Abstract:
3D human pose estimation from a single 2D video is an extremely difficult task because computing 3D geometry from 2D images is an ill-posed problem. Recent popular soluti...Show MoreMetadata
Abstract:
3D human pose estimation from a single 2D video is an extremely difficult task because computing 3D geometry from 2D images is an ill-posed problem. Recent popular solutions adopt fully-supervised learning strategy, which requires to train a deep network on a large-scale ground truth dataset of 3D poses and 2D images. However, such a large-scale dataset with natural images does not exist, which limits the usability of existing methods. While building a complete 3D dataset is tedious and expensive, abundant 2D in-the-wild data is already publicly available. As a consequence, there is a growing interest in the computer vision community to design efficient techniques that use the unsupervised learning strategy, which does not require any ground truth 3D data. Such methods can be trained with only natural 2D images of humans. In this paper we propose an unsupervised method for estimating 3D human pose in videos. The standard approach for unsupervised learning is to use the Generative Adversarial Network (GAN) framework. To improve the performance of 3D human pose estimation in videos, we propose a new GAN network that enforces body consistency over frames in a video. We evaluate the efficiency of our proposed method on a public 3D human body dataset.
Date of Conference: 10-15 January 2021
Date Added to IEEE Xplore: 05 May 2021
ISBN Information:
Print on Demand(PoD) ISSN: 1051-4651