Overview of RecipeBowl Cooking Recommender. RecipeBowl takes two types of input then recommends additional ingredients and sample recipes. The bold-faced ingredient (bals...
Abstract:
Countless possibilities of recipe combinations challenge us to determine which additional ingredient goes well with others. In this work, we propose RecipeBowl which is a...Show MoreMetadata
Abstract:
Countless possibilities of recipe combinations challenge us to determine which additional ingredient goes well with others. In this work, we propose RecipeBowl which is a cooking recommendation system that takes a set of ingredients and cooking tags as input and suggests possible ingredient and recipe choices. We formulate a recipe completion task to train RecipeBowl on our constructed dataset where the model predicts a target ingredient previously eliminated from the original recipe. The RecipeBowl consists of a set encoder and a 2-way decoder for prediction. For the set encoder, we utilize the Set Transformer that builds meaningful set representations. Overall, our model builds a set representation of an leave-one-out recipe and maps it to the ingredient and recipe embedding space. Experimental results demonstrate the effectiveness of our approach. Furthermore, analysis on model predictions and interpretations show interesting insights related to cooking knowledge.
Overview of RecipeBowl Cooking Recommender. RecipeBowl takes two types of input then recommends additional ingredients and sample recipes. The bold-faced ingredient (bals...
Published in: IEEE Access ( Volume: 9)