Loading web-font TeX/Math/Italic
Peak-Graph-Based Fast Density Peak Clustering for Image Segmentation | IEEE Journals & Magazine | IEEE Xplore

Peak-Graph-Based Fast Density Peak Clustering for Image Segmentation


Abstract:

Fuzzy c-means (FCM) algorithm as a traditional clustering algorithm for image segmentation cannot effectively preserve local spatial information of pixels, which leads to...Show More

Abstract:

Fuzzy c-means (FCM) algorithm as a traditional clustering algorithm for image segmentation cannot effectively preserve local spatial information of pixels, which leads to poor segmentation results with inconsistent regions. For the remedy, superpixel technologies are applied, but spatial information preservation highly relies on the quality of superpixels. Density peak clustering algorithm (DPC) can reconstruct spatial information of arbitrary-shaped clusters, but its high time complexity O(n^2) and unrobust allocation strategy decrease its applicability for image segmentation. Herein, a fast density peak clustering method (PGDPC) based on the kNN distance matrix of data with time complexity O(nlog(n)) is proposed. By using the peak-graph-based allocation strategy, PGDPC is more robust in the reconstruction of spatial information of various complex-shaped clusters, so it can rapidly and accurately segment images into high-consistent segmentation regions. Experiments on synthetic datasets, real and Wireless Capsule Endoscopy (WCE) images demonstrate that PGDPC as a fast and robust clustering algorithm is applicable to image segmentation.
Published in: IEEE Signal Processing Letters ( Volume: 28)
Page(s): 897 - 901
Date of Publication: 16 April 2021

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.