Loading [MathJax]/extensions/MathMenu.js
Sya: Enabling Spatial Awareness inside Probabilistic Knowledge Base Construction | IEEE Conference Publication | IEEE Xplore

Sya: Enabling Spatial Awareness inside Probabilistic Knowledge Base Construction


Abstract:

This paper presents Sya; the first spatial probabilistic knowledge base construction system, based on Markov Logic Networks (MLN). Sya injects the awareness of spatial re...Show More

Abstract:

This paper presents Sya; the first spatial probabilistic knowledge base construction system, based on Markov Logic Networks (MLN). Sya injects the awareness of spatial relationships inside the MLN grounding and inference phases, which are the pillars of the knowledge base construction process, and hence results in a better knowledge base output. In particular, Sya generates a probabilistic model that captures both logical and spatial correlations among knowledge base relations. Sya provides a simple spatial high-level language, a spatial variation of factor graph, a spatial rules-query translator, and a spatially-equipped statistical inference technique to infer the factual scores of relations. In addition, Sya provides an optimization that ensures scalable grounding and inference for large-scale knowledge bases. Experimental evidence, based on building two real knowledge bases with spatial nature, shows that Sya can achieve 70% higher F1-score on average over the state-of-the-art DeepDive system, while achieving at least 20% reduction in the execution times.
Date of Conference: 20-24 April 2020
Date Added to IEEE Xplore: 27 May 2020
ISBN Information:

ISSN Information:

Conference Location: Dallas, TX, USA

Contact IEEE to Subscribe

References

References is not available for this document.