Loading [MathJax]/extensions/TeX/ietmacros.js
Learning from Synthetic Humans | IEEE Conference Publication | IEEE Xplore

Learning from Synthetic Humans


Abstract:

Estimating human pose, shape, and motion from images and videos are fundamental challenges with many applications. Recent advances in 2D human pose estimation use large a...Show More

Abstract:

Estimating human pose, shape, and motion from images and videos are fundamental challenges with many applications. Recent advances in 2D human pose estimation use large amounts of manually-labeled training data for learning convolutional neural networks (CNNs). Such data is time consuming to acquire and difficult to extend. Moreover, manual labeling of 3D pose, depth and motion is impractical. In this work we present SURREAL (Synthetic hUmans foR REAL tasks): a new large-scale dataset with synthetically-generated but realistic images of people rendered from 3D sequences of human motion capture data. We generate more than 6 million frames together with ground truth pose, depth maps, and segmentation masks. We show that CNNs trained on our synthetic dataset allow for accurate human depth estimation and human part segmentation in real RGB images. Our results and the new dataset open up new possibilities for advancing person analysis using cheap and large-scale synthetic data.
Date of Conference: 21-26 July 2017
Date Added to IEEE Xplore: 09 November 2017
ISBN Information:
Print ISSN: 1063-6919
Conference Location: Honolulu, HI, USA

Contact IEEE to Subscribe

References

References is not available for this document.