Loading [MathJax]/extensions/MathMenu.js
Parareal Neural Networks Emulating a Parallel-in-Time Algorithm | IEEE Journals & Magazine | IEEE Xplore

Parareal Neural Networks Emulating a Parallel-in-Time Algorithm


Abstract:

As deep neural networks (DNNs) become deeper, the training time increases. In this perspective, multi-GPU parallel computing has become a key tool in accelerating the tra...Show More

Abstract:

As deep neural networks (DNNs) become deeper, the training time increases. In this perspective, multi-GPU parallel computing has become a key tool in accelerating the training of DNNs. In this article, we introduce a novel methodology to construct a parallel neural network that can utilize multiple GPUs simultaneously from a given DNN. We observe that layers of DNN can be interpreted as the time steps of a time-dependent problem and can be parallelized by emulating a parallel-in-time algorithm called parareal. The parareal algorithm consists of fine structures which can be implemented in parallel and a coarse structure that gives suitable approximations to the fine structures. By emulating it, the layers of DNN are torn to form a parallel structure, which is connected using a suitable coarse network. We report accelerated and accuracy-preserved results of the proposed methodology applied to VGG-16 and ResNet-1001 on several datasets.
Page(s): 6353 - 6364
Date of Publication: 29 September 2022

ISSN Information:

PubMed ID: 36173779

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.