A Framework for Data-Driven Physical Security and Insider Threat Detection | IEEE Conference Publication | IEEE Xplore

A Framework for Data-Driven Physical Security and Insider Threat Detection


Abstract:

This paper presents PSO, an ontological framework and a methodology for improving physical security and insider threat detection. PSO can facilitate forensic data analysi...Show More

Abstract:

This paper presents PSO, an ontological framework and a methodology for improving physical security and insider threat detection. PSO can facilitate forensic data analysis and proactively mitigate insider threats by leveraging rule-based anomaly detection. In all too many cases, rule-based anomaly detection can detect employee deviations from organizational security policies. In addition, PSO can be considered a security provenance solution because of its ability to fully reconstruct attack patterns. Provenance graphs can be further analyzed to identify deceptive actions and overcome analytical mistakes that can result in bad decision-making, such as false attribution. Moreover, the information can be used to enrich the available intelligence (about intrusion attempts) that can form use cases to detect and remediate limitations in the system, such as loosely-coupled provenance graphs that in many cases indicate weaknesses in the physical security architecture. Ultimately, validation of the framework through use cases demonstrates and proves that PS0 can improve an organization's security posture in terms of physical security and insider threat detection.
Date of Conference: 28-31 August 2018
Date Added to IEEE Xplore: 25 October 2018
ISBN Information:

ISSN Information:

Conference Location: Barcelona, Spain

Contact IEEE to Subscribe

References

References is not available for this document.