methods

assume identical acoustic reception pathways, which may not

always be true. In addition, the requirement for matched ul-

trasound and photoacoustic images in a real-time environment

severely reduces potential frame rates in the presence of tissue

motion caused by the beating heart or vessel pulsation. This

motion might also introduce error into the artifact correction

algorithm. Methods to reduce reflection artifacts based on

their unique frequency spectra have additionally been proposed

[24], [25], but these methods similarly rely on beamforming

models that ignore potential inter- and intra-patient variability

when describing the acoustic propagation medium.
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Fig. 1. The channel data noise levels used in this work: (a) noiseless, (b) -3dB, (c) -9dB, (d) -15dB, and (e) -21dB SNR. Gaussian noise was added to simulate
the noise floor for a typical imaging system. Note that as noise level increases beyond -9dB channel SNR, it becomes more difficult to see the wavefronts.

We are proposing to address these outstanding challenges

by exploring deep learning with convolutional neural networks

(CNNs) [26]–[30]. CNNs have experienced a significant rise

in popularity because of their success with modeling prob-

lems that contain a high degree of complexity in areas such

as speech [31], language [32], and image [26] processing.

A similar level of complexity exists when describing the

many patient-specific variables that impact the quality of

photoacoustic signal beamforming. Despite the recent trend

toward CNNs, neural networks have been around for much

longer. For example, Nikoonahad et al. [33] used a neural

network to estimate beamforming delay functions in order

to reduce artifacts in ultrasound images arising from speed

of sound errors. Although this approach [33] is among the

first to apply neural networks to beamforming, it does not

effectively address the multipath reflection artifacts which arise

in photoacoustic images.

Bell and Reiter [34] demonstrated that a deep neural net-

work can be applied to learn spatial impulse responses and

locate photoacoustic point sources with an average positional

accuracy of 0.28 mm and 0.37 mm in the depth and lateral

image dimensions, respectively. Expanding on this previous

work, we propose the following key contributions which build

on results presented in our associated conference papers [35],

[36]. First, we develop a deep neural network capable of

locating both sources and artifacts in the raw photoacoustic

channel data with the goal of removing artifacts in the presence

of multiple levels of channel noise and multiple photoacoustic

sources. Second, we remove artifacts from the photoacoustic

channel data based on the information provided by the CNN.

Finally, we explore how well our network, which is trained

with only simulated data, locates sources and artifacts in real

experimental data with no additional training, particularly in

the presence of one and multiple point sources.

II. METHODS

A. Simulating Sources and Artifacts for Training

1) Initial Simulations: Simulations are a powerful tool in

the context of deep learning, as they allow us to generate

new application-specific data to train our algorithm without the

need to expensively gather and hand-label experimental data.

We simulated photoacoustic channel data with the k-Wave

simulation software package [37]. In our initial simulations,

each image contained one 0.1 mm-diameter point source and

one artifact. Although reflection artifacts can be simulated in k-

Wave, the amplitudes of the reflections are significantly lower

TABLE I
RANGE AND INCREMENT SIZE OF SIMULATION VARIABLES

Case Parameter Min Max Increment

Initial (no noise)
Depth Position (mm) 5 25 5
Lateral Position (mm) 5 30 5

Initial
(with noise)

Depth Position (mm) 5 25 5
Lateral Position (mm) 5 30 5

Channel SNR (dB) -21 -3 6

Lateral Shift*
Depth Position (mm) 5 25 5
Lateral Position (mm) 7.5 27.5 5

Depth Shift*
Depth Position (mm) 7.5 22.5 5
Lateral Position (mm) 5 30 5

Depth & Lateral

Shift*

Depth Position (mm) 7.5 22.5 5
Lateral Position (mm) 7.5 27.5 5

Noiseless, Fine
Depth Position (mm) 5 25 0.25
Lateral Position (mm) 5 30 0.25

Multiple Sources,

Multiple Noise

Levels

Number of Sources 1 10 1
Depth Position (mm) 5 25 0.25
Lateral Position (mm) 5 30 0.25

Channel SNR (dB) -5 2 random
Object Intensity (multiplier) 0.75 1.1 random

All Cases Speed of Sound (m/s) 1440 1640 6
* indicates datasets that were used for testing only

than that of the source, which differs from our experimental

observations. To overcome this discrepancy, a real source

signal was shifted deeper into our simulated image to mimic

reflection artifacts, which is viable because reflection artifacts

tend to have wavefront shapes that are characteristic of signals

at shallower depths. Thus, by moving a wavefront to a deeper

location in the image, we can effectively simulate a reflection

artifact. The range and increment size of our simulation

variables for this initial data set are listed in Table I. Our

initial dataset consisted of a total of 17,340 simulated images

with 80% used for training and 20% used for testing. This

dataset was created using a range of sound speeds, and this

range was included to ensure that the trained networks would

generalize to multiple possible sound speeds in experimental

data.

2) Incorporating Noise: Most experimental channel data

contain some level of background noise. Thus, to study CNN

performance in the presence of noise, our initial dataset

containing reflection artifacts was replicated four times to cre-

ate four additional datasets with white-Gaussian, background

noise (which is expected to simulate experimental channel

noise). The added channel noise corresponded to channel

signal-to-noise ratios (SNRs) of -3dB, -9dB, -15dB, and -21dB

SNR, as listed in Table I and depicted (for the same source

and artifact combination) in Fig. 1. Each of these new datasets

were then used independently for training (80% of images) and
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Fig. 2. Diagram showing the location of simulated source signals used to
create training and testing datasets. A network was trained using the red
points indicated as initial, while the blue, magenta, and green points were
used to test against the initial trained network.

testing (20% of images).

3) Testing with Previously Unseen Locations: Our initial

networks were trained using source and artifact locations at

5 mm increments. Thus, in order to test how well the trained

networks adapted to signal locations that were not encountered

during training, three additional noiseless datasets were created

by: (1) shifting the initial lateral positions by 2.5 mm to the

right while keeping the initial depth spacing, (2) shifting the

initial depth positions by 2.5 mm while keeping the initial

lateral spacing, and (3) shifting the initial lateral and depth

dimensions by 2.5 mm each. The placement of all shifted

points relative to the initial point locations is depicted in Fig.

2. These shifted datasets were only used for testing with the

previously trained noiseless network, as indicated in Table I.

4) Source Location Spacing: Building on our initial simu-

lations, which were tailored to clinical scenarios with a high

probability of structures appearing at discrete 5 mm spacings

(e.g., photoacoustic imaging of brachytherapy seeds [4]), a

new set of simulated point sources was generated with more

finely spaced points. The depth and lateral increment was

reduced from 5 mm to 0.25 mm, as listed in Table I. While

the initial dataset contained 1,080 sources, this new dataset

contained 278,154 sources. Because of this larger number of

sources, point target locations were randomly selected from

all possible source locations, while artifact locations were

randomly selected from all possible points located less than

10 mm from the source. A total of 19,992 noiseless channel

data images were synthesized, and a new network was trained

(80% of images) and tested (20% of images).

5) Shifting Artifacts: When generating reflection artifacts,

two different methods were compared. In the first method, the

artifact wavefront was shifted 5 mm deeper into this image.

This 5 mm distance was chosen because it corresponds to the

spacing of brachytherapy seeds [4], which motivated this work.

In the second method, the shift was more precisely calculated

to equal to the Euclidean distance, ∆, between the source and

artifact, as described by the equation:

|∆| =

√

(zs − zr)
2
+ (xs − xr)

2
(1)

where (xs, zs) are the 2D spatial coordinates of the source

location and (xr, zr) are the 2D spatial coordinates of the

physical reflector location, as illustrated in Fig. 4. A similar

TABLE II
SIMULATED ACOUSTIC RECEIVER PARAMETERS

Parameter Continuous Discrete

Kerf (mm) 0 0.06

Element Width (mm) 0.1 0.24

Sampling Frequency (MHz) 48 - 54.6 40

shifting method was implemented to simulate artifacts in ultra-

sound channel data [38]. To compare our two shifting methods,

two networks were trained with noiseless photoacoustic data

containing finely spaced sources, as noted in Table I. One of

the two shifting methods were implemented for each network.

6) Multiple Sources: To test the proposed method with

more complex images containing more than one photoacoustic

source, we created 10 additional datasets each with a fixed

number of sources that ranged from 1 to 10. A summary of

the parameters used for this training and testing are listed

in Table I. One major difference between this network and

previous networks is that multiple noise levels and intensities

were included in each training data set. There was no fixed

increment size for these two parameters, and these parameters

were instead randomly chosen from the range of possible val-

ues indicated in Table I. To compare performance, a network

was trained for each of these 10 datasets and each trained

network was tested against all 10 datasets.

7) Modeling a Linear Discrete Receiver: We additionally

compared network performance with two different receiver

models. First, the acoustic receiver was modeled as a con-

tinuous array of elements, which was the method used for all

networks described in Sections II-A1 to II-A6. The default k-

Wave setting for these networks varies the sampling frequency

as a function of the speed of sound in the medium, which is not

realistic when transferring these networks to experimental data

[36]. Therefore, we also modeled a receiver with a nonzero

kerf and a fixed sampling frequency. In both cases, the element

height was limited to a single point. The network for each re-

ceiver model was trained with one source and one artifact over

multiple noise levels and object intensities, as described for the

multisource dataset summarized in Table I. The parameters for

each acoustic receiver model are summarized in Table II.

B. Network Architecture and Evaluation Parameters

We preliminarily tested the discrete receiver dataset with a

standard histogram of oriented gradients features and classified

the results with an ensemble of weak learners [39]. Although

we achieved 100% classification accuracy, we obtained 4.82

false positives per image (i.e., misclassification and missed

detection rates of 229-253%), which further motivates our

exploration of a deep learning approach rather then a more

standard classifier machine learning approach. Based on this

motivation, independent CNNs corresponding to the various

cases listed in Tables I & II were trained with the Faster-

RCNN algorithm, which is composed of two modules [29].

The first module was a deep fully convolutional network

consisting of the VGG16 network architecture [30] and a

Region Proposal Network [29]. The second module was a

Fast R-CNN detector [28] that used the proposed regions.
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Fig. 3. The channel data for multiple sources: (a) 2, (b) 4, (c) 6, (d) 8, and (e) 10 sources and reflectors. Note that as number of sources increases, the images
become increasingly complex.

Fig. 4. Schematic diagram showing a geometry that causes reflection
artifacts. The arrows indicate the direction of wave propagation for the imaged
reflection artifact.

Both modules were implemented in the Caffe framework [40],

and together they form a single unified network for detecting

wavefronts in channel data and classifying them as sources or

artifacts, as summarized in Fig. 5.

The unified network illustrated in Fig. 5 was initialized

with pre-trained ImageNet weights and trained for 100,000

iterations on the portion of the simulated data reserved for

training. The PC used for this process was an Intel Core i5-

6600k CPU with 32GB of RAM alongside an Nvidia GTX

Titan X (Pascal) with 12GB of VRAM and a core clock speed

of 1531MHz. With this machine, we trained the networks at a

rate of 0.22 seconds per iteration and tested them at a rate of

0.068 seconds per image, which translates to 14.7 frames per

second when the trained network is implemented in real time.

The Faster R-CNN outputs consisted of the classifier pre-

diction, corresponding confidence score (a number between

0 and 1), and the bounding box image coordinates for each

detection, as illustrated in Fig. 5. These detections were

evaluated according to their classification results as well as

their depth, lateral, and total (i.e. euclidean) positional errors.

To determine classification and bounding box accuracy, each

simulated image was labeled with the classes of the objects

in the image (i.e., source or artifact), as well as the bounding

box corresponding to the known locations of these objects. The

bounding box for each object measured approximately 8 mm

in the lateral dimension by 2 mm in the depth dimension, and

it was centered on the peak of the source or artifact wavefront.

Detections were classified as correct if the intersect-over-

union (IoU) of the ground truth and detection bounding box

was greater than 0.5 and their score was greater than an

optimal value. This optimal value for each class and each

network was found by first defining a line with a slope equal

to the number of negative detections divided by the number

of positive detections, where positive detections were defined

as detections with a IoU greater than 0.5. This line was

shifted from the ideal operating point (true positive rate of

1 and false positive rate of 0) down and to the right until it

intersected the receiver operating characteristics (ROC) curve.

The point at which this line first intersected the ROC curve was

determined to be the optimal score threshold. The ROC curve

was created by varying the confidence threshold and plotting

the rate of true and false positives at each tested threshold. The

ROC curve indicates the quality of object detections made by

the network. Misclassifications were defined to be a source

detected as an artifact or an artifact detected as a source, and

missed detections were defined as a source or artifact being

detected as neither a source nor artifact.

In addition to classification, misclassification, and missed

detection rate, we also considered precision, recall, and area-

under-the-curve (AUC). Precision is defined as the number of

correct positive detections over the total number of positive

detections, and recall is defined as the number of correct

positive detections which were made over the total number

of objects which should have been detected (note that recall

and classification rate are equivalent in this work). AUC was

defined as the total area under the ROC curve.

C. Transfer Learning to Experimental Data

To determine the feasibility of training with simulated data

for the eventual identification and removal of artifacts in

real data acquired from patients in a clinical setting, we

tested our networks on two types of experimental data. We

consider training with simulated data and transferring the

trained network to experimental data to to be a form of transfer

learning. Fig. 6 shows a schematic diagram and corresponding

photograph of the first experimental setup. A 1 mm core

diameter optical fiber was inserted in a needle and placed in the

imaging plane between the transducer and a sheet of acrylic.

This setup was placed in a waterbath. The optical fiber was

coupled to a Quantel (Bozeman, MT) Brilliant laser operating

at 1064 nm and 2 mJ per pulse. When fired, the laser light from

the fiber tip creates a photoacoustic signal in the water which

propagates in all directions. This signal travels both directly

to the transducer, creating the source signal, and to the acrylic

which reflects the signal back to the transducer, creating the

reflection artifact. The acrylic plate represents a highly echoic

structure in the body such as bone.

Seventeen channel data images were captured, each after

changing the location of the transducer while maintaining the

distance between the optical fiber tip and the acrylic plate. The

transducer was attached to a Sawyer Robot (Rethink Robotics,
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Fig. 5. Summary of our network architecture.

(a) (b)

Fig. 6. (a) Schematic diagram and (b) photograph of the experimental
waterbath setup.

(a) (b)

Fig. 7. (a) Schematic diagram of the phantom with brachytherapy seeds
labeled 1 through 4 and the two possible imaging sides for transducer
placement noted as Side 1 and Side 2. Although the phantom extends
beyond the dashed line, this region of the phantom was not included in the
photoacoustic image. (b) Photograph of one version of the experimental setup
for the phantom experiment, with the parameters for this setup noted as Image
3 in Table III.

Boston, MA), and it was translated in 5 mm increments

in the depth dimension for 5-6 depths and 10 mm in the

lateral dimension for 3 lateral positions. An Alpinion (Bothell,

WA) E-Cube 12R scanner connected to an L3-8 linear array

ultrasound transducer was used to acquire channel data during

these experiments. Six of the previously described networks

trained with the finely spaced sources were used to test the

experimental waterbath data. The differences between these

six networks included the noise levels, artifact shifting method,

and receiver designs used during training, as described in more

detail in Section III-D.

The second experiment was performed with a phantom

containing 4 brachytherapy seeds and 2 air pockets as depicted

in Fig. 7. This phantom was previously described in Ref. [6].

TABLE III
BRACHYTHERAPY PHANTOM IMAGE PARAMETERS

Image
Seeds Illuminated

Indicies*
Transducer
Orientation

Imaging Side*

1 1, 2 as shown side 1

2 1, 2 flipped side 1

3 1, 3 as shown side 1

4 1, 3 flipped side 1

5 3, 4 as shown side 1

6 3, 4 flipped side 1

7 1, 3, 4 as shown side 1

8 1, 3, 4 as shown side 1

9 1, 3, 4 flipped side 1

10 3, 4 as shown side 2

11 3, 4 flipped side 2

12 1, 2, 3 as shown side 1

13 1, 2, 3 flipped side 1

14 1, 2, 3, 4 as shown side 1

15 1, 2, 3, 4 flipped side 1
*The four seed number indicies and the two phantom imaging sides are

indicated Fig. 7(a).

In order to generate a photoacoustic signal, the brachytherapy

seeds in the combinations show in Table III were illuminated

with multiple separate optical fibers that were bundled together

and connected to a single input source. The input end of

the fibers was coupled to an Opotek (Carlsbad, CA) Phocus

Mobile laser operating at 1064nm. The signals from the

illuminated brachytherapy seeds were considered to be the true

sources and all other signals were considered to be artifacts,

including reflections from the air pockets and brachytherapy

seeds. Fifteen images were captured in total by illuminating

different combinations of the brachytherapy seeds and chang-

ing the orientation of the transducer as well as orientation

of the phantom, as detailed in Table III. The phantom was

imaged with an Alpinion (Bothell, WA) E-Cube 12R scanner

connected to an L3-8 linear array ultrasound transducer which

was held in place by a Sawyer Robot (Rethink Robotics,

Boston, MA).

When classifying sources and artifacts in channel data from

the waterbath and phantom experiments, the confidence thresh-

old was equivalent to the confidence threshold determined with

simulated data.

D. Artifact Removal

After obtaining detection and classification results for the

simulated and experimental data, three methods for artifact

removal were tested. The first two methods replaced the
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Fig. 8. (a) Classification results in the presence of various noise levels. The
dark and medium blue bars show the accuracy of source and artifact detec-
tions, respectively. The light blue and green bars show the misclassification
rate for sources and artifacts, respectively. The dark and light yellow bars show
the missed detection rate for sources and artifacts, respectively. Corresponding
(b) source and (c) artifact ROC curves demonstrate that performance degrades
as channel SNR decreases.

pixels inside the detection bounding box in the channel data

with either the average pixel value of the entire image or

noise corresponding to the noise level of the image. The

third method used the network outputs to display only the

locations of the detected source signals in the image. Source

detections were visualized as circles centered at the center of

the detection bounding box with a radius corresponding to

2σ, where σ is the standard deviation of location errors found

when testing the network.

For the first two artifact removal methods, delay-and-sum

(DAS) beamforming was implemented replacing pixels in

regions identified as artifacts with either noise or the average

value. To implement DAS beamforming, the received channel

data was delayed based on the distance between the receive

element and a point in the image space. The delayed data was

then summed across all receive elements to achieve a single

scanline in a DAS photoacoustic image.

III. RESULTS

A. Classification Accuracy

1) Classification Accuracy in the Presence of Channel

Noise: The classification results from the initial noiseless data

and the four noisy datasets are shown in Fig. 8(a). The results

of testing show that the networks classified signals with greater

than 98% accuracy when the noise level was less than -9dB

SNR. For the -15dB SNR dataset, the classification accuracy

fell to 82% accuracy, while classification accuracy dropped

even further to 4.35% with -21dB channel SNR. Fig. 8(a) also

shows that the rate of misclassification is less than 0.5% for

all datasets. It is additionally observed that the rate of missed

source and artifact detections increases greatly for higher noise

levels (less than -9dB SNR).

(a)

(b) (c)

Fig. 9. (a) Classification results for the shifted datasets after testing with
networks that were trained with our initial noiseless dataset. The dark and
medium blue bars show the accuracy of source and artifact detections,
respectively. The light blue and green bars show the misclassification rate
for sources and artifacts, respectively. The dark and light yellow bars show
the missed detection rate for sources and artifacts, respectively. These results
and the corresponding (b) source and (c) artifact ROC curves indicate poor
generalization to depth positions that were not included during training.

Fig. 8(b) and (c) depict the ROC curves for the sources and

artifacts, respectively. The results of each dataset is indicated

by the different colored lines with true positive rate on the

vertical axis and false positive rate on the horizontal axis. As

noise increases the curves diverge from the ideal operating

point.

2) Classification Accuracy for Previously Unseen Loca-

tions: Fig. 9 shows the results from testing with the shifted

datasets, which were included to quantify performance when

the network is presented with sources in previously unseen

locations. The laterally shifted points yielded a classification

accuracy of 100% for both sources and artifacts and a mis-

classification rate of 0%, which is identical performance to

that of the initial, noiseless dataset. However, for the two

trials that included depth shifts, the classification accuracy

was 0%, indicating that the network fails when presented

with depths that were not included during training. This result

informs us that our network is not capable of generalizing to

these untrained locations, however, because the network was

trained with simulated data, we can remedy this limitation

by simulating more points with finer depth spacing in order to

achieve consistent classification performance across all depths,

which is the primary purpose of the finely spaced network.

3) Classification Accuracy with Finer Source Spacings:

Results from the finely spaced datasets are shown in Fig.

10. The network trained with finely spaced sources and 5

mm artifact shifts behaved similarly to the network trained

with the initial noiseless dataset in terms of classification

and misclassification accuracy, which measured 99.7% and

99.7%, respectively. The network derived from finely spaced,

Euclidean-based shifting produced similar classification accu-
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(a)

(b) (c)

Fig. 10. (a) Classification results for finely spaced datasets. The dark and
medium blue bars show the accuracy of source and artifact detections,
respectively. The light blue and turquoise bars show the misclassification rate
for sources and artifacts, respectively. The dark green and light green bars
show the missed detection rate for sources and artifacts, respectively. The
dark yellow and light yellow bars show the misclassification rate for sources
and artifacts, respectively, after removing overlapping sources and artifacts
from calculations. These finely spaced networks exhibit performance levels
comparable to the initial noiseless network, but can now correctly classify at
a wider range of depths, corresponding (b) source and (c) artifact ROC curves
are consistent with this observation.

Fig. 11. Example of the overlapping of source and artifact wavefronts that
occurs when shifting the artifact by the Euclidean distance.

racy, but the misclassification rate increased to 10%. However,

this network with Euclidean shifting implemented contains

several special cases where the artifact and sources overlap,

as shown in Fig. 11, and these special cases are not present

when shifting artifacts by 5 mm only. The presence of

overlapping wavefronts causes a significant overlap between

source detections and the artifact ground truth bounding boxes.

Similarly, artifact detections overlap with the source ground

truth bounding boxes. These cases are incorrectly defined as a

misclassifications. Thus, when these overlapping sources and

artifacts are excluded from the misclassification calculations,

we obtain misclassification rates comparable to that of the

finely spaced, 5 mm shifted network and performance is

consistent across both shifting methods (5 mm and Euclidean),

as shown in Fig. 10.

The results for precision, recall, and AUC for the noisy and

finely spaced datasets are reported in the first seven rows of Ta-

Source Artifact

C
la

ss
ifi

ca
ti

o
n

(a) (b)

M
is

cl
as

si
fi

ca
ti

o
n

(c) (d)

M
is

se
d

D
et

ec
ti

o
n

(e) (f)

Fig. 12. (a) Source and (b) artifact classification results for multisource
datasets, where blue indicates better performance. (c) Source and (d) artifact
misclassification results for multisource datasets, where yellow indicates
better performance. (e) Source and (f) artifact missed detection results for
multisource datasets, where yellow indicates better performance.

ble IV. For noise levels below -9dB SNR, precision, recall, and

AUC all exceed 0.97. For the -15dB SNR dataset precision,

recall, and AUC drop to 0.76, 0.82, and 0.93, respectively,

while for the -21dB SNR dataset precision, recall, and AUC

drop even further to 0.64, 0.04, and 0.25, respectively. For the

finely spaced datasets, precision, recall, and AUC exceed 0.99.

4) Classification Accuracy for Multiple Sources: Fig. 12

shows source and artifact classification, misclassification, and

missed detection rates for networks which were trained with

1 to 10 sources where the vertical axis indicates the number

of sources in the datasets used for training the networks and

the horizontal axis indicates the number of sources in the

dataset used for testing each network. For example, the first

row in Fig. 12(a) indicates the source classification rate for

a network trained with only one source and tested against

datasets containing 1 to 10 sources. In the first row of Fig.

12(a), the network suffers performance losses when tested with

more sources than the network was trained to detect (i.e.,

97.13% of sources were detected in the one source dataset

and less than 68.00% of sources were detected in the multiple

source datasets). For the remaining rows, the performance

generally decreases moving left to right across columns (values

ranging from 90.06% to 97.23% for the second column and

80.41% to 91.46% for the last column), with the first column

of Fig. 12(a) presenting an exception to this general trend. In
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(a)

(b) (c)

Fig. 13. (a) Classification results comparing the continuous and discrete
receiver models. The dark and medium blue bars show the accuracy of
source and artifact detections, respectively. The light blue and green bars
show the misclassification rate for sources and artifacts, respectively. The
dark and light yellow bars show the missed detection rate for sources and
artifacts, respectively. Corresponding (b) source and (c) artifact ROC curves
demonstrate that both networks perform similarly for sources with less
agreement for artifacts. However, the ideal operating point differs for each
ROC curve, thus the classification results are less similar.

rows 2-10 of the first column of Fig. 12(a), the values ranged

from 67.48% to 89.50%, which is substantially worse than

the 97.13% performance noted in row 1 of this column. This

result indicates that data containing one known source will

have the best performance when only one source is included

during training. In Fig. 12(b) the values generally decrease

moving left to right across columns (82.18% to 89.41% for

the first column and 9.38% to 63.31% for the final column).

Fig. 12(c,d) show source and artifact misclassification rate,

respectively, with the lowest rates generally occurring when

both training and testing with more than one source. The

misclassification rate for sources in the first two columns and

rows of Fig. 12(c) ranged from 2.41% to 18.75% and the

remaining values were less than 3.60%. The misclassification

rate for artifacts in the first column and row of Fig. 12(d)

ranged from 2.74% to 40.45% and the remaining values were

less than 6.98%. Figs. 12(e) and 12(f) generally exhibit similar

trends to Figs. 12(a) and 12(b), respectively, where the single-

source network suffers significant performance losses with the

multisource test sets (see first row). Otherwise, the missed

detection rate generally increases from 6.64% to 19.56% in

Fig.12(e) and 2.77% to 35.94% in Fig.12(f) when moving from

left to right across the columns, with the exception of the first

column in Fig. 12(e). The results for precision, recall, and

AUC for these datasets containing multiple noise levels and

multiple sources are reported in Table IV.

5) Classification Accuracy with Continuous vs. Discrete

Receivers: Results comparing the performance for the contin-

uous and discrete receivers are shown in Fig. 13 for a single

photoacoustic source. We note that for the network trained

TABLE IV
SUMMARY OF CLASSIFICATION PERFORMANCE FOR SIMULATED DATA

Dataset*
Source Artifact

Prec. Recall AUC Prec. Recall AUC

Initial, Noiseless 1.000 1.000 1.000 1.000 1.000 1.000

-3dB SNR 1.000 1.000 1.000 1.000 1.000 1.000

-9dB SNR 1.000 0.993 0.999 0.999 0.974 0.995

-15dB SNR 0.885 0.885 0.976 0.766 0.823 0.964

-21dB SNR 0.707 0.085 0.831 0.647 0.044 0.804

Finely Spaced
5 mm shift 0.998 0.997 1.000 0.997 0.997 .999

Euclidean shift 0.999 0.997 1.000 0.990 0.992 0.984

Multiple Noise Levels
1 source 0.8721 0.9713 0.9018 0.9619 0.8618 0.9471

2 sources 0.9805 0.9723 0.9868 0.9746 0.9239 0.9837

3 sources 0.9876 0.9721 0.9869 0.9830 0.8756 0.9880

4 sources 0.9906 0.9636 0.9867 0.9847 0.8314 0.9890

5 sources 0.9914 0.9578 0.9856 0.9892 0.7852 0.9888

6 sources 0.9922 0.9433 0.9842 0.9880 0.7600 0.9871

7 sources 0.9900 0.9377 0.9851 0.9910 0.7157 0.9870

8 sources 0.9960 0.9282 0.9915 0.9485 0.6867 0.9836

9 sources 0.9935 0.9281 0.9857 0.9859 0.6868 0.9863

10 sources 0.9944 0.9146 0.9867 0.9840 0.6325 0.9864

Discrete Receiver
1 source 0.8939 0.9160 0.9167 0.8818 0.9316 0.9386

*All datasets used the continuous receiver unless otherwise stated.

and tested with the continuous receiver model, source and

artifact accuracy measured 97.13% and 86.18%, respectively,

and these results are the same as those shown in the first row

and first column of each result in Fig. 12.. For the network

trained and tested with the discrete receiver model, source and

artifact accuracy measured 91.6% and 93.16%, respectively.

In addition, source and artifact misclassification rates were

14.8% and 2.82%, respectively, for the network trained with

the continuous receiver, and 11% and 12.63%, respectively

for the network trained with the discrete receiver. For both

networks, missed detection rates for both sources and artifacts

were less than 0.7%. The results for precision, recall, and AUC

for the dataset modeled with the discrete receiver are reported

in Table IV.

B. Location Errors for Simulated Data

Table V lists the percent of correct detections which had

errors below 1 mm and 0.5 mm for both sources and artifacts.

Results indicate that within each dataset, location errors less

than 1 mm were achieved in over 97% of the data. Location

errors less than 0.5 mm were achieved in over 88%, with the

exception of the finely spaced data.

The box-and-whiskers plots in Fig. 14 demonstrate the depth

and lateral errors for sources and artifacts within each dataset.

The top and bottom of each box represents the 75th and 25th

percentiles of the measurements, respectively. The line inside

each box represents the median measurement, and the whiskers

(i.e., lines extending above and below each box) represent the

range. Outliers were defined as any value greater than 1.5

times the interquartile range and are displayed as dots. Figs.

14 (a) and (b) show that the networks are more accurate in

the depth dimension, where errors (including outliers) were

frequently less than 0.6 mm, when compared to errors in the

lateral dimension (Figs. 14 (c) and (d)), where outliers were as

large as 1.5-2.0 mm. However, in both cases, the median values
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(a) (b)

(c) (d)

Fig. 14. Summary of distance errors for all tested simulated data in the depth (a,b) and lateral (c,d) dimensions for sources (a,c) and artifacts (b,d). Note that
the depth errors are consistently lower than the lateral errors. For the multisource networks, distance errors were evaluated only for the number of sources
for which the network was trained (i.e. the network which was trained with one source was only tested using the test set containing one source).

TABLE V
SUMMARY OF EUCLIDEAN DISTANCE ERRORS FOR SIMULATED DATA

Dataset*
Percentage of Total Percentage of Total

Errors ≤ 1mm Errors ≤ 0.5 mm
Sources Artifacts Sources Artifacts

Initial, Noiseless 100 100 93.43 94.03

-3dB SNR 100 100 97.55 95.47

-9dB SNR 99.94 100 94.89 96.38

-15dB SNR 100 100 89.12 89.79

-21dB SNR 100 100 92.41 88.74

Finely Spaced
5 mm shift 98.54 97.37 84.77 78.55

Euclidean shift 99.62 98.91 88.96 80.34

Multiple Noise Levels
1 source 99.82 99.73 89.88 89.23

2 sources 99.87 99.82 94.05 92.98

3 sources 99.81 99.78 93.04 92.13

4 sources 99.83 99.83 91.89 91.86

5 sources 99.77 99.84 92.90 92.34

6 sources 99.74 99.80 91.42 91.54

7 sources 99.50 99.86 92.47 93.09

8 sources 99.61 99.79 92.30 90.41

9 sources 99.66 99.89 91.98 91.33

10 sources 99.54 99.71 91.44 90.10

Discrete Receiver
1 source 100 100 93.83 92.77

*All datasets used the continuous receiver unless otherwise stated.

were consistently less than 0.1-0.5 mm, which is supported by

the results reported in Table V.

Figure 15 depicts the distribution of lateral errors for sources

that were correctly classified with the noiseless, finely spaced,

5 mm shifted network. These errors are shown as a function

of their depth in the image. These figures confirm that the

majority of sources have lateral errors less than 0.5 mm. We

(a) (b)

Fig. 15. Histograms of lateral errors of correctly classified sources for varying
depths in the image for the noiseless, finely spaced, (a) 5 mm shifted network
and (b) Euclidean shifted network. Note that the profiles of the histograms
are similar with depth.

also note that the for every source depth the histograms have

similar distributions.

C. Artifact Removal for Simulated Data

Fig. 16 shows the result of our three methods to remove

regions that were identified as artifacts. Sample channel data

inputs to the network are shown in Figs. 16 (a)-(c) for three

noise levels, and the corresponding B-mode images are shown

in Fig. 16 (d)-(f). The average value substitution (Fig. 16

(g)-(i)) and the noise substitution (Fig. 16 (j)-(l)) methods

successfully remove the center of the reflection artifact after

beamforming. However, the tails of the reflection artifacts

are still present in these new images. In addition, the noise

substitution method further degrades image quality by exhibit-

ing a blurring of these new values across the image. These

two methods also pose a problem for cases where sources

and artifacts overlap (e.g. Fig. 11) as they do no not take
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Noiseless -3dB -9dB

Channel
Data

(a) (b) (c)

Beamformed
Image

(d) (e) (f)

Average

Value
Substitution

(g) (h) (i)

Noise
Substitution

(j) (k) (l)

CNN-Based
Image

(m) (n) (o)

Fig. 16. Sample images from the noiseless, -3dB, and -9dB cases, shown from left to right, respectively, (a)-(c) before and (d)-(f) after applying traditional
beamforming. Three artifact removal techniques are shown for each sample image: (g)-(i) average value substitution, (j)-(l) noise substitution, and (m)-(o) a
CNN-based image that displays the location of the detected source based on the location of the bounding box. The red boxes in (a)-(c) indicate the portion
of the images displayed in (d)-(o).

into consideration source locations in the image and could

potentially remove a source in the process of removing an

artifact.

Another method for artifact removal is to only display

objects which were classified as sources, as shown in Fig.

16 (m)-(o). This method was implemented by placing a disc-

shaped object at the center of the detected bounding box and

displaying it with a diameter of ±2σ, where σ refers to the

standard deviation of the location errors for that particular

noise level. One major benefit of this display method is

that we can visualize true sources with an arbitrarily high

contrast. In addition, this image is not corrupted by reflection

artifacts because we do not display them, and we will not

unintentionally remove sources in the process of removing

artifacts with this method.

D. Experimental Results

The channel SNR in the experimental waterbath images was

-3.3dB. Each image had one source signal and at least one

reflection artifact, as seen in Fig. 17(a). The corresponding

beamformed image and CNN-based image with the artifact

removed are shown in Figs. 17(b) and (c), respectively.

The channel SNR in the experimental phantom images was

-4dB. Multiple source signals are present in each image along

with multiple reflection artifacts, as noted in Table III and

observed in Fig. 17(b) and (g). The corresponding beamformed

images are shown in Fig. 17(e) and (h), respectively. The

corresponding CNN-based images with artifacts removed are

shown in Fig. 17(f) and (i) respectively.

The first six rows in Table VI show the percentage of

correct, misclassified, and missed detections for sources and
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Channel Data Beamformed Image CNN-Based Image

Waterbath

(a) (b) (c)

Phantom

(d) (e) (f)

Phantom

(g) (h) (i)

Fig. 17. (a, d, g) Sample images of experimental channel data where wavefronts labeled source indicate a true source and artifacts are unlabeled. The first row
shows an example from the waterbath experiment while the second and third rows show examples from the phantom experiment. (b, e, h) The corresponding
beamformed images where wavefronts labeled as sources indicate true sources and artifacts are unlabeled. (c, f, i) The corresponding image created with the
CNN-based artifact removal method where source detections are displayed as white circles.

TABLE VI
SUMMARY OF CLASSIFICATION PERFORMANCE FOR EXPERIMENTAL DATA

Experiment
Network Source Artifact

Waterbath

Model Correct Misclassified Missed Correct Misclassified Missed

Noiseless, Fine, Continuous, 5 mm Shift 88.24% 11.67% 11.76% 0% 16.67% 87.50%
-3dB Noise , Fine, Continuous, 5 mm Shift 35.29% 100% 0% 0% 41.67% 62.50%
Noiseless, Fine, Continuous, Euclidean Shift 100% 5.88% 0% 0% 25% 79.17%

-3dB Noise, Fine, Continuous, Euclidean Shift 100% 23.53% 0% 54.17% 8.33% 45.83%
-5dB to +2dB Noise, Fine, Continuous, Euclidean Shift 100% 0% 0% 70.27% 10.81% 13.51%

-5dB to +2dB Noise, Fine, Discrete, Euclidean Shift 100% 0% 0% 89.74% 0% 10.26%

Phantom
-5dB to +2dB Noise, Fine, Discrete, Euclidean Shift 74.36% 2.56% 25.64% N/A N/A N/A

-5 to +2dB Noise, Fine, Discrete, Euclidean Shift
(only results within training range) 96.67% 3.33% 3.33% N/A N/A N/A

artifacts across the seventeen experimental waterbath images,

revealing four notable observations First, when the network

was trained using Euclidean shifting, it performed better

(100% source classification accuracy) when compared to 5mm

shifting (88.24% source classification accuracy). Second, the

best continuous receiver model correctly classified 70.27%

of artifacts while the discrete model classified 89.74% of

artifacts, indicating a performance increase with the discrete

receiver model. Third, the network trained over a range of

noise levels classified artifacts better (70.27% artifact clas-

sification accuracy), when compared to the network trained

on one noise level (54.17% artifact classification accuracy).

Fourth, contrary to Fig. 13, there is no decrease in source

detection performance when switching from the continuous to

discrete receiver. For visual comparison, the results from the

two complementary continuous and discrete receiver models

applied to experimental data are shown in Fig. 18.

When using the network trained with the discrete receiver,

the mean absolute distance error between the peak location of

the wavefront in channel data and the center of the detection

bounding box for the waterbath dataset was was 0.40 mm with

a standard deviation of 0.22 mm. For the same network, the

mean absolute distance error for the phantom dataset was 0.38

mm with a standard deviation of 0.25 mm.

For the phantom dataset, only source detections were con-

sidered as it was difficult to quantify the number of artifacts in
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Fig. 18. Classification results for the experimental waterbath data when
using the network trained with finely spaced point targets, -5dB to +2dB
noise, and euclidean shifting. Results from using networks trained with both
the continuous and discrete receiver models trained and tested with a single
photoacoustic source are shown for comparison.

Fig. 19. Classification results for the experimental phantom data when
using the network trained with finely spaced point targets, -5dB to +2dB
noise, euclidean shifting, and the discrete receiver. Blue bars indicate source
classification accuracy, teal bars indicate source misclassification rate, and
yellow bars indicate source missed detection rate. Results are compared for
all illuminated sources and illuminated sources within depths at which the
network was trained (5mm to 25 mm).

these experimental channel data images (see Fig. 17(b) and (d)

for examples). The network trained with finely spaced point

targets, -5dB to +2dB noise, euclidean shifting, and discrete

receiver correctly classified 74.35%, misclassified 2.56%, and

missed 25.64% of sources across the 15 images, which in-

cluded 39 source objects. These results are shown in Fig.

19 and reported in Table VI. These numbers show a marked

decrease in performance when compared to the waterbath data.

The main reason for this decrease in performance was due to

the network only being trained at depths of 5 mm to 25 mm

(as noted in Table I). When limiting our classification results

to depths for which the network was trained, the same network

classified 96.67%, misclassified 3.33%, and missed 3.33% of

sources. This result agrees with the result from Section III-A2,

where the trained networks failed to generalize to depths that

were not included during training. Although Fig. 12 shows

that networks trained with only one source do not transfer

well to multisource test sets, it is interesting that the single

source network used to test this experimental data set correctly

classified multiple sources in 11 of the 15 total images.

IV. DISCUSSION

This work demonstrates the first use of CNNs as an alter-

native to traditional model-based photoacoustic beamforming

techniques. In traditional beamforming, a wave propagation

model is used to determine the location of signal sources.

Existing models are insufficient when reflection artifacts devi-

ate from the traditional geometric assumptions made by these

models, which results in inaccurate output images. Instead,

we train a CNN to distinguish between true point sources and

artifacts in the channel data and use the network outputs to

derive a new method of displaying artifact-free images with

arbitrarily high contrast, resulting in improvements that exceed

existing reflection artifact reduction approaches [23].

We revealed several notable characteristics when applying

CNNs to identify and remove highly problematic reflection

artifacts in photoacoustic data. First, we learned that the

classification accuracy is sufficient to differentiate sources

from artifacts when the background noise is sufficiently low

(Fig. 8). While our network is tailored to detecting point-like

sources such as the circular cross-sections of needle or catheter

tips (enabled by insertion of optical fibers in these needles

and catheters), this approach could be extended to other types

of photoacoustic targets through training with various initial

pressure distribution sizes and geometries. We can potentially

train these networks to learn other characteristics of the

acoustic field, such as the medium sound speed and the signal

amplitude.

We additionally demonstrated that this training requires

incorporating many of the potential source locations in order

to maximize classification accuracy, based on the poor results

shown in Fig. 9 (i.e., when testing depth shifts that were not

used during training). However, this initial network performed

well at classifying sources when only the lateral positions

were shifted, likely because wave shapes at the same depth are

expected to be identical, regardless of their lateral positions.

Based on these observations, it would be best to use our

proposed machine learning approach when all possible depth

locations are included during training, which is verified by

the randomly selected training depths from the finely spaced

network achieving better classification accuracy (see Fig. 10).

This is also verified by the experimental phantom results

failing in cases where depths were not trained (see Table VI).

There is otherwise greater flexibility when choosing lateral

training locations if we are primarily concerned with classi-

fication accuracy (and less concerned with location accuracy,

for example, if we are only interested in knowing the number

of sources present in an image).

It is highly promising that our networks were trained with

simulated data, yet performed reasonably well when trans-

ferred to experimental data. Table VI and Fig. 18 demonstrate

that as the simulations become more similar to experimental

data (enabled by modeling the transducer, including several

noise levels in the same network, etc.) the performance in-

creases when transferring these networks to the experimental

data domain. It is also promising that networks trained with

only one simulated source and tested on the experimental

data with multiple sources had increased performance when

compared to testing this same network on simulated data with

multiple sources (e.g., compare Fig. 12(a,c,e) with the phan-

tom results in Table VI). This increased performance likely

occurs because the sources are sufficiently separated from
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each other. A similar increased performance was observed

when the discrete receiver model was applied to simulation

versus experimental data (compare Figs. 13 and 18). While

the reason for this increased performance with experimental

data is unknown, one possible explanation is that the presence

of a single sound speed in the experimental data versus the

multiple sound speeds present in simulated data decreases

the data complexity of the test data set, leading to increased

performance in experimental data [36].

Fig. 12 suggests that there could be multiple optimal net-

works, depending on the desired weighting of the six perfor-

mance metrics (i.e., classification accuracy, misclassification

rates, and missed detection rates for both sources and artifacts),

as network performance depends on the number of sources and

thus complexity of the imaging field. Thus, future work will

explore a multiple, ensemble network approach that combines

the outputs of several independently trained networks.

The sub-millimeter location errors in simulation and exper-

imental results can be related to traditional imaging system

lateral resolution, which is proportional to target depth and

inversely proportional to the ultrasound transducer bandwidth

and aperture size [1], [5]. For example, traditional transab-

dominal imaging probes have a bandwidth of 1-5 MHz. To

image a target at a depth of 5 cm with a 2 cm aperture width,

the expected image resolution would be approximately 0.8-3.9

mm. Fig. 14 and Table V demonstrate that a large percentage

of the location errors are better than the maximum achievable

system resolution at this depth. Fig. 15 demonstrates that the

lateral errors have a relatively constant distribution regardless

of depth, indicating that the lateral resolution of our system

is constant with depth. These observations suggest that our

proposed machine learning approach has the potential to

significantly outperform existing imaging system resolution at

depths greater than 5 cm, thus making this a very attractive ap-

proach for interventional surgeries that require lower frequency

probes because of the deeper acoustic penetration and the

reduced signal attenuation (e.g. transabdominal, transcranial,

and cardiac imaging applications).

Of the three artifact removal methods we explored, the

CNN-based method was most promising, as it results in a

noise-free, high contrast, high resolution image (e.g., Figs.

16(m)-(o)). This type of image could be used as a mask or

scaling factor for beamformed images, or it could serve as

a stand-alone image. The stand-alone image would be most

useful for instrument or implant localization and isolation

from reflection artifacts during interventional photoacoustic

applications. To achieve greater accuracy, we can design

specialized light delivery systems that attach to surgical tools

(e.g., [18]) and learn their unique photoacoustic signatures.

The results presented in this paper are additionally promising

for other emerging approaches that apply deep learning to

photoacoustic image reconstruction [41], [42].

V. CONCLUSION

The use of deep learning as a tool for reflection artifact

detection and removal is a promising alternative to geometry-

based beamforming models. We trained a CNN using sim-

ulated images of raw photoacoustic channel data containing

multiple sources and artifacts. Our results show that the net-

work can distinguish between a simulated source and artifact

in the absence and presence of channel noise. In addition,

we successfully determined the lateral and depth locations

of the signal using the location of the bounding box. The

network was successfully transferred to experimental data with

similar classification accuracy to simulated data. Results are

promising for distinguishing between photoacoustic sources

and artifacts without relying on the inherent inaccuracies

with traditional beamforming. This approach has additional

potential to eliminate reflection artifacts from interventional

photoacoustic images.
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