Loading [MathJax]/extensions/MathMenu.js
Data Clustering: Algorithms and Its Applications | IEEE Conference Publication | IEEE Xplore

Data Clustering: Algorithms and Its Applications


Abstract:

Data is useless if information or knowledge that can be used for further reasoning cannot be inferred from it. Cluster analysis, based on some criteria, shares data into ...Show More

Abstract:

Data is useless if information or knowledge that can be used for further reasoning cannot be inferred from it. Cluster analysis, based on some criteria, shares data into important, practical or both categories (clusters) based on shared common characteristics. In research, clustering and classification have been used to analyze data, in the field of machine learning, bioinformatics, statistics, pattern recognition to mention a few. Different methods of clustering include Partitioning (K-means), Hierarchical (AGNES), Density-based (DBSCAN), Grid-based (STING), Soft clustering (FANNY), Model-based (SOM) and Ensemble clustering. Challenges and problems in clustering arise from large datasets, misinterpretation of results and efficiency/performance of clustering algorithms, which is necessary for choosing clustering algorithms. In this paper, application of data clustering was systematically discussed in view of the characteristics of the different clustering techniques that make them better suited or biased when applied to several types of data, such as uncertain data, multimedia data, graph data, biological data, stream data, text data, time series data, categorical data and big data. The suitability of the available clustering algorithms to different application areas was presented. Also investigated were some existing cluster validity methods used to evaluate the goodness of the clusters produced by the clustering algorithms.
Date of Conference: 01-04 July 2019
Date Added to IEEE Xplore: 03 October 2019
ISBN Information:
Conference Location: St. Petersburg, Russia

Contact IEEE to Subscribe

References

References is not available for this document.