Loading [MathJax]/extensions/MathMenu.js
A closer look: Small object detection in faster R-CNN | IEEE Conference Publication | IEEE Xplore

A closer look: Small object detection in faster R-CNN


Abstract:

Faster R-CNN is a well-known approach for object detection which combines the generation of region proposals and their classification into a single pipeline. In this pape...Show More

Abstract:

Faster R-CNN is a well-known approach for object detection which combines the generation of region proposals and their classification into a single pipeline. In this paper we apply Faster R-CNN to the task of company logo detection. Motivated by the weak performance of Faster R-CNN on small object instances, we perform a detailed examination of both the proposal and the classification stage, examining their behavior for a wide range of object sizes. Additionally, we look at the influence of feature map resolution on the performance of those stages. We introduce an improved scheme for generating anchor proposals and propose a modification to Faster R-CNN which leverages higher-resolution feature maps for small objects. We evaluate our approach on the Flicker data set improving the detection performance on small object instances.
Date of Conference: 10-14 July 2017
Date Added to IEEE Xplore: 31 August 2017
ISBN Information:
Electronic ISSN: 1945-788X
Conference Location: Hong Kong, China

Contact IEEE to Subscribe

References

References is not available for this document.