Richer Convolutional Features for Edge Detection | IEEE Conference Publication | IEEE Xplore

Richer Convolutional Features for Edge Detection


Abstract:

In this paper, we propose an accurate edge detector using richer convolutional features (RCF). Since objects in natural images possess various scales and aspect ratios, l...Show More

Abstract:

In this paper, we propose an accurate edge detector using richer convolutional features (RCF). Since objects in natural images possess various scales and aspect ratios, learning the rich hierarchical representations is very critical for edge detection. CNNs have been proved to be effective for this task. In addition, the convolutional features in CNNs gradually become coarser with the increase of the receptive fields. According to these observations, we attempt to adopt richer convolutional features in such a challenging vision task. The proposed network fully exploits multiscale and multilevel information of objects to perform the image-to-image prediction by combining all the meaningful convolutional features in a holistic manner. Using VGG16 network, we achieve state-of-the-art performance on several available datasets. When evaluating on the well-known BSDS500 benchmark, we achieve ODS F-measure of 0.811 while retaining a fast speed (8 FPS). Besides, our fast version of RCF achieves ODS F-measure of 0.806 with 30 FPS.
Date of Conference: 21-26 July 2017
Date Added to IEEE Xplore: 09 November 2017
ISBN Information:
Print ISSN: 1063-6919
Conference Location: Honolulu, HI, USA

References

References is not available for this document.