Factored Convolutional Neural Network for Amharic Character Image Recognition | IEEE Conference Publication | IEEE Xplore

Factored Convolutional Neural Network for Amharic Character Image Recognition


Abstract:

In this paper we propose a novel CNN based approach for Amharic character image recognition. The proposed method is designed by leveraging the structure of Amharic graphe...Show More

Abstract:

In this paper we propose a novel CNN based approach for Amharic character image recognition. The proposed method is designed by leveraging the structure of Amharic graphemes. Amharic characters could be decomposed in to a consonant and a vowel. As a result of this consonant-vowel combination structure, Amharic characters lie within a matrix structure called 'Fidel Gebeta'. The rows and columns of 'Fidel Gebeta' correspond to a character's consonant and the vowel components, respectively. The proposed method has a CNN architecture with two classifiers that detect the row/consonant and column/vowel components of a character. The two classifiers share a common feature space before they fork-out at their last layers. The method achieves state-of-the-art result on a synthetically generated dataset. The proposed method achieves 94.97% overall character recognition accuracy.
Date of Conference: 22-25 September 2019
Date Added to IEEE Xplore: 26 August 2019
ISBN Information:

ISSN Information:

Conference Location: Taipei, Taiwan

Contact IEEE to Subscribe

References

References is not available for this document.