Abstract:
In recent years, UAVs have received much attention in both the military and civilian fields for monitoring, emergency relief and searching tasks. UAVs are considered a ne...Show MoreMetadata
Abstract:
In recent years, UAVs have received much attention in both the military and civilian fields for monitoring, emergency relief and searching tasks. UAVs are considered a new technology to obtain data at high altitudes when equipped with sensors. This technology is vital to the success of next-generation monitoring systems, which are expected to be reliable, real-time, efficient and secure. However, due to the bandwidth limitations in UAV-aided networks, the size of the transmitted data is a crucial factor for real-time media data transmission requirements, especially for national defense. To address this issue, in this article, we propose a realtime end-to-end media data transmission mechanism with an unsupervised deep neural network. The proposed mechanism transmutes the media data captured by UAVs into latent codes with a predefined constant size and transmits the codes to the ground console station (GCS) for further reconstruction. We use a real-word dataset containing millions of samples to evaluate the proposed mechanism which achieves a high transmission ratio, low resource usage and good visual quality.
Published in: IEEE Network ( Volume: 32, Issue: 5, September/October 2018)