Neuroblastoma Cells Classification Through Learning Approaches by Direct Analysis of Digital Holograms | IEEE Journals & Magazine | IEEE Xplore

Neuroblastoma Cells Classification Through Learning Approaches by Direct Analysis of Digital Holograms


Abstract:

The label-free single cell analysis by machine and Deep Learning, in combination with digital holography in transmission microscope configuration, is becoming a powerful ...Show More

Abstract:

The label-free single cell analysis by machine and Deep Learning, in combination with digital holography in transmission microscope configuration, is becoming a powerful framework exploited for phenotyping biological samples. Usually, quantitative phase images of cells are retrieved from the reconstructed complex diffraction patterns and used as inputs of a deep neural network. However, the phase retrieval process can be very time consuming and prone to errors. Here we address the classification of cells by using learning strategies with images coming directly from the raw recorded digital holograms, i.e. without any data processing or refocusing involved. Indeed, in the raw digital hologram the entire complex amplitude information of the sample is intrinsically embedded in the form of modulated fringes. We develop a training strategy, based on deep and feature based machine learning models, in order extract such information by skipping the classical reconstruction process for classifying different neuroblastoma cells. We provided an experimental validation by using the proposed strategy to classify two neuroblastoma cell lines.
Published in: IEEE Journal of Selected Topics in Quantum Electronics ( Volume: 27, Issue: 5, Sept.-Oct. 2021)
Article Sequence Number: 5500309
Date of Publication: 19 February 2021

ISSN Information:

Funding Agency:


References

References is not available for this document.