Abstract:
Let E be a set in {\BBR}^d with finite n-dimensional Hausdorff measure {\cal H}^n such that \liminf _{r\to 0}r^{-n}{\cal H}^n(B(x,r)\cap E) \gt 0 for {\cal H}^n-a...Show MoreMetadata
Abstract:
Let E be a set in {\BBR}^d with finite n-dimensional Hausdorff measure {\cal H}^n such that \liminf _{r\to 0}r^{-n}{\cal H}^n(B(x,r)\cap E) \gt 0 for {\cal H}^n-a.e. x∈E. In this paper, it is shown that E is n-rectifiable if and only if \int_0^1 \left|{{\cal H}^n(B(x,r)\cap E) \over r^n} - {{\cal H}^n(B(x,2r)\cap E) \over (2r)^n} \right|^2 {{\rm d} r \over r} \lt \infty\quad \hbox{for } {\cal H}^n-\hbox{a.e. } x \in E, and also if and only if \lim_{r\to0}\left({{\cal H}^n(B(x,r)\cap E) \over r^n} - {{\cal H}^n(B(x,2r)\cap E) \over (2r)^n}\right) = 0 \quad \hbox{for } {\cal H}^n-\hbox{a.e. } x \in E. Other more general results involving Radon measures are also proved.
Published in: International Mathematics Research Notices ( Volume: 2015, Issue: 13, 2015)
DOI: 10.1093/imrn/rnu082