Loading web-font TeX/Main/Regular
Volatile-Nonvolatile Memory Network for Progressive Image Super-Resolution | IEEE Journals & Magazine | IEEE Xplore

Volatile-Nonvolatile Memory Network for Progressive Image Super-Resolution


Overall structure of the proposed Volatile-nonvolatile Memory Network (VMNet) model.

Abstract:

Single-image super-resolution, i.e., reconstructing a high-resolution image from a low-resolution image, is a critical concern in many computer vision applications. Recen...Show More

Abstract:

Single-image super-resolution, i.e., reconstructing a high-resolution image from a low-resolution image, is a critical concern in many computer vision applications. Recent deep learning-based image super-resolution methods employ massive numbers of model parameters to obtain quality gain. However, this leads to increased model size and high computational complexity. To mitigate this, some methods employ recursive parameter-sharing for better parameter efficiency. Nevertheless, their designs do not adequately exploit the potential of the recursive operation. In this paper, we propose a novel super-resolution method, called a volatile-nonvolatile memory network (VMNet), to maximize the usefulness of the recursive architecture. Specifically, we design two central components called volatile and nonvolatile memories. By means of these, the recursive feature extraction portion of our model performs effective recursive operations that gradually enhance image quality. Through extensive experiments on \times 2 , \times 3 , and \times 4 super-resolution tasks, we demonstrate that our method outperforms existing state-of-the-art methods in terms of image quality and complexity via stable progressive super-resolution.
Overall structure of the proposed Volatile-nonvolatile Memory Network (VMNet) model.
Published in: IEEE Access ( Volume: 9)
Page(s): 37487 - 37496
Date of Publication: 04 March 2021
Electronic ISSN: 2169-3536

Funding Agency:


References

References is not available for this document.