Tighter Dimensioning of Heterogeneous Multi-Resource Autonomous CPS with Control Performance Guarantees | IEEE Conference Publication | IEEE Xplore

Tighter Dimensioning of Heterogeneous Multi-Resource Autonomous CPS with Control Performance Guarantees


Abstract:

In modern autonomous systems, there is typically a large number of connected components realizing complex functionalities. For example, in autonomous vehicles (AVs), ther...Show More

Abstract:

In modern autonomous systems, there is typically a large number of connected components realizing complex functionalities. For example, in autonomous vehicles (AVs), there are tens of millions of lines of code implemented on hundreds of sensors, controllers, and actuators. AVs have been deployed, mostly in trials and restricted environments, showing that substantial progress has been made in functionality development. However, they are still faced with two major challenges: (i) performance guarantee of safety-critical functions under all possible scenarios; (ii) functionality implementation with limited resources. These two challenges are conflicting because safety guarantees necessitate a worst-case analysis that is often very pessimistic for complex hardware/software systems, and thus require more resources. To address this, we study an abstraction of a heterogeneous cyber-physical system architecture consisting of a mix of high- and low-quality resources, such as time- and event-triggered resources, or wired and wireless resources. We show that by properly managing such a mix of resources and formulating a formal verification (model checking) problem, it is possible to tightly dimension the high-quality resource to the minimum (50% in certain cases) while providing control performance guarantees.
Date of Conference: 02-06 June 2019
Date Added to IEEE Xplore: 22 August 2019
ISBN Information:
Print on Demand(PoD) ISSN: 0738-100X
Conference Location: Las Vegas, NV, USA

References

References is not available for this document.