Deep Learning for Audio Signal Processing | IEEE Journals & Magazine | IEEE Xplore

Deep Learning for Audio Signal Processing


Abstract:

Given the recent surge in developments of deep learning, this paper provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech...Show More

Abstract:

Given the recent surge in developments of deep learning, this paper provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e., audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.
Published in: IEEE Journal of Selected Topics in Signal Processing ( Volume: 13, Issue: 2, May 2019)
Page(s): 206 - 219
Date of Publication: 31 March 2019

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.